Linking Regional Aerosol Emission Changes with Multiple Impact Measures through Direct and Cloud-Related Forcing Estimates

Tami C. Bond & Yanju Chen University of Illinois at Urbana-Champaign Xin-Zhong Liang & Hao He University of Maryland David G. Streets, Ekbordin Winijkul, and Fang Yan Argonne National Laboratory Praveen Amar, Danielle Meitiv Clean Air Task Force

Organization

Project overview – Tami Bond

- Size-resolved emission inventory Dave Streets, reported by Tami Bond
- □ U.S. regional cloud modeling Hao He
- Emission-to-forcing measures Yanju Chen
- Policy-relevant metrics- Praveen Amar, reported by Tami

Project Overview

Or, Why we Did What We Did

(Tami Bond)

The simple view

Bounding-BC lesson

The big uncertainty in BC-rich sources

- $\square BC \rightarrow direct forcing \sim bounded$
- $\square BC \rightarrow cloud forcing$

~ large uncertainties – especially in ice/mixed

- □ OC + SO₄ → direct forcing ~ small for BC-rich sources
- $\Box \text{ OC} + \text{SO}_4 \rightarrow \text{cloud forcing}$
 - ~ large and probably negative

It's the <u>indirect effects</u> of <u>co-emitted</u> species that cause big questions about immediate forcing

BC forcing positive (+0.33) Total forcing positive (+0.15)

BC forcing positive (+0.72) Total forcing still positive (+0.21) but becoming less certainly so, because of cloud uncertainties

BC forcing positive (+1.01) Total forcing nearly neutral (-0.06) because of large OC & its cloud forcing (note: simple sum differs from BC median produced by Monte Carlo analysis)

BC forcing positive (+0.33) Total forcing positive (+0.15)

BC forcing positive (+0.72) Total forcing still positive (+0.21) but becoming less certainly so, because of cloud uncertainties

BC forcing positive (+1.01) Total forcing nearly neutral (-0.06) because of large OC & its cloud forcing (note: simple sum differs from BC median produced by Monte Carlo analysis)

Remainder of aerosol forcing is in low-BC categories (total -0.95)

Need a forcing-to-emission ratio

Need a forcing-to-emission ratio

Definition

Emission-Normalized Forcing (ENF)

including ENDRF Direct Radiative EN IRF Indirect Radiative

Forcing_{modeled} Emission_{modeled}

approximates this: $rforc_{i,j} = \frac{\partial f_j}{\partial e_i}\Big|_{PD}$

Detour: Climate "metrics"

Normal people think:

A metric is something you can measure, and report

The climate policy community says: A metric is a well-defined calculation that can be used to equate a mass emission of some species to a mass emission of the big bear, CO_2

Some climate metrics

Absolute global warming potential Global warming potential Global temperature potential

For short-lived species (τ <4 mo), emission-normalized forcing is the *only* model output required to calculate *any* of these metrics.

Other considerations affect the values of emission metrics, but they all come from models of the carbon cycle or Earth' heat capacity, NOT from models of aerosols

Need: Emission-normalized forcing for both direct forcing and cloud mechanisms.

Objective 3: Determine functional relationships that express changes in direct and cloud radiative forcing as a function of emission changes in particular locations Need: Emission-normalized forcing for both direct forcing and cloud mechanisms.

Objective 3: Determine functional relationships that express changes in direct and cloud radiative forcing as a function of emission changes in particular locations

Relative location of BC and clouds affects direct forcing

It surely also affects *indirect* forcing!!

In this earlier study, we found that the modeled clouds wer

Community Atmospher

Zarzycki & Bond, GRL 2010

Note: Also affects semi-direct forcing; see Ban-Weiss et al, Clim Dyn, 2011

Strategy: Compare modeled fields with ISCCP observations

ISCCP = International Satellite Cloud Climatology Project

ISCCP Total Cloud Amount 1983-1990

Need: Confidence in modeled clouds before inferring cloud forcing from a model.

Objective 2: Employ an ensemble of parameterizations in regional-scale models to identify best estimates and uncertainties for fields of direct and cloud-related forcing

Need: Confidence in modeled clouds before inferring cloud forcing from a model.

Objective 2: Employ an ensemble of parameterizations in regional-scale models to identify best estimates and uncertainties for fields of direct and cloud-related forcing

Aerosol effects are size-dependent

Fig. 4. Global mean AIE and ADE [W/m²] values for all size experiments, (S1-4) and the base experiment, BA, for present day conditions.

Bauer et al., ACP, 2010 for carbonaceous aerosols

Need: Knowledge of emission size distributions.

Objective 1: Develop size-resolved, speciated emission inventories of aerosols and aerosol precursors

Need: Knowledge of particle size, beginning with emission.

