Nutrient TMDLs for Reservoirs with Limited Data: Assessing Uncertainty Using Monte Carlo Simulation

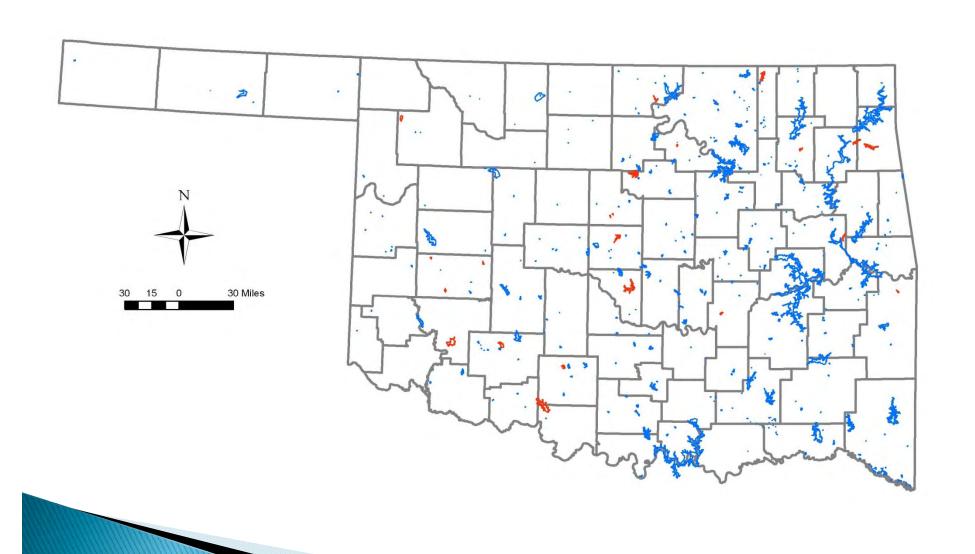
Andrew Fang

Jim Patek, Monica Suarez PARSONS

Nutrient TMDL Workshop, New Orleans, LA February 15–17, 2011

Outline

- 1. Project background
- 2. Project area
- 3. SWAT watershed model
- 4. BATHTUB lake model
- 5. Sensitivity analysis
- 6. Monte Carlo uncertainty analysis and MOS
- 7. Preliminary TMDL


Project Background

SWS Lakes in Oklahoma

Sensitive Water Supply Lakes

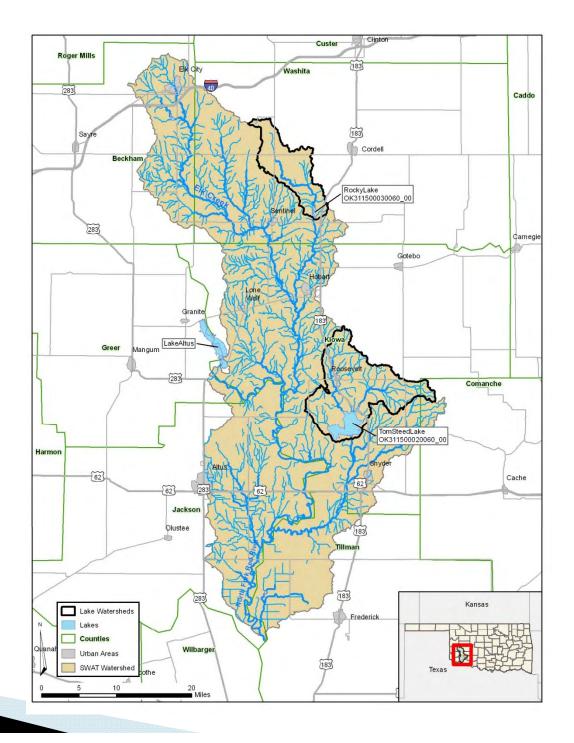
- Sources of public or private water supply
- Many of them are small municipal reservoirs with a watershed < 100 mi²
- 81 SWS lakes in Oklahoma
- ▶ Long term average Chl–a standard of 10 µg/L
- ▶ 22 SWS lakes on 2008 303(d) list due to high Chl-a

