

MOVES2014 Emissions Using Day-Specific Hourly Meteorology Compared with Monthly Average Meteorology

James Beidler¹, Harvey Michaels², Alexis Zubrow³, Chris Allen¹, Alison Eyth⁴, Dave Brzezinski²

> 1. CSC; 2. EPA OTAQ; 3. EPA OAQPS and Region 1; 4. EPA OAQPS

- What is the impact of daily varying meteorology on MOVES based emissions?
 - Realistic meteorological inputs
 - Span scales: county -> "national"

Modeling Setup

- 2 National runs using SMOKE-MOVES
 - Use 284 representative counties
 - Run MOVES to produce emissions factors (EF)
- Use identical representative EF, county/grid activity, and ancillary files
- 2 different gridded meteorology data sets

Meteorology

- Meteorology:
 - WRF run for 2011
 - Hourly data
 - 12km grid cells
- Scenarios:
 - "Daily": meteorology varies by hour of the day and by day of the year
 - "Average": meteorology varies by hour of the day and all days in a specific month are identical. Average meteorology is hour by hour average of the daily meteorology

July

Meteorology (1 of 4)

Meteorology (2 of 4)

Meteorology (3of 4)

Meteorology (4 of 4)

National analysis

Actually lower 47

National analysis PM2.5

January

July

National analysis VOC

January

July

National analysis NOx

January

July

Reverse Cumulative Distribution

Cook, IL

Fulton, GA

Harris, TX

Box Elder, UT

NY, NY

County analysis NOx

January

July

Daily Average Percent Diff

Fulton, GA

County analysis PM2.5

January

July

Daily Average Percent Diff

Fulton, GA

County analysis VOC

January

July

Daily Average Percent Diff

Fulton, GA

County analysis Comparison PM2.5

Fulton, GA: January

Box Elder, UT: January

Daily Average Percent Diff

County analysis Comparison VOC

Fulton, GA: July

Box Elder, UT: July

Daily Average **Percent Diff** 10 8

2

-2

-4

-6

-8

County analysis Comparison NOx

Fulton, GA: July

Box Elder, UT: July

Daily Average Percent Diff

%

%

- Competing influences
 - Cold starts vs AC and hot soak (VOC)
 - Depending on where in temperature range, one will dominate
- Preliminary results:
 - Winter time:
 - Stronger sensitivity to temperature
 - PM2.5 and VOC especially sensitive
 - Summer time:
 - PM2.5 little sensitivity unless getting to colder temperatures
 - NOx and VOC have sensitivity, VOC having greater variation
 - Temporal
 - Impact is concentrated on particular hours of particular days

- Investigate sub-county variation
 - Gridded results may show significant variation within the county
- AQ model
 - Impact on specific O3 episodes
 - Impact on particular PM areas