Treatment Options Part 1

Tom Sorg Darren Lytle

Water Supply and Water Resources Division Office of Research and Development U.S. Environmental Protection Agency Cincinnati, OH

Topics – Part 1

- Arsenic Chemistry
- BAT Technology
- Adsorptive Media

RESEARCH & DEVELOPMENT

Arsenic Chemistry

Arsenic Species

As (III) - $\underline{H_3AsO_3}^0$, $H_2AsO_3^{-1}$, $HAsO_3^{-2}$ As (V) - $H_3AsO_4^0$, $\underline{HAsO_4}^{-1}$, $\underline{AsO_4}^{-2}$

RESEARCH & DEVELOPMENT

Arsenic Chemistry

What is the significance of arsenic speciation?

As V more effectively removed than As III by most treatment technologies

RESEARCH & DEVELOPMENT

Arsenic Occurrence

Surface waters - predominantly As (V)

Ground waters – usually found as As (III), however, it can As (V) or a combination of As (III) and As (V).

RESEARCH & DEVELOPMENT

Arsenic Chemistry

For maximum As removal

oxidize As (III) to As (V)

before applying treatment

۲

RESEARCH & DEVELOPMENT

As III Oxidation

Effective!

- Free Chlorine
- Potassium Permanganate
- Ozone
- <u>Solid Oxidizing Media</u> (MnO₂ solids)

Ineffective

- Chloramine
- Chlorine Dioxide
- UV Radiation

RESEARCH & DEVELOPMENT

Oxidation of As III by aeration

not effective

RESEARCH & DEVELOPMENT

Topics – Part 1

- Arsenic Chemistry
- BAT Technology
- Adsorptive Media

RESEARCH & DEVELOPMENT

Arsenic Rule

Best Available Technology (BAT)

<u>Technology</u>	<u>Maximum Percent</u>		
	<u>Removal (As V)</u>		
Ion Exchange	95		
Activated Alumina	90		
Reverse Osmosis	>95		
Modified Coag/Filtration	95		
Modified Lime Softening	80		
Electrodialysis Reversal	85		
Oxidation/Filtration (20:1 Fe/As)	80		

RESEARCH & DEVELOPMENT

Arsenic Rule

Other Ground Water Processes

Coagulation Assisted Microfiltration

Technology

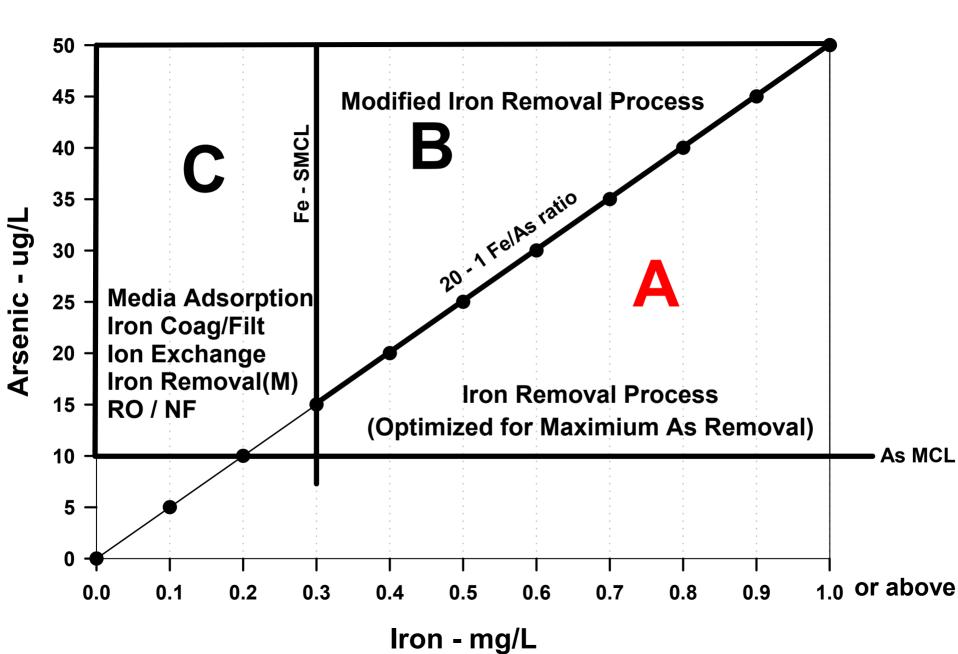
Reason for not being listed as BAT

No full scale history

Granular Ferric Lack of published data Hydroxide (GFH)

RESEARCH & DEVELOPMENT

Arsenic Rule


Small Systems Compliance Technologies

- Centralized Treatment IE, AA, MC/F, MLS,
 Fe Removal
- POU RO, Activated Alumina
- POE Activated Alumina