Chl-a Impaired SWS Lakes

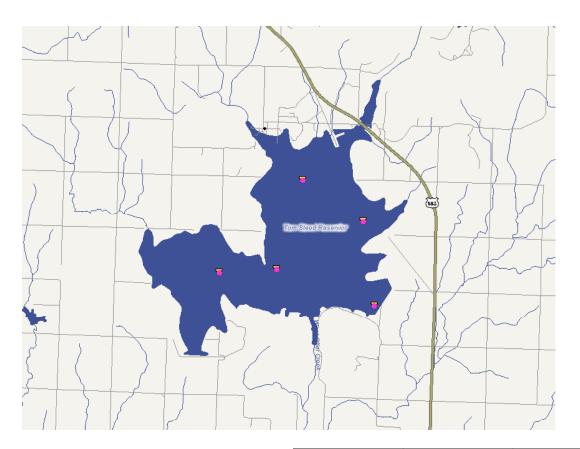
TMDLs for SWS lakes

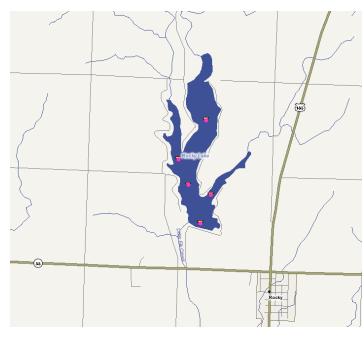
- Limited data availability
 - In most cases, state's Beneficial Use Monitoring Program (BUMP) is the only water quality data source
 - BUMP takes 4 quarterly samples every 2–3 years

(Per site per year)	Chl– <i>a</i>	Nutrients
Rocky	1.5	1.1
Tom Steed	1.9	1.8


Model Selection

- We needed an acceptable method to develop
 Chl-a TMDLs for the lakes
- Data availability does not support complex hydrodynamic/water quality models such as EFDC
- Simpler models calibrated against long-term average values of monitoring data are best fit


Project Lakes and Their Watersheds


North Fork of the Red

Annual Climatology		
Precipitation	29.7"	
Temperature	60 °F	
Wind speed	11 mph	
Thunderstorms 44		
Tornados	1	

The Lakes

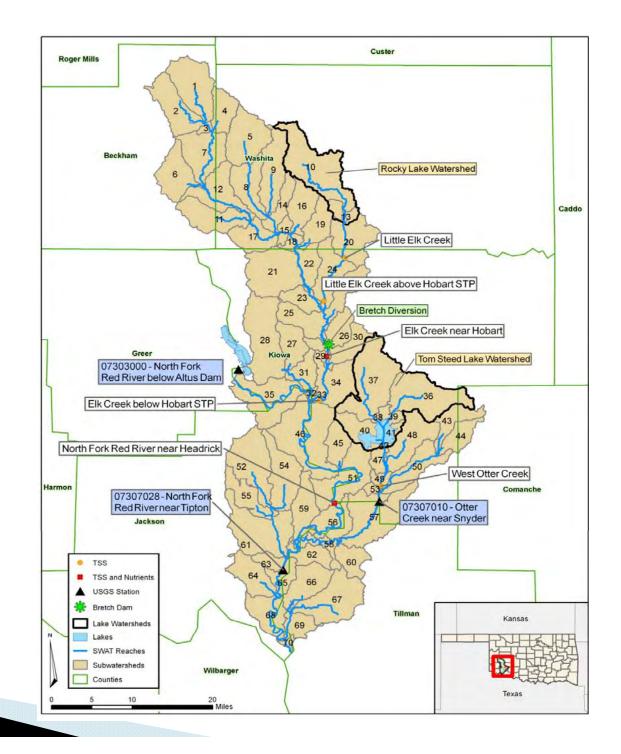
	Drainage (mi²)	Volume (m³)	Surface Area (km²)	Mean Depth (m)
Tom Steed	119	120,176,000	25.9	4.64
Rocky	55	3,784,000	1.376	2.75

Open Water Developed, Open Space Developed, Low Intensity Developed, Medium Intensity Developed, High Intensity Barren Land Deciduous Forest Evergreen Forest Mixed Forest Scrub/Shrub Kansas Grassland/Herbaceous Cultivated Crops Woody Wetlands Emergent Herbaceous Wetland Lake Watersheds

