

Nutrient Modeling Overview

Mazdak Arabi Professor

Civil and Environmental Engineering Colorado State University

Overview

Role of models in watershed management

A simple continuum of model types

Complexity and uncertainty

Review of a few commonly used models

Case study

- The implication of changing land use and climate
- The implication of anthropogenic activities
- Urban water management
- Nutrient trading
- Emerging contaminants
- Analysis of alternative management scenarios and policy

Model Continuum

Important Considerations in Selection of A Model

□ Type of analysis: trend analysis or process details

Critical hydrologic and water quality processes

Upland Processes

In-Stream Processes & Point Sources

Important Considerations in Selection of Models

- □ Type of analysis: trend analysis or process details
- □ Critical hydrologic and water quality processes
- □ Time-step: hourly (or less) to annual, storm event, steady-state
- □ Spatial scale: field-scale versus watershed scale
- □ Lumped_{versus} distributed: grids, HRUs
- □ Urban, agricultural, and forested systems
- Point and nonpoint sources
- □ Representation of BMPs and conservation practices
- Level of expertise, data requirement, user interface, tech support, ...

Scale and Water Quality Variables

MODEL	Time Step	Spatial Scale	Water Quality		
USGS Regression	Annual	Large basins	Nutrients		
SPARROW	Annual	Large basins	Sediment, Nutrient, Pesticides		
GWLF	Monthly	HUC12, 8	Sediment, Nutrient		
QUAL2E	Steady-St.	Water body	TN, TP, NH ₃ , DO, chlorophyll a, pathogens		
WASP	Hourly	Water body	TN, TP, NH ₃ , DO, chlorophyll a,TSS, Toxics		
SWMM	Sub-Daily	Small basins	Sediment, Nutrient, Pesticide, Metals, BOD		
SWAT	Daily	M-L basins	Sediment, Nutrient, Pesticide, Metals, BOD		
HSPF	Sub-Daily	M-L basins	Sediment, Nutrient, Pesticide, Metals, BOD		

Scale and Water Quality Variables

MODEL	Time Step	Spatial Scale	Water Quality
USGS Regression	Annual	Large basins	Nutrients
SPARROW	Annual	Large basins	Sediment, Nutrient, Pesticides
GWLF	Monthly	HUC12, 8	Sediment, Nutrient
QUAL2E	Steady-St.	Water body	TN, TP, NH ₃ , DO, chlorophyll a, pathogens
WASP	Hourly	Water body	TN, TP, NH ₃ , DO, chlorophyll a, TSS, Toxics
SWMM	Sub-Daily	Small basins	Sediment, Nutrient, Pesticide, Metals, BOD
SWAT	Daily	M-L basins	Sediment, Nutrient, Pesticide, Metals, BOD
HSPF	Sub-Daily	M-L basins	Sediment, Nutrient, Pesticide, Metals, BOD

Delivery of N and P to the Gulf of Mexico: SPARROW

Scale and Water Quality Variables

MODEL	Time Step	Spatial Scale	Water Quality		
USGS Regression	Annual	Large basins	Nutrients		
SPARROW	Annual	Large basins	Sediment, Nutrient, Pesticides		
GWLF	Monthly	HUC12, 8	Sediment, Nutrient		
QUAL2E	Steady-St.	Water body	TN, TP, NH_3 , DO, chlorophyll a, pathogens		
WASP	Hourly	Water body	TN, TP, NH ₃ , DO, chlorophyll a, TSS, Toxics		
SWMM	Sub-Daily	Small basins	Sediment, Nutrient, Pesticide, Metals, BOD		
SWAT	Daily	M-L basins	Sediment, Nutrient, Pesticide, Metals, BOD		
HSPF	Sub-Daily	M-L basins	Sediment, Nutrient, Pesticide, Metals, BOD		

Land and Water Features Supported

MODEL	Urban	Ag / Rural	Forest	River	Lake	Reservoir	Coastal / Estuary
USGS Regression	0	0	0				
SPARROW							
GWLF				0			
QUAL2E							
WASP							
SWMM		0	0	0	0		
SWAT	0				0	0	
HSPF							

	Management Practices
MODEL	BMPs
USGS Regression	
SPARROW	Wetlands
GWLF	Vegetative practices
SWMM	Detention basins, Infiltration practices, Wetlands, Ponds, Stormwater
SWAT	Agricultural conservation practices, Detention basins, Infiltration practices, Ponds, Vegetative practices, Irrigation, Tile drains, Street sweeping, Wetlands
HSPF	Nutrient management, Contouring, Terracing, Ponds, Wetlands

Model Application: Standard Protocol

- Application of watershed models requires rigorous planning.
- □ Use of a modeling protocol serves a number of benefits
 - Reduce potential modeler bias
 - Providing a roadmap to be followed
 - Allow others to assess decisions made in modeling
 - Allow others to repeat the study, and
 - Improve acceptance of model results

Modeling Protocol

- Define Purpose
- Select Model
- Collect Data
- Sensitivity Analysis
- Calibration and Corroboration (Testing)
- Uncertainty Analysis
- Scenario Analysis
- Results Interpretation and communication of uncertainty
- Postaudit

Eagle Creek Watershed, IN

Source of drinking water for city of Indianapolis

Flow and Load Duration Curves

Calibration and Testing Importance of rule of thumb measures

- Calibration is typically performed based on simulation of fluxes of flow, particles and chemicals at stream locations
- Error statistics: relative error, R², Nash-Sutcliffe efficiency coefficient, ...
- Multisite multivariable calibration
- Rule of thumb measures, e.g.,
 - Nitrate from tile drains
 - Denitrification
 - Management implications

Nitrogen Loss Rate in Streams Alexander et al., 2000, Nature

Closing Remarks

- Data collection and assimilation is challenging, in particular management data
- Despite significant progress, comprehensive models require extensive knowledge of GIS and model components
- Existing models rarely provide outputs that can be easily communicated with stakeholders
- The need for a standard modeling approach

Questions? Comments?

Mazdak Arabi

1372 Campus Delivery Fort Collins, CO 80523 (970) 491-4639

mazdak.arabi@colostate.edu