MOVES ODBC Transportation Inventory System (OTIS)

Dale M. Wells Colorado Dept. of Public Health and Environment.

Introduction

MOVES is the EPA emission factor model for calculation of vehicle emissions and emission factors.

MOVES stores input and output files in a database – MySQL.

This use of MySQL databases makes MOVES more flexible but It can be daunting to get data out of these databases.

Software Query Language (SQL) programming is often required to get the data in the needed format.

The System presented here is a method to utilize Microsoft Access with its Graphical User Interface (GUI).

The MySQL OBDC Driver is Installed With MOVES: (Slide from MOVES installation)

MOVES2014 Installation Suite

United States Environmental Protection Agency

WOVES MOVES2014 Installation Suite

Released: July 31, 2014; Revised: October 01, 2014

Install MySQL ODBC Connector (required by MOVES2014):

- This Suite will run a wizard, in a DOS shell screen, to install the Connector.
- Please allow the wizard to run, and select 'typical' installation when asked.
- What is MySQL ODBC Connector? It is an interface/program that connects MySQL databases and the client applications.
- Click 'Continue' to start the wizard. Follow instructions to complete the installation.

If the ODBC Connector is not installed, you will see the screen at left. Click Continue to proceed to the MySQL **ODBC** Connector installation. NOTE: If prompted, click Run on the "Open File – Security Warning." This will open the MySQL Connector/ODBC 5.1 – Setup Wizard

We can use this driver to link to the MOVES output data tables in MySQL from Microsoft Access.

I use this process to calculate Highway Vehicle emissions for SIP Inventories, Conformity Budgets, Conformity Analyses, and Environmental Impact Analyses.

The process is fast and flexible to perform.

I use MOVES in the Emission Factor Mode to calculate emissions using link data From Metropolitan Transportation Planning Agencies (MPOs) such as the Denver Regional Council of Governments (DRCOG).

Using MOVES in Emission Factor Mode separates the MOVES data from the Transportation Data and greatly improves transparency and accuracy. There is no pre-aggregation or averaging.

The linking process is shown on the next slide:

A simple query to examine the movesrun and ratesperdistance tables. Note that emission factors are listed with each in a separate row by speed bin ID. The two tables are linked to each other by the MOVESrunID.

			-										
1	Query4	: Select Que	y										
									1				
		rat	eperdist	tance14c1		move	srun14c1						
		*				*							
		MC	VESScen	arioID		MOVE	SRunID						
		MO	VESRunI			output	TimePeriod						
		yea	arID			timeU	nits						
		mo	onthID	-		distan	ceUnits		<u>-</u>				
_		<u> </u>											
	Field:	MOVESRunID		runSpecFileName	hourID		roadTypeID	source	TypeID	avgSpeedBinID	ratePerDist	ance	
	I able:	rateperdistanc	e14c1	movesrun14c1	rateperdistar	nce14c1	rateperdistance140	1 ratepe	erdistance14c1	rateperdistance14	cl rateperdista	Incel4cl	
	Show:]						✓	
	Criteria:	223			7		5						
	or:												
										81 F			
1	Query4 :	Select Query	/										<u></u>
	MOV	ESRunID		r	unSpecFileNar	ne		hourlD	roadTypel	sourceTypeID a	avgSpeedBinl r	atePerDist	tanc
•		223	C:\Use	rs\Public\MOVE	S2014\NFR\PMr	mrs\nfrog	30r50.mrs	-	7 5	0	12	0.00212	2129 -
		223	C:\Use	rs\Public\MOVES	S2014\NFR\PMr	mrs\nfrog	30r50.mrs	-	7 5	0	12	0.014	142
		223	C:\Use	rs\Public\MOVE	S2014\NFR\PMr	mrs\nfrog	30r50.mrs	-	7 5	0	8	0.00285	5786
		223	C:\Use	rs\Public\MOVES	S2014\NFR\PMr	mrs\nfrog	30r50.mrs	-	7 5	0	8	0.0190)525
		223	C:\Use	rs\Public\MOVES	S2014\NFR\PMr	mrs\nfrog	30r50.mrs		7 5	0	15	0.00169	647
		223	C:\Use	rs\Public\MOVES	S2014\NFR\PMr	mrs\nfrog	30r50.mrs		7 5	0	15	0.0113	3099
		223	C:\Use	rs\Public\MOVES	S2014\NFR\PMr	mrs\nfrog	30r50.mrs		7 5	0	16	0.00157	7443
		223	C:\Use	rs\Public\MOVES	S2014\NFR\PMr	mrs\nfrog	30r50.mrs	-	7 5	0	16	0.0104	1963