Land Use

	Rocky	Steed
Wheat	66%	42%
Shrub	16	36
Grass	6	7
Forest	2	4

Watershed Model

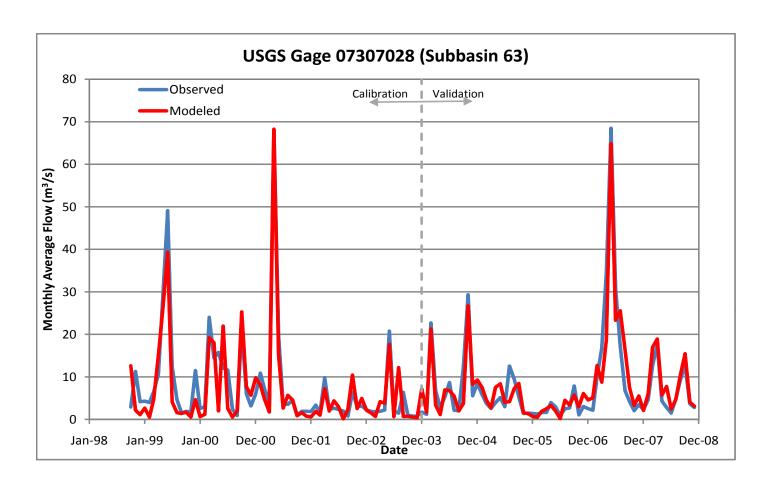

- No stream monitoring stations within either of the two lake watersheds
- Stations in the larger 8-digit HUC watershed: North Fork of the Red River
- A SWAT model was set up for the larger watershed

