Disclaimer

This document provides guidance to States, Territories, authorized Tribes, and the public regarding management measures that may be used to reduce nonpoint source pollution from agricultural activities. This document refers to statutory and regulatory provisions which contain legally binding requirements. This document does not substitute for those provisions or regulations, nor is it a regulation itself. Thus, it does not impose legally-binding requirements on EPA, States, Territories, authorized Tribes, or the public and may not apply to a particular situation based upon the circumstances. EPA, State, Territory, and authorized Tribe decision makers retain the discretion to adopt approaches on a case-by-case basis that differ from this guidance where appropriate. Interested parties are free to raise questions and objections about the appropriateness of the application of the guidance to a particular situation, and EPA will consider whether or not the recommendations in this guidance are appropriate in that situation. EPA may change this guidance in the future.
Acknowledgments

Steven A. Dressing, formerly of the Nonpoint Source Control Branch, Office of Water, U.S. Environmental Protection Agency, Washington, DC, was the primary author of this guidance document. Many individuals assisted in this effort, including the following:

John Kosco, formerly of the Municipal Support Division, Office of Water, U.S. EPA, Washington, DC
Thomas Davenport, Region 5, U.S. EPA, Chicago, IL
David Rathke, Region 8, U.S. EPA, Denver, CO
Don Meals, consultant, Burlington, VT
Tommy C. Daniel, Department of Agronomy, University of Arkansas, Fayetteville, AR
Brent Hallock, Soil Science, Department, California Polytechnic State University, San Luis, Obispo, CA
Ray Knighton, USDA-CRES, Washington, D.C., formerly of the Soil Science Department, North Dakota State University, Fargo, ND
Jerry Hatfield, USDA-ARS, Washington, DC
Roger Dean, Region 8, U.S. EPA, Denver, CO
Amy Sosin, Department of Justice, Washington, DC
Kristen Martin Dors, formerly of Region 6, U.S. EPA, Dallas, TX
Steven W. Coffey, Division of Soil and Water Conservation, NC Department of Environment and Natural Resources, Raleigh, NC
Judith A. Gale, Galeforce Consulting, Raleigh, NC
Richard E. Phillips, retired, Biological and Agricultural Engineering Department, North Carolina State University, Raleigh, NC
Ron Marlow, USDA-NRCS, Washington, DC
Alan Dixon, Registration Support Branch, Office of Pesticide Programs, Washington, DC
Sharon Buck, formerly of the Nonpoint Source Control Branch, Office of Water, U.S. EPA, Washington, DC
Stuart Lehman, Nonpoint Source Control Branch, Office of Water, U.S. EPA, Washington, DC
Katie Flahive, Nonpoint Source Control Branch, Office of Water, U.S. EPA, Washington, DC

The following team from North Carolina State University, Raleigh, NC, contributed as subcontractors to Tetra Tech, Inc., providing much of the writing and editing:

Laura Lombardo, Daniel E. Line, Garry L. Grabow, Jean Spooner, Terry W. Pollard, Janet M. Young and Catherine Scache, of the NCSU Water Quality Group, Deanna L. Osmond and Rich McLaughlin of the Soil Science Department, and Frank J. Humenik, Animal Waste Management Programs, College of Agriculture and Life Sciences. In addition, George Townsend and Leslie Shoemaker from Tetra Tech, Inc. provided valuable contributions.

Public comment was solicited in the Federal Register, October 17, 2000, on the draft version of the guidance. Comments were received from approximately 50 individuals. These comments were valuable in making this a better document and EPA appreciates the efforts of these individuals.
Table of Contents

Chapter 1: Introduction

- The Purpose and Scope of this Guidance .. 1
- What is Nonpoint Source Pollution? ... 3
- National Efforts to Control Nonpoint Source Pollution 4
 - Nonpoint Source Program — Section 319 Clean Water Act 4
 - National Estuary Program .. 5
 - Pesticides Program ... 5
 - Coastal Nonpoint Pollution Control Program .. 5
 - Source Water Protection Program .. 6
 - Rural Clean Water Program (RCWP) ... 6
 - Farm Bill Conservation Provisions .. 7