7

7

7

7

5

5

5

5

-

0

0

0

0

0

223 C:\Users\Public\MOVES2014\NFR\PMmrs\nfrog30r50.mrs

223 C:\Users\Public\MOVES2014\NFR\PMmrs\nfrog30r50.mrs

223 C:\Users\Public\MOVES2014\NFR\PMmrs\nfrog30r50.mrs

223 C:\Users\Public\MOVES2014\NFR\PMmrs\nfrog30r50.mrs

002 C:\Llases\D:\Llases\D:\Llases\D:\Llases\colored_theres\colored_theres

0.00228547

0.0152365

0.00446878

0.00004604

0.029792

11

11

2

2

0

Having the each factor by speed bin on a separate row is not practical for calculating emissions for a particular link VMT and speed.

MOVES guidance says we are to linearly interpolate between speed bins by the speed.

We don't even know what speed each bin represents – we only have the ID.

Fortunately, Access has a query type called a crosstab query that allows us to put all the emission factors for all bins on a single row.

We can also link a new table into our query to decode the speed bin IDs into average speed.

vocNOx25RatesQ : Crosstab Query

•

Field:	yearID	monthID	hourID	HPMSVtypeID: Val(IIf(Righ	sourceTypeID	pollutantID	roadTypeID	avgBinSpeed	ratePerDistance
Table:	rateperdistance	rateperdistan	rateperdistan		rateperdistanc	rateperdistance	rateperdistance	avgspeedbin	rateperdistance
Total:	Group By	Group By	Group By	Group By	Group By	Group By 🔹	Group By	Group By	Sum
Crosstab:	Row Heading	Row Heading	Row Heading	Row Heading	Row Heading	Row Heading	Row Heading	Column Heading	Value
Sort:									
Criteria:									
or:									
	•								

vocNOxCO	ocNOxCORatesQ : Crosstab Query																	
yearID	monthl	HPMSVtypeID	sourceType	pollut	roadType	hourlD	2_5	5	10	15	20	25	30	35	40	45	50	5
2040	1	10	11	87	5	20	10.451	5.3887	2.8577	2.0140	1.591	1.3347	1.1651	1.0602	0.9851	0.9263	0.8784	0.8
2040	1	10	11	87	5	21	10.451	5.3886	2.8577	2.0140	1.591	1.3347	1.1651	1.0602	0.9851	0.9263	0.8784	0.8
2040	1	10	11	87	5	22	10.451	5.3886	2.8577	2.0140	1.591	1.3347	1.1651	1.0602	0.9851	0.9263	0.8784	0.8
2040	1	10	11	87	5	23	10.450	5.3886	2.8577	2.0140	1.591	1.3347	1.1651	1.0602	0.9851	0.9263	0.8784	0.8
2040	1	10	11	87	5	24	10.450	5.3886	2.8577	2.0140	1.591	1.3347	1.1651	1.0602	0.9851	0.9263	0.8784	0.8
2040	1	20	21	2	2	1	2.3105	1.3871	0.898	0.7351	0.6903	0.6613	0.7034	0.8817	1.0156	1.1043	1.1114	1.0
2040	1	20	21	2	2	2	2.3105	1.3871	0.898	0.7351	0.6903	0.6613	0.7034	0.8817	1.0156	1.1043	1.1114	1.0
2040	1	20	21	2	2	3	2.3105	1.3871	0.898	0.7351	0.6903	0.6613	0.7034	0.8817	1.0156	1.1043	1.1114	1.0
2040	1	20	21	2	2	4	2.3105	1.3871	0.898	0.7351	0.6903	0.6613	0.7034	0.8817	1.0156	1.1043	1.1114	1.0
2040	1	20	21	2	2	5	2.3105	1.3871	0.898	0.7351	0.6903	0.6613	0.7034	0.8817	1.0156	1.1043	1.1114	1.0
2040	1	20	21	2	2	6	2.3105	1.3871	0.898	0.7351	0.6903	0.6613	0.7034	0.8817	1.0156	1.1043	1.1114	1.0
2040	1	20	21	2	2	7	2.3105	1.3871	0.898	0.7351	0.6903	0.6613	0.7034	0.8817	1.0156	1.1043	1.1114	1.0
cord: 🚺 🖣		10 🕨 🕨 🔭			•													D