Objective 1: Develop size-resolved, speciated emission inventories of aerosols and aerosol precursors

Need: Policy-distilled measures or metrics

Objective 4: Iterate emission-to-forcing measures as communication tools between decision makers and climate scientists

Size-Resolved Emission Inventory Size-Besolved Emission Inventory

Or, Why we Did What We Did

(David Streets, Ekbordin Winijkul, Fang Yan - Ar presented by Tami)

Procedure

Parameterizing size distribution

Fit with lognormal distribution...

$$f\left(\ln D_{p}\right) = \frac{1}{\sqrt{2\pi}\ln\sigma_{g}} \exp\left[-\frac{\left(\ln D_{p} - \ln\overline{D}_{pg}\right)^{2}}{2\ln\sigma_{g}^{2}}\right]$$

...or bimodal distribution $f(x) = w_1 f_1(x) + w_2 f_2(x) \quad 0 \le w \le 1$

PM₁₀ mass fraction distribution (power plant)

Global size-resolved emission inventory

Size-resolved global emission inventory of primary particulate matter (PM) from energy-related combustion sources E. Winijkul, F. Yan, Z. Lu, D. G. Streets, T. C. Bond, Y. Zhao Submitted to Atmos Env, 28 August 2014

Work includes uncertainty and illustrative reduction scenarios

Winijkul et al., submitted, 2014

Kegional Cloud Modeling Kegional Cloud Modeling

Or, Get the Clouds Right

(Hao He, Xin-Zhong Liang – Univ of Maryland)

Modeling Approach

- We used the mesoscale Climate–Weather Research and Forecasting model (CWRF) model.
- □ Total aerosol field (not just BC) is produced by global models.
- CWRF has alternative parameterizations for cloud properties, aerosol properties, and radiation transfer.

Purpose: Investigate range of climate forcing in models that agree with observations

Cloud-Aerosol-Radiation (CAR) Ensemble Model

Frequency distribution of TOA radiative flux and CRF averaged over [60°S, 60°N] in January 2004 from the CAR ensemble of 960 members

Modeling Approach

- □ Meteorology: ECWMF ERA interim reanalysis
- Canadian Centre for Climate Modeling and Analysis (CCCMA) radiation scheme
- Model run from 2001 to 2006, with the first year (2001) as spin-up. Average from 2002 to 2006 is presented.

One base case; Five aerosol fields

Case No.	Case Name	Temporal Resolution	Aerosol input
1	Noaerosol	N/A	Aerosol radiation Off
2	Default	Monthly	MISR Climatology
3	NCAR	Monthly	NCAR CAM2 model
4	GOCART ^{\$}	Monthly	GOCART model
5#	CAM5	Monthly	UIUC CAM5 model
6*	CAM5'	Monthly	UIUC CAM5 model

^{\$} Chin et al 2014; [#]Assuming all BC and OC are hydrophilic; ^{*}Assuming only 85% of BC and OC are hydrophilic

-50.00

 W/m^2

Comparison between modeled and observed fluxes (average over Continental US) Error bars are std dev of all grid boxes

Model bias: Difference between CWRF results and ISCCP

Aerosol radiative effects: Difference between modeled results with & without aerosols

BC and OC partition have substantial
* impacts on the radiation simulations
1) Impacts on clear sky flux are uniform

2) Cloud radiative effects are large (±
5 W/m²) and regionally dependent, for instance opposite effects are suggested in the southeast US and in the northwest US.

Emission-to-torcing measures Emissiou-to-torcing measures

Or, Model Interpretation for Policy Relevance

(Yanju Chen– Univ of Illinois)

Step 1: Test linearity and regionality

 Basis to obtain forcing-per-emission relationship; assumed by emission metrics.

- □ Direct forcing *probably* linear
- □ Cloud forcing *-may be* nonlinear with respect to aerosol concentration (Quaas et al., 2009)
- May vary by region

Experimental Design

- Reduce BC from N. America (AM BC)
- Reduce BC from Asia (AS BC)
- Reduce OC from N. America (AM OC)
- Reduce OC from Asia (AS OC)

Model Description and Configuration

□ Modified Community Atmosphere Model (CAM5.1)

- Three-modal aerosol module (MAM3) (Liu et al., 2012)
- *Improved BC spatial and temporal distribution* with modified convective transport and wet removal
- Tagged BC/OC emission for direct calculation of burden and forcing
- Anthropogenic emissions: from IPCC emission datasets for year 2000 (*Lamarque et al., 2010*).
- □ Model is configured to run in off-line mode (*Ma et al*, 2013)
 - Model reads in prescribed meteorological fields
 - Model driven by ERA-interim data
 - Semi-direct effect cannot be simulated
- Each simulation is run for 5 years with 2 months for model spin-up.

Need for off-line meteorology

- Direct forcing change is caused by non-BC aerosols (dust).
- Since cloud-related forcing is inferred from total flux change, it is obscured by dust changes.
- Dust needs to remain in the atmosphere, because it could also affect clouds.

Linearity diagnostic for a single species

R≅ 0.5: Forcing is linear in emission. R< 0.5: Small emission change from present-day produces *less forcing change* than one would expect

Linearity of Global Mean Forcing

2 regions: AM=North America; AS=Asia

Emission-normalized forcing

Indirect forcing, ENIRF: 3-4 times higher in N. America (not saturated) Reducing same amount of BC/ OC in these two regions will result in greatly different cloud change.

Direct radiative forcing, ENDRF:

similar for N. America and Asia

Is cloud forcing visible?