Chapter 2: Overview

- Agricultural Nonpoint Source Pollution .. 9
 - Nutrients .. 9
 - Sediment .. 15
 - Animal Wastes .. 16
 - Salts ... 19
 - Pesticides .. 21
 - Habitat Impacts ... 24

Chapter 3: Management Practices

- How Management Practices Work to Prevent Nonpoint Source Pollution 31
- Water Quality Effects of USDA-NRCS Practices ... 32
- Management Practice Systems ... 34
 - Types of Management Practice Systems .. 34
 - Site-Specific Design of Management Practice Systems 35
 - Practices Must Fit Together for Systems to Perform Effectively 36

Chapter 4: Management Measures

- 4A: Nutrient Management .. 37
 - Management Measure for Nutrients ... 37
 - Management Measure for Nutrients: Description ... 38
 - Sources of Nutrients ... 39
List of Figures and Tables

Chapter 3: Management Practices ... 31
 Table 3-1. NRCS Conservation practices, pollutants potentially controlled, and
 sources of pollutants ... 33
 Table 3-2. Animal waste management, BMP systems used in two agricultural
 pollution control projects .. 36

Chapter 4: Management Measures .. 37
 4A: Nutrient Management .. 37
 Figure 4a-1. The nitrogen cycle .. 39
 Figure 4a-2. The phosphorus cycle .. 40
 Table 4a-1. Common fertilizer minerals .. 41
 Highlight - Precision Farming: A new era of production 42
 Table 4a-2. Fertilizer recommendations for corn in New York state 44
 Table 4a-3. N and P mass balances on several New York dairy farms 45
 Table 4a-4. Representative values for nutrients in manure, sludge, and whey, as applied 46
 Table 4a-5. Nutrients available for crop use in the first year after spreading manure 47
 Table 4a-6. Quantity of livestock or poultry manure needed to supply 100 kg of nitrogen 47
 Table 4a-7. Representative values for first-year nitrogen credits for previous legume crops 48
 Table 4a-8. Calculating N contributions from irrigation water 48
 Table 4a-9. N loading in atmospheric deposition, NADP/NTN data 49
 Table 4a-10. Crop nutrient removal .. 50
 Figure 4a-3. P added in poultry litter compared with crop requirements 51
 Table 4a-11. Allowable P application rates for organic by-products (e.g. manure) 55
 Figure 4a-4. Example of soil test report .. 56
 Figure 4a-5. Example of Penn State’s soil quicktest form 57
 Table 4a-12. Required nutrient management plan elements for confirmed animal
 operations in the Pequa-Mill Creek National Monitoring Program project . 60
 Table 4a-13. Missisquoi Crop Management Association 1997 nutrient recommendations 60
 Table 4a-14. Plan summary from a sample plan 61
 Table 4a-15. Reported changes in average annual nutrient application rates 63
 Table 4a-16. Relative effectiveness of nutrient management 64
 Highlight - USDA/NRCS Comprehensive Nutrient Management Planning Technical Guidance 67
 4B: Pesticide Management ... 69
 Figure 4b-1. Pesticide Fate: Major Pathways 70
Figure 4b-2. Pesticide Fate: Losses to the Atmosphere 0-30% of Applied Pesticide .. 74
Figure 4b-3. Pesticide Fate: Plant Uptake 1-10% of Applied Pesticide .. 74
Figure 4b-4. Pesticide Fate: Soil 50-100% of Applied Pesticide ... 75
Table 4b-1. Typical pesticide leaching potential (PLP) index values calculated for six herbicides 81
Table 4b-2. Effect of BMPs on pesticide losses compared to conventional tillage or no filter strips .. 81
Table 4b-3. Summary of buffer studies measuring trapping efficiencies for specific pesticides 82
Highlight - EPA’s Office of Pesticide Programs promotes registration of lower risk pesticides 84
Table 4b-4. Estimated scouting costs by coastal region and crop in the coastal zone 87
Table 4b-5. Summary of results of farm-level economic evaluations of IPM programs 87