Arsenic Treatment - Process Selection Guide

Topics – Part 1

- Arsenic Chemistry
- BAT Technology
- Adsorptive Media

RESEARCH & DEVELOPMENT

Arsenic Demonstration Program – Round 1

Technologies selected for demonstration (12 sites)

Adsorptive media – 9 Iron media -7 (E 33, Sorb 33, GFH) Iron based media -1 (G2) Modified activated alumina –1 (AAFS 50) Ion exchange -1 (As & NO₃) Iron removal – 1 Treatment modification (iron removal process) - 1

RESEARCH & DEVELOPMENT

Adsorptive Media Processes

Advantages

- Simple process
- High removal capacity
- Non hazardous waste products
- Low cost

RESEARCH & DEVELOPMENT

Adsorptive Media Treatment

- Disadvantages
 - Removal capacity impacted by water chemistry, such as pH
 - pH adjustment may be required
 - Media replacement

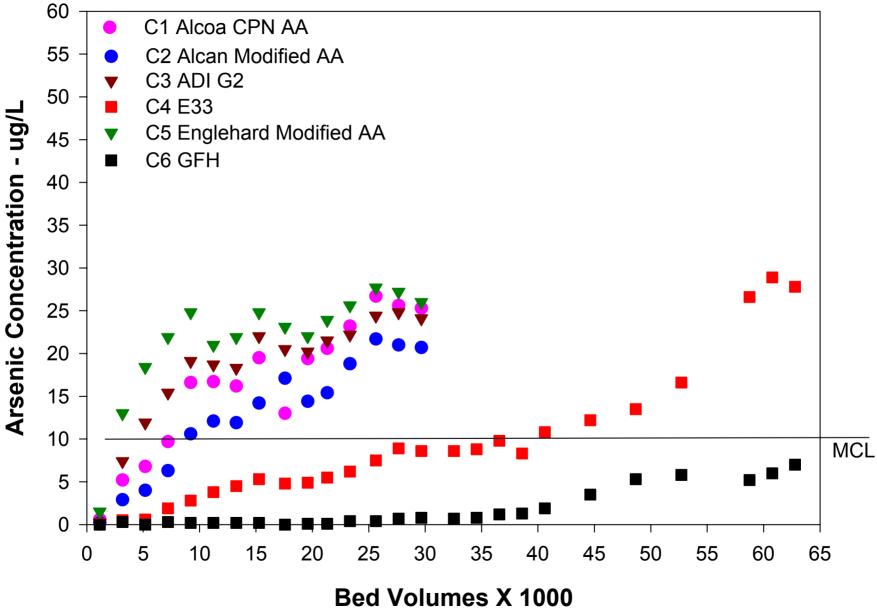
RESEARCH & DEVELOPMENT

Adsorptive Media Treatment

Key design factors

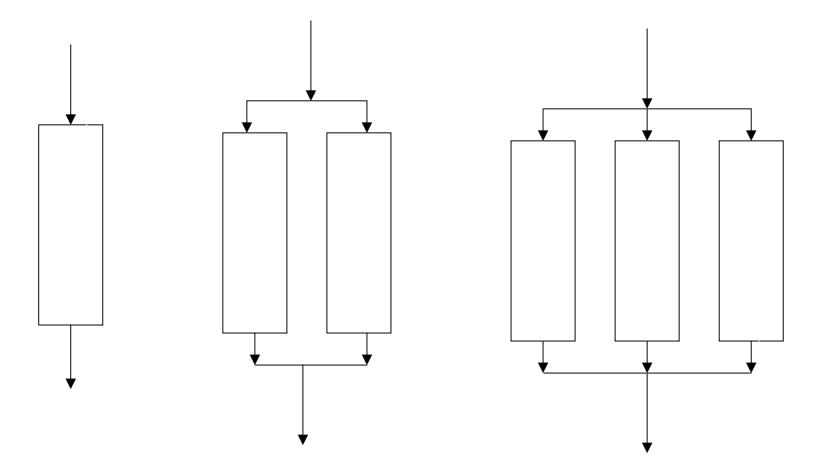
- Media
- Bed configuration

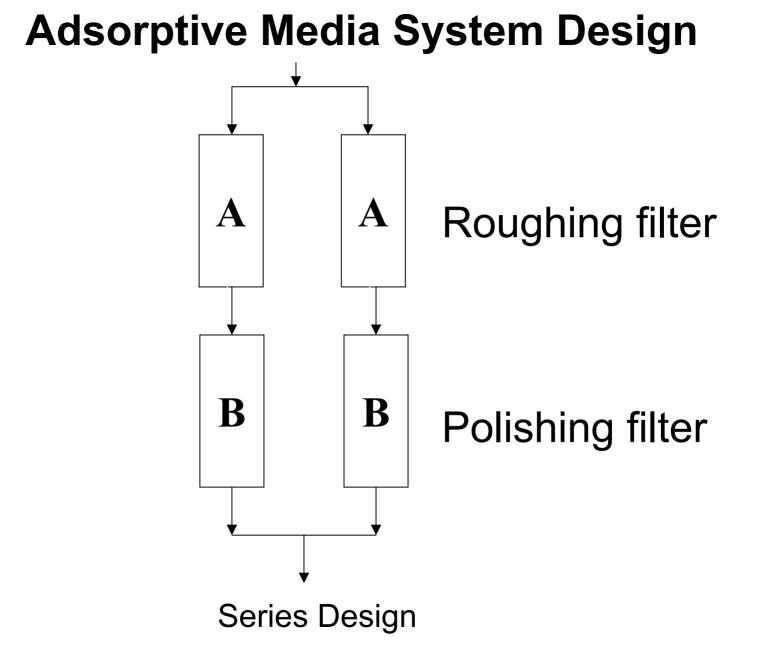
RESEARCH & DEVELOPMENT


Adsorptive Media Listed in NSF/ANSI STD 61

<u>Company</u>	Base Material	<u>Name</u>	Material	
Alcan (4)	Aluminium	AAFS - 50	Mod AA	
Alcoa (2)	Aluminium	CPN	AA	
Apyron	Aluminium	Aqua-Bind	Mod AA	
