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ABSTRACT 

To improve the accuracy of black carbon emission inventory of US for 1960s to 2000s, we 
studied the relationship between emissions and ambient air concentrations of BC using the Community 
Atmosphere Model and formulated it into matrices that allow reconstruction of BC ambient 
concentration with emission inventory. Errors in model meteorology are corrected in the transport 
matrices by adjustment with measurements from NASA. We also applied Heating Degree Days data to 
estimate seasonal variation in emissions, as observed from the concentrations. Comparison between the 
reconstructed and measured BC shows that the magnitude of observations was decreasing throughout 
this period of time, while the reconstructed concentrations peaked in the 1980s. Also, scaling heating 
emissions by HDD can explain most of the trend in seasonal variation observed in the measurements. 
Acknowledging the inherent uncertainty in model-measurement comparison, we rely more on the trends 
comparison. Apparent adjustment factors are calculated for baseline and seasonal emissions for each 
decade. To reproduce the decreasing trend, higher emission factors are needed for 1960s to 1970s. More 
information is required to further improve the emission inventory on fuel consumption and technology 
level. 

 
INTRODUCTION  

Black carbon (BC) is a kind of carbonaceous particle produced by incomplete combustion of 
carbon-based fuel [1-3]. It influences the regional and global climate by absorbing visible light and 
warming the atmosphere [4-7]. The best estimate of industrial-era climate forcing of black carbon 
through all forcing mechanisms is 1.1 W/m2 [1]. However, climate forcing from BC is transient due to 
its short lifetime [5, 8, 9]. Therefore, reducing black carbon could present quicker climate benefits than 
mitigating greenhouse gas with much longer lifetimes.  To better explore the environmental 
consequences of black carbon, confidence in its emission inventory is important. In this work, we use 
historical BC measurements to constrain seasonal and baseline BC emissions for 1960s to 2000s. When 
there is a mismatch between models and measurements, and the emission inventory is at fault, an error 
in estimated fuel use or technology is implied. This in turn will ultimately affect emission estimates of 
all pollutants. Thus, the annual and seasonal trend in observations of BC will constrain our current 
representation of fuel use and emission factors and then provide more accurate emissions of BC and 
other species.  

METHODOLOGY 

To improve the accuracy of historical BC emission estimation based on observations, we interpreted 
the emission into observable variables and compared them with observations. Then, we analyzed the 
discrepancy between the modeled concentrations and its measurements. The flow chart in Figure 1 
describes the calculation process. There are three main steps of the method as described by the following 
sections. 



 

Figure 1. Flowchart of the method 
 

Step One. Atmospheric transport study 
 
1.1 Calculation of the transport matrix 

 
First, we simulated atmospheric transport over the period of 2000-2006 using a special version of 

NCAR Community Atmospheric Model (CAM) version 4.0 that tracks BC tracers from different sources 
as different “species”. The simulation ran with 1.9×2.5 degree grid boxes, forced with transient sea 
surface temperatures and with the emission inventory reported by Bond, Bhardwaj [2]. Using the model 
simulation result, we formulated the relationship between emissions and ambient air concentration into 
transport matrices. Each element, Tij, in the transport matrix represents the sensitivity of ambient air 
concentration in a receptor region i to the emission in source region j, The transport matrix is the m×k 
matrix transferring the vector of k regional emissions E  into the concentration vector  C of m receptors: 

 
Equation (1) 𝐶 = 𝑇𝐸  
 

The concept and function of our transport matrix is same as the Jacobian matrix in the inverse 
modeling method [10]. In this study, as in inverse modeling studies, we assume this relationship is linear 
and independent of the magnitude of emission.  

The transport matrices were calculated monthly to account for seasonal variation. In this study, 
we assume that the dominant BC contribution to each receptor is emissions within the same state. The 
full transport matrices are shown in supplementary information.  