4C: Erosion and Sediment Control .. 89
Figure 4c-1. The different ways soil can move during wind erosion .. 93
Figure 4c-2. Diversion ... 96
Figure 4c-3. Stripcropping and rotations ... 98
Figure 4c-4. Gradient terraces with tile outlets ... 99
Figure 4c-5. Gradient terraces with waterway outlet ... 99
Table 4c-1. Relative gross effectiveness of sediment control measures ... 103
Table 4c-2. Representative costs of selected erosion control practices ... 106
Table 4c-3. Annualized cost estimates and life spans for selected management practices from Chesapeake Bay installations .. 106

4D: Animal Feeding Operations .. 107
Highlight - USDA-EPA Unified national strategy for animal feeding operations 108
Table 4d-1. Large and small confirmed animal facilities under CZARA ... 111
Highlight - Management of soil phosphorus levels to protect water quality 112
Figure 4d-1. Animal feeding operation .. 114
Figure 4d-2. Management measure for animal feeding operations .. 115
Table 4d-2. Waste characteristics from dairy farms ... 117
Table 4d-3. Annual waste production on a typical 100 cow dairy ... 117
Table 4d-4. Manure reduction methods and costs for milking centers ... 118
Table 4d-5. Phosphorus reduction methods and costs .. 118
Table 4d-6. Relative gross effectiveness (load reduction) of animal feeding operation control measures .. 122
Table 4d-7. Concentration reductions in barnyard and feedlot runoff treated with solids separation .. 122
Table 4d-8. Summary of average performance of wetlands treating wastewater from confined animal feeding operations .. 123
Figure 4f-12. Fate of water and pollutants in an irrigated hydrologic system .. 174
Figure 4f-13. Typical water extraction pattern in uniform soil profile .. 176
Figure 4f-14. Soil moisture measurement devices .. 176
Table 4f-3. Devices and methods to measure soil moisture .. 177
Figure 4f-15. Graphical format for irrigation scheduling ... 178
Equation 4f-1. Soil-water depletion volume .. 178
Figure 4f-16. Crop water use for corn, wheat, soybean, and potato based on average climatic conditions for North Dakota .. 179
Figure 4f-17. NRCS (SCS) Scheduler-seasonal crop ET .. 179
Table 4f-4. System capacity needed in gal/min-acre for different soil textures and crops to supply sufficient water in 9 out of 10 years .. 181
Table 4f-5. Measures of irrigation efficiency ... 182
Figure 4f-18. Typical tailwater collection and reuse facility for quick-cycling pump and reservoir ……… 184
Figure 4f-19. Basic components of a trickle irrigation system .. 189
Figure 4f-20. Backflow prevention device using check valve with vacuum relief and low pressure drain .. 192
Table 4f-6. Sediment removal efficiencies and comments on BMPs evaluated 194
Table 4f-7. Ranges of irrigation application efficiencies from various sources 194
Table 4f-8. Ranges of application efficiency and runoff, deep percolation, and evaporation losses …...... 194
Table 4f-9. Overall efficiencies obtainable by using tailwater recovery and reuse facility 195
Table 4f-10. Irrigation efficiencies of selected irrigation systems for cotton .. 195
Table 4f-11. Cost of soil water measuring devices .. 197
Highlight - Polyacrylamide application for erosion and infiltration management 198
Table 4f-12. Design lifetime for selected salt load reduction measures ... 201

Chapter 5: Using Management Measures to Prevent and Solve Nonpoint Source Problems in Watersheds ... 203

Highlight - Basins 2.0: A powerful tool for managing watersheds .. 210
Table 5-1. Sediment removal effectiveness of selected individual BMPs .. 213

Chapter 6: Monitoring and Tracking Techniques ... 215

Figure 6-1. Development of a monitoring project .. 216
Table 6-1. General characteristics of monitoring types .. 218
Figure 6-2. Land treatment and water quality monitoring program design .. 221
Table 6-2. Common QA and QC activities .. 223

Chapter 7: Load Estimation Techniques ... 225

Figure 7-1. Flux and cumulative load over time .. 231
Figure 7-2. Effect of missing concentration data ... 232
Figure 7-3. Load estimation models ... 235