We now have our emission factors in a usable form, Now let's look at the Transportation Model output.

A typical sample of the link data from a transportation model is shown in the Next slide.

Transportation Model Output

ī	I Query1 : Select Query													
	ID	DIST	FT	AT_	AM1_ABFLOW	AM1_BAFLOW	AM1_ABSPD	AM1_BASPD	AM2_ABFLOW	AM2_BAFLOW	AM: 🔺			
	2701	0.5	8	5	11.47	4.24	28	28	31.02	11.46				
	2929	0.52	8	4	93.09	30.07	20	20	251.83	81.34				
	3088	0.64	4	5	264.93	375.31	42.92	31.32	747.49	899.24				
	3991	0.21	3	3	1110.03	949.14	31.85	33.94	2859.61	2778.8				
	8841	0.13	6	3	263.24	0	38.58	0	609.11	0				
	8842	1.86	1	3	2915.51	0	39.7	0	6736.6	0				
	8843	0.11	6	3	506.29	0	33.65	0	1134.9	0				
	8844	0.29	3	3	907.56	1489.74	34.36	21.25	2201.25	3928.36				
	8845	0.34	3	3	868.47	1433.83	34.7	23.13	1940.42	3674.73				
	8846	0.53	4	3	504.53	183.16	25.92	30.97	1407.68	983.68				
	8849	1.23	1	3	2031.51	0	61.5	0	4824.01	0				
	8855	0.52	5	2	92.65	82.39	19.84	19.89	439.35	490.5				
	8857	0.62	3	3	312.16	861.03	35.94	27.8	723.56	2326.12	-			
Re	ecord:		▶ ▶ ▶ ₩ of 30	0	•	Ŷ	F0 77		0000 (0					

Again, this is not a good format for calculating emissions. We need each speed/VMT combination in a separate row.

We now have 20 speed/VMT combinations on each row (10 periods X 2 directions = 20).

I developed what I call a "reverse crosstab" to format this properly.

The following table has one row for each period and direction to facilitate this.

ExpandSpd Table

	170expSpd : Tabl	e			
	period	volume	COMvol	speed	field2
►	1	AM1_ABFLOW	AM1_ABCOMF	AM1_AB	AM1_AB
	1	AM1_BAFLOW	AM1_BACOMF	AM1_BA	AM1_BA
	2	AM2_ABFLOW	AM2_ABCOMF	AM2_AB	AM2_AB
	2	AM2_BAFLOW	AM2_BACOMF	AM2_BA	AM2_BA
	3	AM3_ABFLOW	AM3_ABCOMF	AM3_AB	AM3_AB
	3	AM3_BAFLOW	AM3_BACOMF	AM3_BA	AM3_BA
	4	PM1_ABFLOW	PM1_ABCOMF	PM1_AB	PM1_AB
	4	PM1_BAFLOW	PM1_BACOMF	PM1_BA	PM1_BA
	5	PM2_ABFLOW	PM2_ABCOMF	PM2_AB	PM2_AB
	5	PM2_BAFLOW	PM2_BACOMF	PM2_BA	PM2_BA
	6	PM3_ABFLOW	PM3_ABCOMF	PM3_AB	PM3_AB
	6	PM3_BAFLOW	PM3_BACOMF	PM3_BA	PM3_BA
	7	OP1_ABFLOW	OP1_ABCOMF	OP1_AB	OP1_AB
	7	OP1_BAFLOW	OP1_BACOMF	OP1_BA	OP1_BA
	8	OP2_ABFLOW	OP2_ABCOMF	OP2_AB	OP2_AB
	8	OP2_BAFLOW	OP2_BACOMF	OP2_BA	OP2_BA
	9	OP3_ABFLOW	OP3_ABCOMF	OP3_AB	OP3_AB
	9	OP3_BAFLOW	OP3_BACOMF	OP3_BA	OP3_BA
	10	OP4_ABFLOW	OP4_ABCOMF	OP4_AB	OP4_AB
	10	OP4_BAFLOW	OP4_BACOMF	OP4_BA	OP4_BA
*					