 
1.2 Error of meteorology in the model 

 
Errors in model meteorology could cause discrepancy between estimation and measurements, which 

should not be attributed to the inaccuracy of the emission inventory. We examine the influence of 
planetary boundary layer (PBL) and wind speed on BC concentrations. We found that only PBL is a 
statistically significant predictor of BC concentration. These different statistical results for PBL and 
wind are physical plausible. The grid box in this simulation is as big as 1.9x2.5 degree that equilibrium 
concentration of the region is not dominated by the local wind speed. It is the total emission dispersion 
rather than certain emission source that influence the BC concentrations in large scale. This is similar to 



the case that rural BC concentrations in remote site do not change with local wind speed [11]. Therefore, 
little correlation between BC concentration and wind speed is observed. Then, we compared the 
planetary boundary layer (PBL) in the model with measurements acquired from NASA’s Modern-Era 
Retrospective Analysis for Research and Applications (MERRA) for the period 2000-2006. Figure 2 
shows the comparison of modeled and measured PBL in the Bay Area of California (one grid box in the 
model). Measured and modeled values could differ by 60%. With the relationship between BC 
concentration and PBL from model simulation results, we can adjust the modeled BC concentrations 
with PBL measurements to account for the error in the model. The adjustments factors are shown in 
Table 1. Applying the adjusted coefficient of PBL introduces more seasonality in the concentration. 

Table 1. Adjustment factor applied to BC concentration to account for the error in PBL of the model 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
California 1.06 0.92 0.90 0.88 0.89 0.88 0.87 0.86 0.85 0.85 0.97 1.03 

 

 

Figure 2. Monthly averages of the Planet Boundary Layers(PBL) wind speed vertical average in Bay 
Area of California Measurements of wind speeds and PBL for 2007-2009 are acquired from MERRA 

and Applications.  
 

Step Two. Update the current emission inventory with new fuel data and seasonality data 
 

BC concentrations were first modeled with a US BC emission inventory for 1960 to 2000 
beginning with the inventory of Bond, Bhardwaj [2] with updates as described Lamarque [12]. The 
emission inventory used in this work has two major updates, in addition. First, United States fuel 
consumption data are taken from the Energy Information Administration (EIA). EIA data are 
disaggregated by state, whereas IEA data are given by country. The second difference is the use of the 
SPEW-Trend vehicle fleet model [13] to estimate the number of vehicles built according to different 
standards that are emitting in each year. This fleet-model approach gives a more realistic estimate of 
trends, because emissions do not cease when emission standards come into force, but rather when old 
vehicles retire from the road. 

We also add seasonality into the residential sector, assuming that emission is proportional to 
heating degree days (HDD), which describe the heating energy used to bring a building’s temperature to 
a desired temperature [14-16]. Equation (2) gives the definition: 

0	  

100	  

200	  

300	  

400	  

500	  

600	  

Jan	   Feb	   Mar	   Apr	   May	   Jun	   Jul	   Aug	   Sep	   Oct	   Nov	   Dec	  

PBL	  in	  the	  model,	  m	   PBL	  measurement,	  m	  



 
Equation (2) 𝐻𝐷𝐷 =    𝑚𝑎𝑥(𝑇!"# − 𝑇! ,     0)!

!!!      
 

where HDD stands for monthly degree-days; Td is daily temperature; and Tset is the temperature 
of the indoor environment. HDD data from the National Oceanic and Atmospheric Administration 
(NOAA) National Climate Data Center are used to calculate a seasonality factor, as shown in Equation 
(3), and the monthly emission is calculated by multiplying the average residential emission with the 
seasonality factor. The full seasonality factors are shown in Figure S1 in the supplementary information. 

Equation (3) 𝑇𝐹 𝐻𝐷𝐷 ! = !"!!
!""

      𝑓𝑜𝑟  𝑖!!  𝑚𝑜𝑛𝑡ℎ  
 
Step Three. Analysis of Discrepancy between Estimation and Observation  

With the transport matrix adjusted by meteorology and the updated emission inventory, we 
estimated a time-dependent BC concentration of California for 1960s to 2000s and compared it with the 
observation. BC concentration data are estimated from COH data acquired from the California Air 
Resources Board (CARB) and Environmental Protection Agency’s Air Quality System. The 
measurements of COH are similar to those of BC [17], because both are based on the quantification of 
light transmission through a filter upon which particles are collected [18, 19]. Equation (4) gives the 
conversion of COH to BC. The COH data are available for California and New Jersey during 1963-2011 
and 1967-2005, respectively. They are also available for seven other states during 1965-1980 (not 
discussed here). 