Multi-model study of effects on liquid clouds

Each row is from a different model.

No forcing pattern visible.

Koch et al., ACP 11, 1051, 2011

Regional Location of Indirect Forcing

Example: OC from Asia

* Significant region was statistically determined using paired t-test between IRF0, IRF50 and 0 at significance level a = 0.1

Optimum grid box size for testing significance

- Box too small: Each box noisy; few boxes significant
- Box too large: Includes regions with little impact; too few boxes are significant
- 30° x 30° is optimum
- Significant grid boxes equal global mean forcing; the rest are noise

Radiative Forcing in Significant Regions

Linearity in Significant Regions

- Direct radiative forcing (DRF) is linear in all regions
- Indirect radiative forcing (IRF) is nonlinear in some significant regions, especially for OC

Cause of Nonlinearity

- Nonlinearity occurs when cloud droplets are formed from CCN.
- Formation of droplets is limited, and does not increase as the number of CCN increases.
- Of course, this depends on model parameterization...

Summary – Indirect forcing

- □ Apparent effect on clouds– ENIRF:
- N Am OC > N Am BC > Asian OC > Asian BC
- In high-aerosol regions, reducing present-day aerosol has a *less-than-linear* effect
- Global average forcing can be attributed to a subset (<40%) of significant regions

However, comparison with observations calls modeling of aerosolcloud effect in North America into question

Next- Compare global & regional aerosol effect in North America

Policy-relevant metrics bolicy-relevant metrics

Or, Get the Story Right

(Praveen Amar, Danielle Meitiv– Clean Air Task Force presented by Tami)

Original goal: Communicate with policy makers to see what metrics they want

Professional Roles	Number of	Percentage of
	Interviewees	Total
Academic – Climate Policy/Science	3	9
Air Quality Management – State Level	7	20
Air Quality Management – Federal Level	11	31
Federal – Climate Policy/Science	5	14
NGO – Air Quality Advocacy	3	9
NGO – Climate Advocacy	6	17

Table 1. Professional roles and expertise of the interviewees and their percentage of the total pool of interviewees.

"Communicating the science and policy implications of black carbon" – CATF report

Main messages had nothing to do with metrics

- Scientists need understandable ways to communicate black carbon's effects to non-specialists
 - Even terms like "radiative forcing" and "feedback" are not as straightforward as you think.
- □ People want to hear about certainty, not uncertainty.

Main messages had nothing to do with metrics

- Equating BC and CO₂: Some are wary; in other situations (e.g. California) it's required.
 - People do not want to think about time horizons. That's our job.
 - People do not want to think about metrics. Ditto.
- There is not yet a good way to communicate immediacy of forcing changes.
 - Watch this space

Summary of outcomes – easy ones

- 1: Size-resolved inventory complete.
- 4: Metrics are up to us. Make it easy.

Summary of outcomes – hard ones

2: The constraint problem: Looking to confirm small changes (forcing) in a large signal (clouds).

3a: Forcing is nearly linear in emission, if regions are treated individually.

- Average over statistically significant (30x30) boxes.

- High-aerosol regions have lower indirect forcing per emission. More promising to reduce there.

3b: Cloud models don't match observations.

- Reason to doubt emission-to-forcing is not the model's nonlinear nature, but its inability to match reality.

Done. Questions?

Supplemental slides

Radiative flux in CWRF

Selected References

- Chin, M., and Coauthors, 2014: Multi-decadal aerosol variations from 1980 to 2009: a perspective from observations and a global model. *Atmos. Chem. Phys.*, 14, 3657-3690.
- Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. *Quarterly Journal of the Royal Meteorological Society*, 137, 553-597.
- Li, J., K. von Salzen, Y. Peng, H. Zhang, and X. Z. Liang, 2013: Evaluation of black carbon semi-direct radiative effect in a climate model. *Journal of Geophysical Research: Atmospheres*, 118, 4715-4728.
- Liang, X. Z., M. Xu, X. Yuan, T. J. Ling, H. Choi, F. Zhang, L. G. Chen, S. Y. Liu, S. J. Su, F. X. Qiao, Y. X. He, X. L. Wang, K. Kunkel, W. Gao, E. Joseph, V. Morris, T. Yu, J. Dudhia, and J. Michalakes, 2012: Regional Climate-Weather Research and Forecasting Model. *Bull. Amer. Meteorol. Soc.*, *93*, *1363-1387*.
- □ Liang, X. Z., and F. Zhang, 2013: The cloud-Aerosol-Radiation (CAR) ensemble modeling system. *Atmos. Chem. Phys.*, *13*, *8335-8364*.
- Zhang, F., X.-Z. Liang, J. Li, and Q. Zeng, 2013: Dominant roles of subgrid-scale cloud structures in model diversity of cloud radiative effects. *Journal of Geophysical Research: Atmospheres*, 118, 7733-7749.
- Zhang, F., X.-Z. Liang, Q. Zeng, Y. Gu, and S. Su, 2013: Cloud-Aerosol-Radiation (CAR) ensemble modeling system: Overall accuracy and efficiency. Advances in Atmospheric Sciences, 30, 955-973.