Reverse Crosstab Query

Image: Construction of the construc												
Field: FT Table: North I-25 Sort: Show: 2	RT: IIf([FT]=1 Or ([FT]=6),"R","N	I") Cntymiles: miles North I-25 2035	periodDir: speed I70expSpd	period I70expSpd Ascending	vol:	▼ spd:	spdc: IIf(Round([spd					
or:												

Each row of the "ExpandSpd" table is inserted into the output of this query, so we now have 20 times as many rows as we did originally.

The zoomed code uses "if" statements to parse out the speed and volume data.

Output of "reverse crosstab query:

di il	vmtSpeed(ClassAreaOr	n_North_	125_2035	_Preferred_	Alternative : Se	elect Query				
	ID	Rural?	AT_	FT	RT	Cntymiles	periodDir	period	vol	spd	spdc
	16923	U	3	1	R	0.254630141	AM1_BA	1	0	0	2.5
	16923	U	3	1	R	0.254630141	AM1_AB	1	2350.55	57.09	57
	16923	U	3	1	R	0.254630141	AM2_AB	2	5373.62	46.78	47
	16923	U	3	1	R	0.254630141	AM2_BA	2	0	0	2.5
	16923	U	3	1	R	0.254630141	AM3_AB	3	4745.49	56.54	57
	16923	U	3	1	R	0.254630141	AM3_BA	3	0	0	2.5
	16923	U	3	1	R	0.254630141	PM1_AB	4	8618.44	58.36	58
	16923	U	3	1	R	0.254630141	PM1_BA	4	0	0	2.5
	16923	U	3	1	R	0.254630141	PM2_BA	5	0	0	2.5
	16923	U	3	1	R	0.254630141	PM2_AB	5	4552.78	55.11	55
	16923	U	3	1	R	0.254630141	PM3_BA	6	0	0	2.5
	16923	U	3	1	R	0.254630141	PM3_AB	6	4080.01	60.42	60
	16923	U	3	1	R	0.254630141	OP1_AB	7	6899.35	64	64
	16923	U	3	1	R	0.254630141	OP1_BA	7	0	0	2.5
	16923	U	3	1	R	0.254630141	OP2_AB	8	10546.32	60.71	61
	16923	U	3	1	R	0.254630141	OP2_BA	8	0	0	2.5
	16923	U	3	1	R	0.254630141	OP3_AB	9	15713.33	58.21	58
	16923	U	3	1	R	0.254630141	OP3_BA	9	0	0	2.5
	16923	U	3	1	R	0.254630141	OP4_BA	10	0	0	2.5
	16923	U	3	1	R	0.254630141	OP4_AB	10	11381.42	63.84	64
Re	cord: 🚺 🖪		1 ▶ ▶	▶ 米 of 20 ((Filtered)						

"AT_" is the area type field – all area types except 5 are urban, and 5 is rural. "FT" is the facility type field – a facility type of 1 is a freeway thus the "RT" Field is equal to R for restricted. Note that this link does not really exist in the "BA" direction. The previous table now is in the proper format to calculate emissions – one row For each speed, volume and distance (VMT equals volume times distance).

There is still one problem – we do not have the VMT by vehicle type.

MOVES has 14 vehicle types (Source Types), but has a super class of 6 HPMS classes. For example, HPMS Class 50 is broken down into 4 types as follows:

51Refuse TruckTrucks primarilyused to haul refuse to a central location.