 

Equation (4) BC  (µμg  m− 3)   =   6.7COH  +   0.1  

 
We take the observation of BC as an indication of the true emission and use the discrepancy 

between the modeled BC and the measurement to adjust the current emission inventory, as shown by 
Equation (5). Adjustment factors were calculated based on the proportions of decadal concentration 
average. During this process, emissions were divided into a baseline component that is constant 
throughout the year, and a seasonal component that varies by month. We assume seasonal emissions are 
from heating use, and only baseline emissions occur in summer. Therefore, summer observations were 
used to obtain an adjustment for baseline emissions, see Equation (6). We then calculate the adjustment 
to the remaining seasonal emissions. Full equations are in supplementary information.  

For the ith month: 
Equation (5) !!"

!!"
= !!

! !!!!!
!!!  !!!

    for ith month   

Equation (6) !!"
!!"

= !!
!

!!
          i=6,7,8  

 
where C!" and C!" are the measured and estimated BC concentrations for the ith month.  E!!   and    E!  are 
the true and estimated baseline emissions, respectively. E!!

!   and    E!! are the true and estimated seasonal 
emissions for each month. 
 
RESULTS and DISCUSSION  

 Measured BC and modeled BC from current emission inventory and the adjusted emission for 
California are shown in Figure 3. After adjusting the meteorology and applying HDD seasonality, BC 
modeled from the initial emission inventory (red line) still shows a smaller magnitude, less seasonality 
and different trend than the measurements (black line). A decreasing trend is observed from BC 
measurement for 1960s -2000s, but not in BC modeled from the current emission inventory, which 



peaks in 1980s. The modeled BC from the adjusted emission (blue line), however, matches the 
measurement well except for an overestimation of seasonality during the 1960s. It demonstrates that 
HDD can explain most of the trend in seasonal variation of the BC measurement.  

 

Figure 3. Measured BC and modeled BC from initial emission inventory and the adjusted emission 
inventory 

Even though the modeled BC from the adjustment emission matches the observation well, we 
would not directly apply these adjustment factors on to our current emission inventory for two reasons. 
First, spatial heterogeneity in model-measurement comparison can cause a large uncertainty due to the 
difference in resolution, especially for measurements of the urban sites where concentration gradients 
are steep. We acknowledge the potential discrepancy caused by this resolution difference and quantified 
this discrepancy with a WRF-Chem model simulation of BC mass concentration over Los Angeles, 
California. Result shows that BC concentrations may vary by a factor of two when lower grid size from 
0.04°×0.04° to 1°×1°. Therefore, the adjustment factor may be overestimated by a factor of at least two. 
More importantly, this spatial heterogeneity problem points out inherent uncertainty in model-
measurement comparison within a model and indicates that trend comparison is more instructive. Trends 
in the adjustment factor are more instructive to isolate potential improvements in the emission inventory. 

Figure 4 shows the apparent adjustment factors that have been divided by two to account for the 
resolution uncertainty. Adjustment factors for baseline emissions decrease through the study period. 
Although most of the mismatch in the present-day model could be explained by spatial resolution, 
emissions need a 2.5-fold increase in the 1960s even when resolution is accounted for. In contrast, for 
seasonal emission, adjustment factors are large in 1960s, 1970s, and 2000s, and relatively small in 
1980s.  
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Figure 4. Apparent adjustment factors for BC emission in California 

CONCLUSIONS and FUTURE WORK 

 To improve the accuracy of the US BC emissions for 1960s to 2000s, we translated emissions 
into concentrations using a transport matrix and compared them with observations. The comparison 
shows a mismatch of the trend between measurements and emissions. BC measurements decrease during 
1960s to 2000s, but the emission inventory peaked in 1980s. Our process includes an adjustment to 
modeled concentrations to account for meteorology. Scaling heating emissions by HDD can explain 
most of the trend in seasonal variation observed in the measurements. Higher emission factors are 
needed for 1960s to 1970s to reproduce the decreasing trend. However, more information is required to 
further improve the emission inventory on fuel consumption and technology level. With the method 
developed in this work, we will use measurement data from multiple states to constrain historical 
emission from different fuel-technology sources. Identifying the fuel-use and emission factors that need 
adjustment will ultimately improve emission estimates of BC and other species[20]. 
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1. Full transport matrix 
 

