

Design Flow Analysis Project Phase One: Low-Flow Analysis Case Study

This analysis was done by EPA summer intern Graham Jonaitis in 2002.

Overview/Agenda

- Project background and purpose
- Present status of DFLOW 3.0 as tool for States
- Present case study
- Lay out plan for next steps of project

- Why low flow?
 - Wastewater effluent-dominated pollution typically violates chemical criteria during low streamflow
 - EPA designates the biological design flow 4B3 for use in establishing discharge permits to protect aquatic life for chronic exposure
 - 1986 EPA analysis determined that hydrological flow statistic 7Q10 was equivalent to 4B3

- Why revisit this analysis?
 - Since 1986, 7Q10 statistic criticized as either over- or under-protective in various areas of US
 - States frequently set their own hydrological low flow standards to replace 7Q10, or use flow percentiles (percent of flows in a given stream's daily record that are less than the design flow) to impose pollution limits
 - EPA desires to evaluate such limits in relation to 4B3

- Design Flow Analysis project scope
 - Phase One: Single-State Case Study
 - Download and filter streamflow data from USGS
 - Using the DFLOW 3.0 program, determine 4B3, 3Q2, and 7Q10 for each (valid) gage station
 - Analyze relative protectiveness of 3Q2 and 7Q10
 - Determine relationship between 4B3 and percentile flows
 - Phase Two: Case Study Delivery
 - Provide web access to DFLOW 3.0
 - Provide web access to case study
 - Demonstrate use of DFLOW in analyzing xQy statistics
 - Demonstrate use of these analyses

- Design Flow Analysis project scope
 - Phase Three: National Study
 - Download and filter national streamflow data
 - Determine relationship between 4B3 and 7Q10 or other statespecific statistics
 - Evaluate relationship between 4B3 and flow percentiles
 - Evaluate this relationship with respect to ecoregion, stream order, previous EPA study
 - Report on the above analysis

Data Acquisition

- Beta-version utility designed for use with BASINS allows streamgage data to be downloaded from USGS subject to various geographic criteria
- Quick downloaded two hundred datasets in ~ 20 minutes
- Data downloaded in individualized datasets, one per streamgage format used by DFLOW

📒 USGS Daily Streamflow			
Enter the following criteria, then clic	ck Ok when finished. Bold ite	ms are require	d.
Site Number	Get From USGS Site	•	E dit
Save in Directory		C:\Stream	mflow Data\Browse
Create point shape file			Browse
Add to WDM file			Browse
Download Cancel Do	etails		

Data Filtering

- ASCE (1980) used stations with at least 15-20 years of record for calculating hydrological design flows
- All records with less than 20 years (7300 days) of observations were removed
- Removal of inconsistent data
 - Contacted state's USGS district office, received spreadsheet of information about stream exceptions (regulation, urbanization, etc.)
 - Removed all stations without 20 years of consistent data from statistical consideration (e.g. station with10 years unregulated, 15 years regulated would be removed)
 - Kept urbanized and consistently regulated streams
- 74 streamgage stations remained for analysis

- What is DFLOW?
 - Calculates xBy and xQy design flows, given historical streamflow data
 - Easy to use

😓 DFLOW 3 (final draft)	
<u>File R</u> un <u>H</u> elp	
Flow Data Parameters	Design Flow Parameters
Add Gages From Files Remove Unused Files Clear All Gage File Record Start End Use 01 5052500 MENDENH 15052500 1966-2000 1966 2000 Image: Clear All	Biological Use defaults C Criterion maximum concentration (acute) C Criterion continuous concentration (chronic) C Ammonia
	Flow averaging period (days):
	Average number of years between excursions 3
	Length of excursion clustering period (days) 120
	Average number of excursions counted per cluster: 5
Calculation period All available dates C Specified in table C Common dates C 1966 to 2000 C Longest period	Hydrological Flow averaging period (days):
Season Use default (full year) Start day of season End day of season S65	Return period on years with excursions (years): 2 Calculate Design Flows Exit

- How does DFLOW output flow statistics?
 - DFLOW outputs calculations in tabular form can be copied and pasted into spreadsheet
 - For each flow value DFLOW calculates, it also outputs corresponding percentile