52 Single Unit Short-haul Truck Single unit trucks with more than four tires with a range of operation of up to 200 miles.

53 Single Unit Long-haul Truck Single unit trucks with more than four tires with a range of operation of over 200 miles.

54 Motor Home Trucks whose primary functional design is to provide sleeping quarters.

Traffic Counts

The Federal Highway Administration (FHWA) has 13 vehicle classes, and requires states to maintain a system of traffic counters to count vehicles by these 13 classes.

The Colorado Department of Transportation (CDOT) has such a system which they permanently maintain on selected principle arterials and freeways. They also supplement these Permanent counters with temporary counters on lower level facilities.

This is important because freeways and principal arterials have a higher percentage of heavy trucks than the lower level roads such as minor arterials, collectors and local streets.

I have modified a crosswalk between the FHWA vehicle classes and the 6 HPMS Mobile6 vehicle classes for MOVES. ENVIRON developed the original crosswalk for The Lake Michigan Air Directors Consortium (LADCO). (The counters can not differentiate all 14 of the MOVES Source Types, nor can they differentiate fuel type).

I used this crosswalk with the CDOT traffic count data to develop the following table of the fraction of VMT by HPMS vehicle class.

Vehicle Mix Fractions From CDOT Traffic Counters

1 21	Query3 : Sel	ect Query									_ 🗆	×
	Weld?	Rural?	FUNCCLA	RT	Hour	f10	f20	f30	f40	f50	f60	
	0	0	3	N	17	0.00246737	0.50596828	0.469348	0.00167214	0.0062644	0.01428	
	0	0	4	N	17	0.01762288	0.49921786	0.463876	0.00315087	0.0068742	0.0092585	
	0	0	5	N	17	0.02108039	0.49650913	0.462755	0.00403975	0.0076663	0.0079496	
	0	0	6	N	17	0.02108039	0.49650913	0.462755	0.00103975	0.0076663	0.0079496	
	0	0	7	N	17	0.02108039	0.49650913	0.462755	0.00403975	0.0076663	0.0079496	
	-1	-1	1	R	17	0.00366469	0.45711724	0.497437	0.00146128	0.0130645	0.0272553	
	-1	-1	2	R	17	0.00050244	0.48397010	0.499660	0.00017733	0.0062587	0.0094313	
	-1	0	1	R	17	0.00366469	0.45711724	0.497437	0.00146128	0.0130645	0.0272553	
	-1	0	2	R	17	0.00058261	0.47642730	0.499594	0.00023014	0.0080221	0.0151442	F
	0	-1	1	R	17	0.00258812	0.48744728	0.498584	0.00024439	0.0027036	0.0084328	
	0	-1	2	R	17	0.00052117	0.49707371	0.499650	0.00017878	0.0014965	0.0010798	
	0	0	1	R	17	0.00104869	0.48612981	0.499348	0.00025568	0.0048788	0.0083392	
	0	0	2	R	17	0.00052117	0.49707371	0.499650	0.00017878	0.0014965	0.0010798	Ţ
Re	cord: 🚺 🔳	1)))) * (of 28 (Filtere	ed)							

Weld County Colorado is broken out because of having a higher percentage of heavy trucks due to the intensive oil and gas development in that county.

Now we finally have all the information needed to calculate VMT by vehicle type .

The following query performs this calculation using the reverse crosstab query and the vehicle mix fraction table. The query also uses two additional tables to translate The DRCOG road types to the CDOT road types, and to translate the DRCOG periods to hours.