Table S1. Transport matrix with the receptor region of California and 23 global emission source regions 
 

T matrix 
(µg/m3)/Gg Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Canada 5.12E
-05 

1.43E
-04 

1.58E
-04 

3.00E
-04 

3.67E
-04 

6.20E
-04 

8.65E
-04 

1.02E
-03 

9.01E
-04 

4.56E
-04 

1.10E
-04 

6.31E
-05 

USA 2.21E
-02 

1.76E
-02 

1.58E
-02 

1.35E
-02 

1.56E
-02 

1.70E
-02 

1.93E
-02 

2.06E
-02 

2.16E
-02 

2.18E
-02 

2.15E
-02 

2.23E
-02 

Central 
America 

4.49E
-03 

3.54E
-03 

2.76E
-03 

2.31E
-03 

2.59E
-03 

2.79E
-03 

3.18E
-03 

3.38E
-03 

3.53E
-03 

3.75E
-03 

4.18E
-03 

4.74E
-03 

South 
America 

1.02E
-06 

6.29E
-07 

8.35E
-07 

8.49E
-07 

1.10E
-06 

9.30E
-07 

2.43E
-06 

3.70E
-06 

2.28E
-06 

1.00E
-06 

5.02E
-07 

5.60E
-07 

Northern 
Africa 

6.41E
-06 

6.80E
-06 

1.16E
-05 

1.45E
-05 

1.58E
-05 

7.94E
-06 

4.81E
-06 

5.46E
-06 

9.55E
-06 

1.53E
-05 

1.52E
-05 

1.02E
-05 

Western 
Africa 

4.10E
-06 

2.35E
-06 

3.87E
-06 

3.51E
-06 

3.17E
-06 

1.63E
-06 

3.29E
-06 

3.03E
-06 

2.81E
-06 

2.21E
-06 

2.95E
-06 

3.19E
-06 

Eastern 
Africa 

3.56E
-06 

2.08E
-06 

3.53E
-06 

3.69E
-06 

2.99E
-06 

8.79E
-07 

7.05E
-07 

9.44E
-07 

1.34E
-06 

1.33E
-06 

2.16E
-06 

2.37E
-06 

Southern 
Africa 

5.55E
-07 

3.46E
-07 

5.06E
-07 

3.18E
-07 

2.80E
-07 

1.75E
-07 

1.39E
-07 

1.38E
-07 

1.15E
-07 

7.17E
-08 

6.89E
-08 

1.64E
-07 

OECD 
Europe 

3.57E
-06 

3.87E
-06 

8.53E
-06 

1.26E
-05 

1.80E
-05 

1.70E
-05 

1.30E
-05 

1.67E
-05 

2.48E
-05 

1.88E
-05 

1.21E
-05 

5.55E
-06 

Eastern 
Europe 

1.74E
-06 

2.49E
-06 

5.81E
-06 

1.53E
-05 

2.88E
-05 

2.77E
-05 

1.80E
-05 

2.34E
-05 

3.18E
-05 

2.10E
-05 

9.14E
-06 

3.12E
-06 

Former 
USSR 

1.80E
-06 

2.24E
-06 

5.33E
-06 

1.28E
-05 

3.76E
-05 

5.03E
-05 

3.42E
-05 

3.75E
-05 

4.33E
-05 

2.02E
-05 

7.24E
-06 

2.79E
-06 

Middle East 7.52E
-06 

9.73E
-06 

2.01E
-05 

2.99E
-05 

3.54E
-05 

1.93E
-05 

9.90E
-06 

9.58E
-06 

1.70E
-05 

2.35E
-05 

2.39E
-05 

1.21E
-05 

South Asia 9.00E
-06 

1.12E
-05 

2.03E
-05 

2.27E
-05 

2.48E
-05 

1.24E
-05 

5.56E
-06 

4.50E
-06 

7.36E
-06 

1.21E
-05 

1.00E
-05 

6.60E
-06 

East Asia 1.78E
-05 

1.71E
-05 

4.00E
-05 

6.48E
-05 

8.43E
-05 

9.00E
-05 

6.45E
-05 

4.78E
-05 

4.71E
-05 

4.53E
-05 

2.51E
-05 

1.70E
-05 

Southeat 
Asia 

7.66E
-06 

6.64E
-06 

1.36E
-05 

1.36E
-05 

1.73E
-05 

8.60E
-06 

5.65E
-06 

3.26E
-06 

3.12E
-06 

4.82E
-06 

5.32E
-06 

5.46E
-06 

Oceania 3.66E
-08 

3.42E
-08 

5.84E
-08 

4.69E
-08 

4.89E
-08 

3.80E
-08 

2.74E
-08 

1.95E
-08 

1.91E
-08 

1.33E
-08 

1.38E
-08 

1.92E
-08 

Japan 8.72E
-05 