Watershed Monitoring

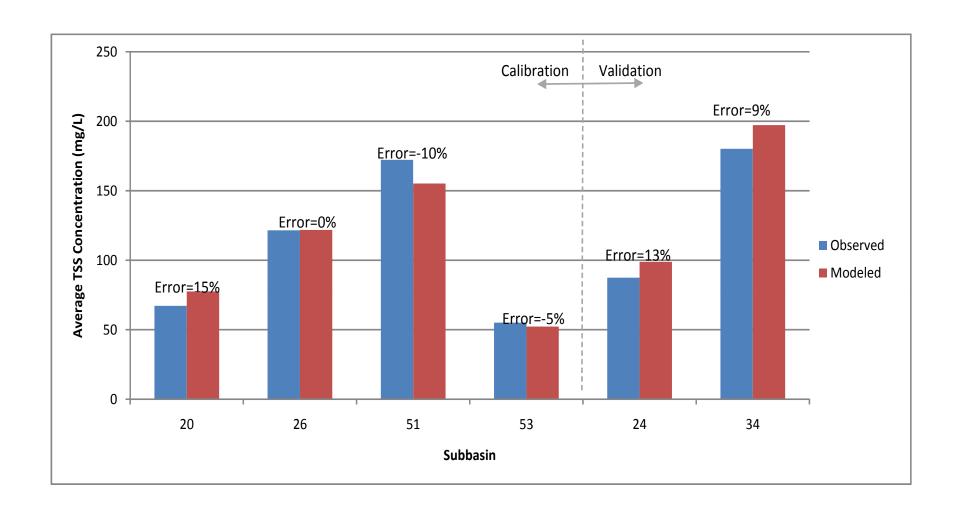
2 USGS gage stations: 1998/2000-2008

6 TSS stations: 18-22 samples in 2 years

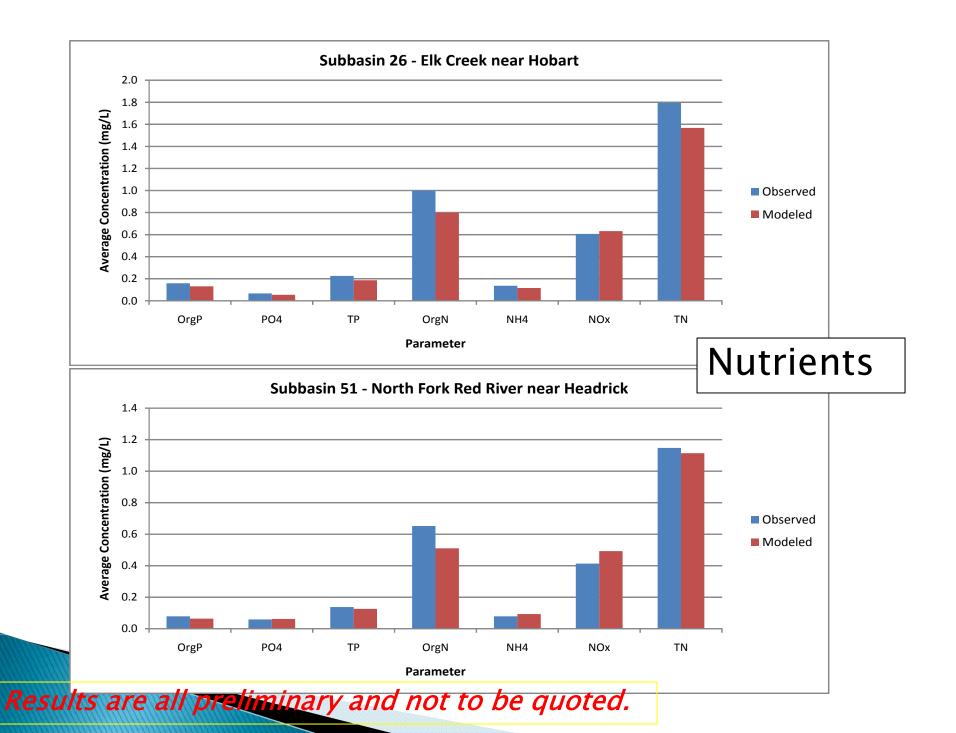
2 nutrients stations:38 samples in 4 years



SWAT Model for the Watershed


Flows and loadings

SWAT Model


- ▶ 70 subwatersheds and 1,970 HRUs
- Local pasture, wheat, and cotton operations
- County level soil test P levels

	Calibration	Validation
Model error (annual)	-12%	3%
r ² (monthly)	0.86	0.87
NSE (monthly)	0.85	0.87

TSS average at the 6 monitoring stations

Summary of Model Performance for Water Quality

Parameter	Subbasin	Average observed (mg/L)	Average modeled (mg/L)	Error	NSE	r²
	20	67.14	77.5	15%	0.643	0.694
	24	87.42	98.8	13%	0.778	0.985
TSS	26	121.55	121.8	0%	0.869	0.921
133	34	180.15	197.2	9%	0.861	0.895
	51	172.23	155.1	-10%	0.840	0.846
	53	55.10	52.3	-5%	0.647	0.709
Total Phosphorus	26	0.226	0.186	-17%	0.744	0.803
Total Phosphorus	51	0.138	0.126	-8%	0.661	0.665
Total Nitrogen	26	1.794	1.568	-13%	0.579	0.665
Total Nitrogen	51	1.148	1.114	-3%	0.796	0.821

Average Daily Flows and Nutrient Loads to the Lakes (SWAT model output)

Parameter	Rocky	Tom Steed
Flow (m ³ /s)	0.46	1.39
Organic Phosphorus (kg/day)	40	40
Mineral Phosphorus (kg/day)	64	148
Total Phosphorus (kg/day)	104	189
Organic Nitrogen (kg/day)	67	137
NH ₄ (kg/day)	28	91
NO ₃ (kg/day)	73	77
NO ₂ (kg/day)	2	14
Total Nitrogen (kg/day)	170	319