The design of this query is shown in the following slide:

Calculation of VMT by HPMS Vehicle Type

VMT by HPMS Vehicle Type

Ē	I25N35_No_ActionSpeedVTmovesRT2012Mixq : Select Query													
	Area	hour	MOVESrt	spdc	10h	20h	30h	40h	50h	60h				
►	D	1	4	2.5	0	0	0	0	0	0				
	D	1	4	39	0.53540208	290.40552	319.4834	0.3148245	2.7426121	26.3352658				
	D	1	4	62	2.07408727	1124.9982	1237.6426	1.2195947	10.62457	102.019849				
	D	1	4	64	11.2267892	6089.4824	6699.2133	6.6015219	57.509541	552.221383				
	D	1	4	65	4.93970365	2679.3269	2947.604	2.9046205	25.303770	242.973297				
	D	1	5	13	4.96451516	132.66200	124.59648	1.3567360	3.3617913	8.65271517				
	D	1	5	16	12.9209285	345.27364	324.28187	3.531118	8.7495886	22.5200468				
	D	1	5	20	4.13223146	110.42168	103.70832	1.1292839	2.7981987	7.20211757				
	D	1	5	22	2.7604719	73.765456	69.280701	0.7544003	1.8692924	4.81126078				
	D	1	5	25	1.64842178	44.049202	41.371121	0.4504918	1.1162520	2.87305481				
	D	1	5	26	1.89382063	328.53469	304.10404	1.1848100	3.5722484	48.6954646				
	D	1	5	28	0.14610022	3.9040967	3.6667374	0.0399272	0.0989338	0.25463989				
	D	1	5	31	4.21807487	119.16323	110.23200	1.1994008	1.0701100	3.43561365				
	D	1	5	35	4.98559625	140.84619	130.28983	1.4176439	1.2648274	4.0607583				
	D	1	5	36	12.237682	2110.8764	1953.9363	7.627118	22.983971	312.691839				
	D	1	5	42	3.85979303	669.58607	619.79400	2.4147596	7.2805943	99.2461544				
	D	1	5	47	4.63521819	130.94779	121.13331	1.3180146	1.1759377	3.77537606				
	D	2	4	2.5	0	0	0	0	0	0				
	D	2	4	39	0.59941385	278.35831	319.29966	0.6182827	3.9045262	37.0368299				
	D	2	4	62	2.32206166	1078.3287	1236.9309	2.3951574	15.125694	143.476501				
Re	cord:			of 658	10 5000 (50	5000 0050	2005 2002	10 00 170 1	01.070501	770.004040				

Now we are ready to calculate emissions (Finally!).

The following slide shows the design of the query to do this calculation with the VMT by HPMS Vehicle Type query and the emission rates crosstab query.

The emission rates table has factors for each average speed bin in a separate column in each row, and each row is for a different vehicle type.

The VMT table has the VMT for each vehicle type in a separate column in each row, and each row is for a different speed.

Image: 25N35_Preferred_AlternativeEmissions2012Mix : Select Query Image: Preferred_AlternativeEmissions2012Mix : Select Query Image: Preferred_AlternativeEmissio						t<=25: Sum(IIf([spc] [2_5])*([spdc]-2.5), 5)/5,IIf([spdc]>10 A And [spdc]<=20,[15 [spdc]<=25,[20]+([20)/5,IIf([spdc]>25, h],IIf([HPMSVtypeID [50h],IIf([HPMSVtyp	ic]<=2.5,[2_5],IIf([spdc] /2.5,IIf([spdc]>5 And [sp nd [spdc]<=15,[10]+([1 i]+([20]-[15])*([spdc]-1: 25]-[20])*([spdc]- 0))))))*IIf([HPMSVtypeI]=30,[30h],IIf([HPMSVty eID]=60,[60h],0))))))/0.5	<pre>>2.5 And [spdc]<=5,[2_ dc]<=10,[5]+([10]-[5])* 5]-[10])*([spdc]-10)/5,II 5)/5,IIf([spdc]>20 And D]=10,[10h],IIf([HPMSVt peID]=40,[40h],IIf([HPMS 9071847)/1000000</pre>	5]+([5]- ([spdc]- f([spdc]>15 ypeID]=20,[20 sVtypeID]=50,
		1	T		T	1		1	
Field:	Area	yearID	pollutantID	monthID	HPMSVtypeID	t<=25: Sum(IIf([sp •	t<=50: Sum(IIf([spd	t>50: Sum(IIf([spdc]	Total: ([t<=25]
Table:	I25N35_Pref	vocNOxCORat	vocNOxCORates	vocNOxCORate	vocNOxCORatesQ				
Total:	Count	Group By	Group By	Group By	Group By	Expression	Expression	Expression	Expression
Sort:	Ascending		Ascending	Ascending	Ascending				
Criteria:	<u> </u>			1 Or 7		T	₩		
or:				1017					
01.			1		1	1			

The two tables are related to each other by linking hour and road type. The Area fields are also linked because two of the counties have different emission factors .