Engelhard	Aluminium ARM 100		AA	
Engelhard	Iron	ARM 200	Iron Oxide	
ADI Internat.	nat. Iron G2		Iron based	
SMI	Iron	SMI III	Iron/sulfur	
US Filter	Iron	GFH	Iron Hydroxide	
Bayer AG	Iron	E 33	Iron Oxide	
WRT	Zeolite	Z – 33	Mod Zeolite	
Magnesium Elektron	Zirconium	Isolux	Zirconium Hydroxide	

RESEARCH & DEVELOPMENT

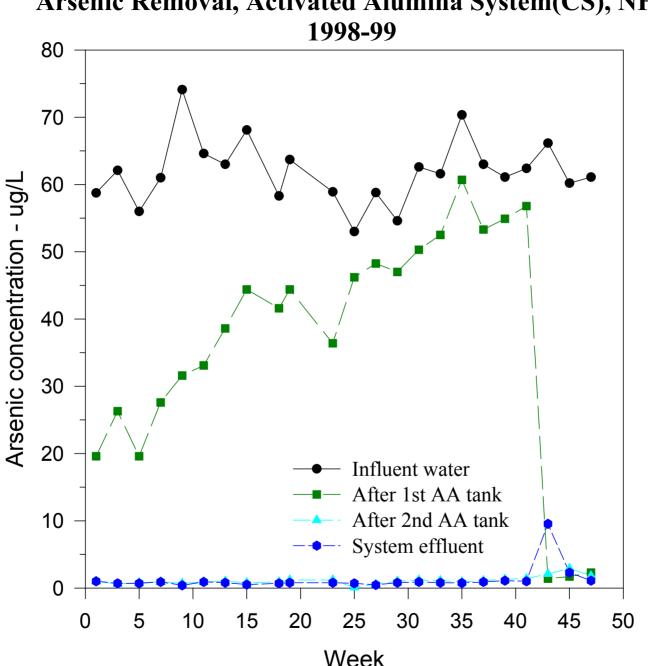

Figure 1. Results of Arsenic Removal by Adsorptive Media Pilot Plant Studies.


Adsorptive Media System Designs

Simple 1, 2, or 3 beds in parallel

۲

RESEARCH & DEVELOPMENT



RESEARCH & DEVELOPMENT

Activated Alumina System - New Hampshire

Arsenic Removal, Activated Alumina System(CS), NH.

Week Influent water: pH 8.2, alk 58 mg/L (CaCO3), Fe <0.03 mg/L

Adsorptive Media Treatment

Flow gpm	Media	Design	Total Capital Investment (TCI)	Equipment Cost	Eq Cost % of TCI
70	G2	Series	\$154,700	\$102,600	66
37	AAFS50	Series	\$228,309	\$122,646	54
45	E33	Series	\$90,757	\$66,235	73
100	E33	Parallel	\$106,568	\$82,081	77
145	E33	Parallel	\$139,251	\$112,211	80
300	E33	Parallel	\$211,000	\$129,500	62
320	E33	Parallel	\$153,000	\$112,600	73
350	GFH	Parallel	\$232,309	\$157,646	68
640	E33	Parallel	\$305,000	\$218,000	71

RESEARCH & DEVELOPMENT