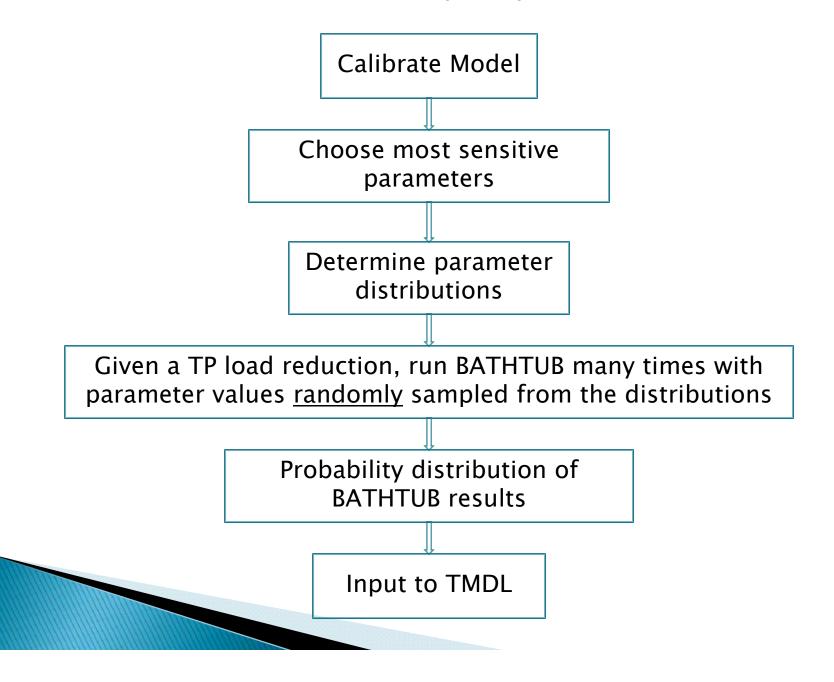
BATHTUB Lake Model

Calibration

Average Morphometric Characteristics

	Volume (m³)	Surface Area (km²)	Mean Depth (m)
Tom Steed	120,176,000	25.9	4.64
Rocky	3,784,000	1.376	2.75

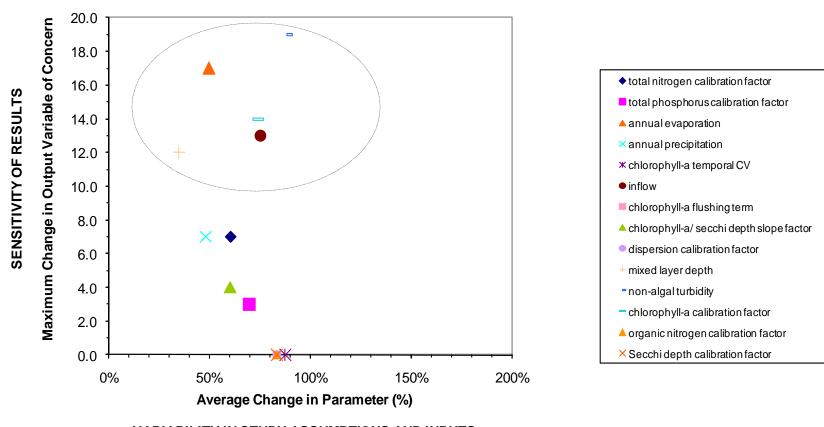
BATHTUB and Field Observations


Water Quality Parameter	Modeled Mean Concentration for Steed	Field Mean Concentrations for Steed
Total P (µg/L)	70.4	73.0
Total N (µg/L)	739.8	759
Chl-a (µg/L)	16.6	16.6
Secchi (meter)	0.4	0.38

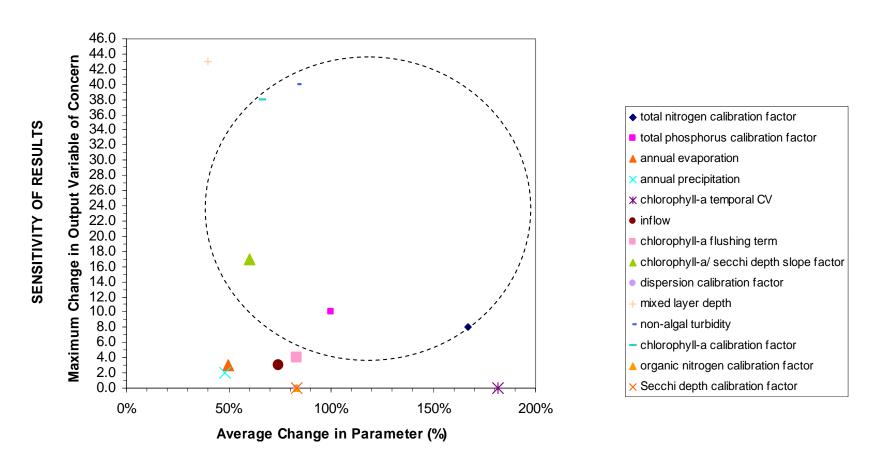
Water Quality Parameter	Modeled Mean Concentration for Rocky	Field Mean Concentrations for Rocky
Total P (µg/L)	130.2	133.0
Total N (µg/L)	1452	1519
Chl-a (µg/L)	44.9	44.9
Secchi (meter)	0.3	0.29

Question:

- How can we quantify the uncertainty associated with the limited water quality data and a non-mechanistic model?
- (how confident are we when we set a load reduction goal to achieve an in-lake Chl-a level?)


