

Using Duration Curves to Develop Nutrient TMDLs

Presented by: Bruce Cleland

complex world CLEAR SOLUTIONS"

Discussion Overview

Points to look for ...

TMDL Development

Problem Solving Framework

- Practical approach using key questions ...
 - WHY the concern
 - WHAT reductions are needed
 - WHERE are the sources
 - WHO needs to be involved
 - <u>WHEN</u> will actions occur

WHAT Reductions are Needed

<u>Challenges</u>

Silviculture

Wide array of concerns +++ limited time, data, methods, resources

WHERE are the Sources <u>Hazard / Delivery</u>

Hydrology-Based Framework <u>Duration Curves</u>

Pioneered by Kansas

Hydrology-Based Framework

Some Basic Concepts

Flow Duration Curves

Nuts & Bolts

Based on Cumulative Frequency Distribution

Historic hydrologic record -- daily average flows [e.g. download from USGS NWIS-Web]

Developed with statistical software or spreadsheet [e.g. =PERCENTILE(a1:a3650,0.5) in Excel]

Can also look at other key recurrence intervals [e.g. median flow, 2-year peak, 7Q10]

Flow Duration Curves Basic Form

Cumulative Frequency Distribution

Water Quality Duration Curves

Again, use Cumulative Frequency Distribution

Y-axis becomes water quality parameter value [e.g. load or concentration]

X-axis position matches flow recurrence interval

Curve determined by target concentration <u>and</u> flow associated with recurrence interval

Basics

Method offers a number of advantages

Moves away from single point estimate

Easier to explain – fairly simple graphic display

Context for looking at monitoring / modeling data

Targeting focus – framework to evaluate options

Being used as a tool in many States

<u>Advantages</u>

Pattern analysis to help *interpret* WQ data

(source / delivery relationships)

Help <u>guide</u> implementation

- Targeted Participants
- Targeted Programs
- Targeted Activities
- Targeted Areas

Watershed Condition -- Hydrologic

Contributing Areas

Contributing Areas

<u>Delivery Mechanisms</u>

Hydrology-Based Framework <u>Duration Curves</u>

Support TMDL development through ...

<u>Enhanced description</u> of water quality concerns

Improve basic understanding of <u>key watershed processes</u>

Hydrology-Based Framework Expanded Characterization **Identify** Group by Hydrologic Condition Storm flows Season 100000 Moist Mid-range Dry Low High 10000 Total Phosphorus (Ib/day) **Conditions** Flows Conditions Flows Flows 1000 100 10 \Rightarrow 1 \oplus 0.1 $\Diamond \Diamond$ **Zone Patterns** 0.01 0.001 10 20 30 40 50 60 70 80 90 100 0 Flow Duration Interval (%)

Hydrology-based Framework

Example Applications

Source characterization through pattern analysis

Identify key processes using parameter interrelationships

Develop <u>solutions</u>

Source Characterization

Source Characterization

Pattern Analysis

Nitrate -- Point

Source Characterization

Source Characterization

Lake Fork near Cornland WQ Duration Curve (1978 - 2004: April to October) Site: EIG 01 High Moist Mid-range Dry Low Flows Conditions Flows Conditions Flows NO2+NO3 (mg/L) All Data Apr-Oct >50% SF 10 0 20 30 100 50 Flow Duration Interval (%) IEPA Data & Gage 05579500 Duration Interval 214 square miles

Pattern Analysis

Potential Delivery Paths

Sangamon River at Fisher WQ Duration Curve (1978 – 98 Monitoring Data) Site: E 29

Source Characterization

Sugar Creek near Hartsburg

Pattern Analysis

Potential Delivery Paths

Pattern Analysis

Parameter Interrelationships -- TP & TSS

Pattern Analysis

Parameter Interrelationships -- TP & TSS

Kickapoo Creek at Waynesville WQ Duration Curve (1978 – 2004: April to October) Site: EIE 04

Pattern Analysis

Seasonal Considerations

Pattern Analysis

Seasonal Considerations

Pattern Analysis

Seasonal Considerations

Connecting to Implementation

Connecting to Implementation

Multiple Averaging Periods

Broom Creek at Panton Load Duration Curve (1977 – 2010) Site: BCP 02

Developing Solutions

TMDL SUMMARY	Loads expressed as (Ibs per day)				
	High	Moist	Mid-Range	Dry	Low
TMDL ¹	2,555	746	289	53	10
Allocations	2,425	550	259	48	9.5
Margin of Safety	130	196	30	5	0.5
Benchmark ²	206	60	23.3	4.3	0.8
Reduction Estimate ³	57%	19%	52%	87%	97%
	Post Development BMPs				
Implementation	Streambank Stabilization				
Opportunities	Nutrient Management Erosion Control Program				
	Riparian Buffer Protection				
			I	Municipal WWTP	
 Notes: 1. Expressed as a <i>"daily load"</i>; represents the upper range of conditions needed to attain and maintain applicable water quality standards 2. Based on annual average target identified in the applicable water quality standards 3. Developed using long-term fixed station ambient water quality monitoring data 					

Document Results

Highlight improvements

Analysis of Model Output

Analysis of Model Output

Analysis of Model Output

Hydrology-based Framework Goals

- ★ Driving Principles
 - Technically-based (logic path)

Meaningful (easily understood)

Value-added (connect to implementation efforts designed to solve problem)