DFLOW 3 Calcul	lated Des	ign Flows					
					Copy to clipboard		
✓ Show stream data						ок	
Gage (F	Period	Zero/missing	4B3	4B3 Per.	302	3021	
5012000 WINSTAN 1		_	7.41	0.51%	16.9	2.575	
I			E			► I	

- Previous Constraints
 - DFLOW Program
 - Problem: Output format contains both 4B3 and 4B3 percentile in the same column
 - Solution: DFLOW code altered to use separate columns
 - Problem: Program bugs cause compromised output when multiple datasets run within one session of DFLOW
 - Solution: Code altered to allow simultaneous runs

- Current Constraints
 - Data acquisition
 - Problem: BASINS download tool lacks filter for dataset size (i.e. number of observations)
 - Temporary Solution: After download, sort dataset text files by file size, giving estimate of number of observations

Project Analysis

- Analysis
 - Examine relationship between 4B3 and 3Q2, compare to relationship between 4B3 and 7Q10
 - Examine relationship between ${}^{3Q2}/_{4B3}$ and 4B3, compare to relationship between ${}^{7Q10}/_{4B3}$ and 4B3
 - Explore probability distribution of 4B3 percentiles
 - Attempt to fit to a standard distribution (e.g. lognormal)
 - Using cumulative distribution, identify reasonable percentile to capture "most" 4B3 flow values

Design Flow Analysis: 3Q2 vs. 4B3 for All Streams

- Observations:
 - 3Q2 strongly correlated with 4B3 ($R^2 = 0.9976$)
 - 3Q2 flow 22% greater than 4B3 (y = 1.2163x)

Design Flow Analysis: 3Q2 vs. 4B3 for Large-Flow Streams (1000 cfs < 4B3)

- Observations:
 - 3Q2 strongly correlated with 4B3 ($R^2 = 0.9958$)
 - 3Q2 flow 22% greater than 4B3 (y = 1.216x)

Design Flow Analysis:

3Q2 vs. 4B3 for Medium-Flow Streams (100 cfs < 4B3 < 1000 cfs)

- Observations:
 - 3Q2 well correlated with 4B3 ($R^2 = 0.9492$)
 - 3Q2 flow 37% greater than 4B3 (y = 1.3717x)

Design Flow Analysis: 3Q2 vs. 4B3 for Small-Flow Streams (4B3 < 100 cfs)

• Observations:

- 3Q2 well correlated with 4B3 (R² = 0.9497)
- 3Q2 greatest: 59% greater than 4B3 (y = 1.5855x)

Design Flow Analysis:

 $^{3Q2}/_{4B3}$ vs. 4B3

• Observation: 3Q2 dramatically higher for small streams (factor of two to five for 4B3 < 20 cfs)

Design Flow Analysis: Excursions Per Three Years for 3Q2

Observations

- Excursions per three years centered around six
- All stations show at least two excursions per three years

Design Flow Analysis: 7Q10 vs. 4B3 for All Streams

- Observations:
 - 7Q10 strongly correlated with 4B3 ($R^2 = 0.9992$)
 - -7Q10 flow 1% greater than 4B3 (y = 1.0082x)

Design Flow Analysis: 7Q10 vs. 4B3 for Large-Flow Streams (1000 cfs < 4B3)

- Observations:
 - 7Q10 strongly correlated with 4B3 ($R^2 = 0.9986$)
 - 7Q10 flow 1% greater than 4B3 (y=1.0082x)

Design Flow Analysis:

7Q10 vs. 4B3 for Medium-Flow Streams (100 cfs < 4B3 < 1000 cfs)

- Observations:
 - 7Q10 strongly correlated with 4B3 ($R^2 = 0.9942$)
 - -7Q10 flow 4% greater than 4B3 (y = 1.0356x)

Design Flow Analysis: 7Q10 vs. 4B3 for Small-Flow Streams (4B3 < 100 cfs)

• Observations:

- 7Q10 slightly less correlated with 4B3 ($R^2 = 0.9779$)
- -7Q10 flow 0.4% greater than 4B3 (y = 1.004x)

Design Flow Analysis:

$^{7Q10}/_{4B3}$ vs. 4B3

• Observation: 7Q10 clustered around 4B3 equivalence, but ratio for very small streams is as high as 1.6

Design Flow Analysis: Excursions Per Three Years for 7Q10

- Excursions per three years centered near one and one half
- 65% of the rivers exceed criteria more than once per year

Design Flow Analysis: Distribution of 4B3 Percentiles

Design Flow Analysis: Distribution of 4B3 Percentiles

- Delta-Lognormal Distribution
 - Five data points (4B3% = 0%) assumed to be nondetect values, based on sensitivity of 4B3 method
 - Data presumed to fit lognormal distribution, but values too low
 - Retained in cumulative distribution to determine number of low-end streams protected by percentile limits
 - Poor fit: p-correlation of 0.0826
 - National data may show better fit
- Observations
 - Distribution mean = 0.48%; mode = 0.40%
 - High end of distribution = 1.40% for empirical data,2.96% for distribution

Conclusions

- DFLOW and download tool should make analysis easy for states to perform
- 3Q2 vs. 4B3
 - 22% greater than 4B3 across the board
 - 59% greater than 4B3 for small streams
 - Shows 4-8 excursions per 3 years vs. 1 for 4B3
- 7Q10 vs. 4B3
 - Generally equivalent to 4B3 (1% greater overall)
 - 4% less than 4B3 for medium- and small-flow streams
 - Shows 0-2 excursions per 3 years

Conclusions

- Percentile Flow
 - 4B3 percentiles show no clear statistical distribution
 - 4B3 percentiles range from 0% to 1.40% for flow data, hence any percentile limit above 1.40% will underprotect streams

Next Steps

- Phase Two: Case Study Delivery
 - Number of biological excursions per three years will be added to DFLOW output
 - Make data download tool and DFLOW known and available to State water quality programs
 - Web publication of case study
- Phase Three: National Study
 - ^{7Q10}/_{4B3} Analysis
 - Separate into large, medium, and small-flow streams
 - Regional variability (e.g. with states, ecoregions)

Appendix

How does DFLOW determine xQy?
 – DFLOW uses the following formula:

 $xQy = \exp(u + \sigma K(g, y))$

where u = mean of logarithms of annual low flows

 σ = standard deviation of above

g = skewness coefficient of above

– *K* is calculated using:

$$K = \frac{2}{g} \left[\left(1 + \frac{gz}{6} - \frac{g^2}{36} \right)^3 - 1 \right] \quad ; \quad z = 4.91 \left[\left(\frac{1}{y} \right)^{.14} - \left(1 - \frac{1}{y} \right)^{.14} \right]$$

Appendix

- How does DFLOW determine xBy?
 - Calculate total allowed excursions over flow record using number of years in record divided by y
 - Use xQy design flow as an initial guess for xBy
 - Identify excursion periods based on xBy
 - Calculate number of excursions in each excursion period using period length divided by y
 - Sum total number of excursions over record; maximum excursions in a low-flow period (120 days) is five
 - True 4B3 is the greatest flow that keeps excursion sum below total allowed excursions – iterative process

References

- ASCE Task Committee on Low-Flow Evaluation, Methods, and Needs of the Committee on Surface-Water Hydrology of the Hydraulics Division. 1980. Characteristics of Low Flows. Journal of the Hydraulics Division. 106(HY5): 717-731.
- Biswas, H., and B.A. Bell. 1984. A method for establishing site-specific stream design flows for wasteload allocations. Journal Water Pollution Control Federation 56(10): 1123-1130.
- USEPA. 1986. Technical guidance manual for performing wasteload allocation; Book VI, design conditions; Chapter 1, stream design flow for steady-state modeling. Office of Water Regulations and Standards, US Environmental Protection Agency. EPA Document PB92-231178.
 http://www.epa.gov/waterscience/library/modeling/wlabook6c

```
hapter1.pdf>. Accessed 2002 June 15.
```

- USEPA. 1991. Technical support document for water quality-based toxics control. Office of Water, US Environmental Protection Agency. EPA Document EPA/505/2-90-001.
- USGS. 2002. Surface-water data for the nation.
 <http://waterdata.usgs.gov/nwis/sw/>. Accessed 2002 June 2.