Monte Carlo Uncertainty Analysis for BATHTUB

Sensitivity Analysis


>>> Narrow down the parameters

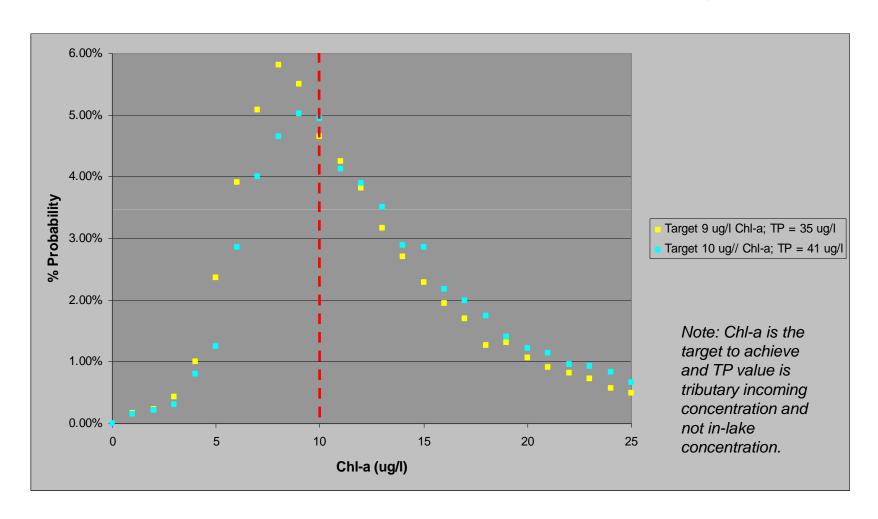
Sensitivity Matrix for BATHTUB Parameters for Tom Steed

- **VARIABILITY IN STUDY ASSUMPTIONS AND INPUTS**
- non-algal turbidity
- annual average evaporation
- chlorophyll–*a* calibration factor
- inflow rate

Sensitivity Matrix for BATHTUB Parameters for Rocky

VARIABILITY IN STUDY ASSUMPTIONS AND INPUTS

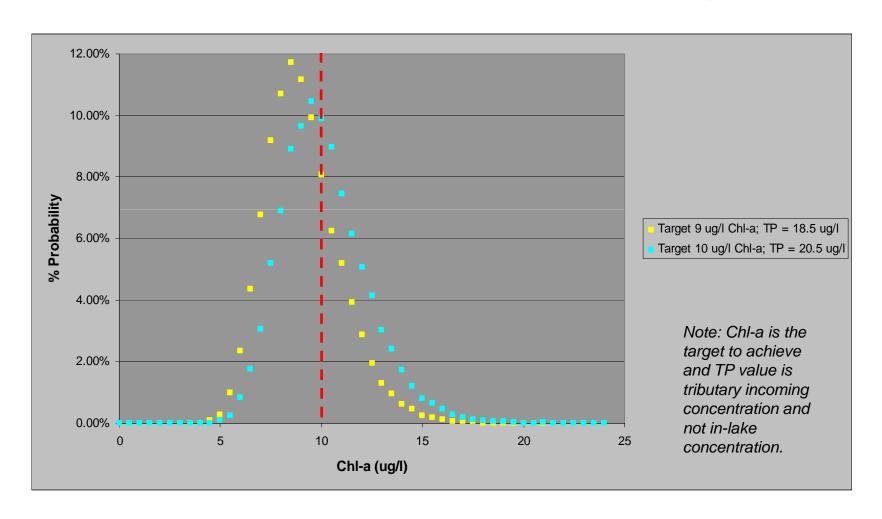
- non-algal turbidity
- chlorophyll–*a* calibration factor
- chl-a/Secchi depth slope factor
- TP calculation factor