The zoomed code shows the selection of the correct speed bins, VMT by vehicle class and the interpolation between speed bins by speed.

Emissions output in tons per day summed by vehicle type, month and pollutant code. VMT is also provided, and is an important QA check to see that the total is the same as we started with.

Ē	25N35_Pref	erred_Altern	ativeEmissions	2012Mix : Select ()uery				
	pollutantl	yearlD	monthID	HPMSVtypeID	VMT	t<=25	t<=50	t>50	Total
	2	2040	1	10	11,217	0.0653600031	0.0503182378	0.0201100780	0.1357883189
	2	2040	1	20	1,702,463	0.2451799628	0.6735281052	0.8524761565	1.7711842245
	2	2040	1	30	1,708,842	0.2485145886	0.7454196447	1.0469107890	2.0408450223
	2	2040	1	40	4,189	0.0011237751	0.0012003479	0.0003231578	0.0026472808
	2	2040	1	50	24,025	0.0076562703	0.0159121639	0.0103934285	0.0339618627
	2	2040	1	60	62,731	0.0042089741	0.0116989127	0.0085003983	0.0244082851
	2	2040	7	10	11,217	0.0653600031	0.0503182378	0.0201100780	0.1357883189
	2	2040	7	20	1,702,463	0.3534672267	1.0364017075	1.1478772095	2.5377461437
	2	2040	7	30	1,708,842	0.3535443288	1.1369365745	1.3945811894	2.8850620927
	2	2040	7	40	4,189	0.0011237751	0.0012003479	0.0003231577	0.0026472807
	2	2040	7	50	24,025	0.0076562703	0.0159121666	0.0103934285	0.0339618654
	2	2040	7	60	62,731	0.0042089741	0.0116989126	0.0085003983	0.0244082850
	3	2040	1	10	11,217	0.0030911237	0.0033119186	0.0015032381	0.0079062805
	3	2040	1	20	1,702,463	0.0061448720	0.0258342365	0.0404417486	0.0724208571
	3	2040	1	30	1,708,842	0.0096567361	0.0391814933	0.0628879897	0.1117262192
	3	2040	1	40	4,189	0.0028562589	0.0026376242	0.000763087	0.0062569702
	3	2040	1	50	24,025	0.0050862187	0.0096305292	0.0069442963	0.0216610442
	3	2040	1	60	62,731	0.0167143177	0.0477100846	0.0396705254	0.1040949278
	3	2040	7	10	11,217	0.0026133118	0.0028015211	0.0012902821	0.0067051150
	3	2040	7	20	1,702,463	0.0060479017	0.0252236201	0.0385550578	0.0698265796
	3	2040	7	30	1,708,842	0.0097970656	0.0383476415	0.059940004	0.1080847110
	3	2040	7	40	4,189	0.0025724573	0.0023705976	0.0006961399	0.0056391949
	3	2040	7	50	24,025	0.0045605272	0.0084428492	0.0061851838	0.0191885602
	3	2040	7	60	62,731	0.0151133000	0.0427625305	0.0362459489	0.0941217794
	87	2040	1	10	11,217	0.0106398380	0.0052969063	0.0014153527	0.017352097
	87	2040	1	20	1,702,463	0.0124045389	0.0222268897	0.018420038	0.0530514666
Re	cord: ∎	1	► ► ► ► ► of 3	6					

The example just presented is only for on-network emissions. The on-network emissions are roughly 75% of the CO and NOx emissions, but only about 25% of the VOC emissions.

To calculate the off-network emissions we link to the rates per vehicle and rates per profile Tables from the MOVES MySQL output database (using the MySQL OBDC driver).

Emissions from these tables are in grams per vehicle by hour, and we would calculate emissions by multiplying by the vehicle population for the appropriate vehicle class.

Questions?