7.65E
-05 

9.81E
-05 

1.10E
-04 

1.20E
-04 

1.27E
-04 

1.39E
-04 

1.21E
-04 

1.21E
-04 

9.56E
-05 

8.69E
-05 

8.41E
-05 

Euro  
Biomass 

6.73E
-06 

2.69E
-06 

3.76E
-06 

7.72E
-06 

6.23E
-05 

4.98E
-05 

7.00E
-06 

8.72E
-06 

4.77E
-05 

8.44E
-05 

4.45E
-05 

9.64E
-06 

Northern 
Asia  

Biomass 
5.63E

-05 
2.34E

-05 
7.57E

-06 
2.03E

-05 
6.31E

-05 
2.04E

-04 
7.59E

-05 
9.04E

-05 
1.40E

-04 
3.13E

-05 
6.49E

-05 
8.93E

-05 
Southern 

Asia Biomass 
1.97E

-06 
3.64E

-06 
1.42E

-05 
2.74E

-05 
5.94E

-05 
7.66E

-06 
6.04E

-06 
1.88E

-06 
1.63E

-06 
1.21E

-06 
1.51E

-06 
1.29E

-06 
 

North 
America 
Biomass 

1.07E
-02 

7.89E
-03 

1.07E
-02 

7.61E
-03 

8.03E
-03 

2.83E
-03 

5.17E
-03 

8.79E
-03 

4.09E
-02 

2.16E
-02 

1.07E
-02 

1.86E
-02 

S/C America  
Biomass 

4.46E
-06 

1.27E
-06 

1.27E
-06 

3.80E
-06 

2.00E
-05 

1.76E
-05 

1.35E
-05 

1.67E
-06 

7.84E
-07 

1.15E
-06 

2.13E
-06 

2.58E
-06 



T matrix 
(µg/m3)/Gg Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Africa  
Biomass 2.75E

-06 
2.27E

-06 
1.47E

-05 
1.18E

-05 
1.10E

-06 
1.82E

-07 
1.36E

-07 
1.98E

-07 
2.20E

-07 
3.09E

-07 
1.22E

-06 
1.45E

-06 
 

2. Seasonality of HDD for California 
 

Seasonality of HDD for California is calculated based on Equation (3). 

 

Figure S1. Seasonality of HDD for California over each decade during 1960s-2000s. Data are calculated 
from National Oceanic and Atmospheric Administration (NOAA) National Climate Data Center 

 

3.Adjustment of baseline and seasonal emission 

For the ith month: 

Equation (S1) 𝑅!= !!"
!!"

= !!
! !!!"!

!!!  !!!
             for ith month 

Equation (S2) 𝑅!"##$% =
!!"
!!"

= !!
!

!!
       for i= 6,7,8 

Equation (S3)  !!
  !!!

 = k                                              

Equation (S4) E!! = 𝑅!"##$%E!                               

Equation (S5) E!!′ = (k 𝑅! − 𝑅!"##$% + 𝑅!)  E!!      
 

 where C!" and C!" are the measured and estimated BC concentrations for each month.  E!!   and    E!  are the 
true and estimated baseline emissions, respectively. E!!

!   and    E!! are the true and estimated seasonal 
emissions for each month. Ri, Rsummer and k are intermediate variable. 
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The ratio between the measured BC concentrations and the modeled BC concentrations for each 
month, following adjustments for model errors, should be equal to the ratio of true BC emissions to 
estimated emissions, as shown by Equation (5). Meanwhile, we assumed that only baseline emissions 
occur in summer. Therefore, adjustment to the baseline and seasonal emissions can be calculated with 
the observation as Equation S4, S5 demonstrated. 

 