Selected Distribution of Parameters for BATHTUB Uncertainty Analysis

Parameter	Definition	Distribution
а	Non-algal turbidity (1/m)	Normal (Steed: mean = 2.21, std.dev. = 1.348; Rocky: mean = 2.33, std.dev. = 0.65)
СВ	Calibration factor for chlorophyll-a	Normal (Steed: mean = 1.5, std.dev. = 0.25; Rocky: mean = 2.0, std.dev. = 0.25)
evp	Annual Evaporation (m/yr)	Normal (Steed: mean = 2.07, std.dev. = 0.621)
b	Chl-a/Secchi depth slope factor (m²/mg)	Normal (Rocky: mean = 0.025, std.dev. = 0.015)
Q	Inflow (hm³/yr)	Normal (Steed: mean = 45.44, std.dev. = 33.6)
zmx	Mixed Layer Depth	Normal (Steed: mean = 4.0, std.dev. = 1.5)
СР	Total P calibration factor	Normal (Rocky: mean = 0.35, std.dev. = 0.2)
CN	Total N calibration factor	Normal (Rocky: mean = 0.8, std.dev. = 0.5)

Uncertainty Analysis and Margin of Safety

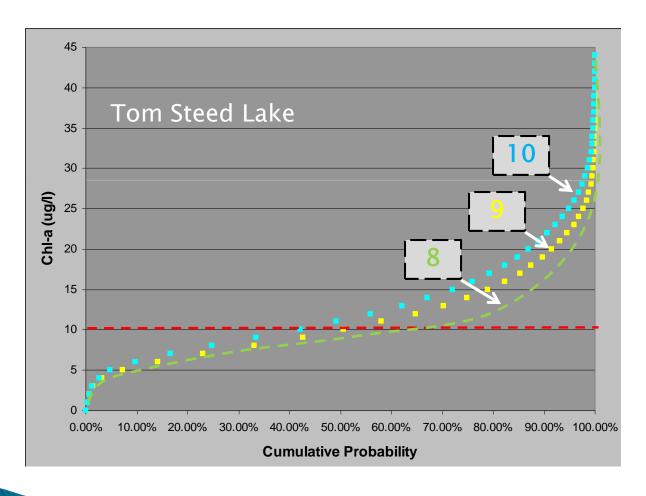
Monte Carlo Simulations


Lake Tom Steed Probability Plot of Chlorophyll–*a* Concentrations Obtained from 20,000 MC Samples

Cumulative probability:

Results are all preliminary and hot to be quoted. if we target 9 µg/L

Rocky Lake Probability Plot of Chlorophyll-*a* Concentrations Obtained from 20,000 MC Samples


Cumulative probability:

Results are all preliminary and not to be quoted. if we target 9 µg/L

Options for Margin of Safety

- Explicit: lower target Chl-a level in the lake by a percentage (MOS) until achieving a certain target probability level (e.g., 51 or 67%)
- 2. Implicit (1): probability-reduction table
- 3. Implicit (2): reduction for both TP and TN

Explicit MOS

• 10 μg/L (WQS)

MOS: 0%

Prob: 42%

9 μg/L

MOS: 10%

Prob: 50%

8 μg/L

MOS: 20%

Prob: 70%

Implicit MOS (1)

Probability to achieve Standard (%)	Nonpoint Sources Reduction (%)	Point Sources Reduction (%)
0	0	0
30	20	0
42	65	0
50	70	0
65	80	0
80	90	0
99	100	0

Implicit MOS (2)

Load Reduction Goals

	Rocky	Tom Steed
Maximum Allowable Load of TP (kg/year)	5,000	24,000
Maximum Allowable Load of TN (kg/year)	8,000	41,000
% Reduction	87%	65%

Preliminary TMDL

>>> What is the MOS?

Total Maximum Daily Loads

Waterbody Name	Nutrient	TMDL (kg/day)	WLA (kg/day)	LA (kg/day)	MOS (kg/day)
Rocky Lake	TP	12	0	12	?
	TN	22	0	22	?
Tom Steed Lake	TP	48	0	48	?
	TN	98	0	98	?

$$(MDL = LTA \times e^{z\sigma-0.5\sigma^2})$$

Summary

Summary

- Model a larger watershed to include monitoring sites and multiple target lakes
- Non-mechanistic model for lakes with limited monitoring data
- Monte Carlo uncertainty analysis
- Multiple options for MOS

Questions?