Emissions Inventory and Health Risk Assessment of Toxic Air Pollutants for the Canadian Lower Fraser Valley and Vancouver, British Columbia

Dana Sullivan, Yuan Du, Stephen Reid, and Michael McCarthy Sonoma Technology, Inc.

> Francis Ries and Derek Jennejohn Metro Vancouver

> > for

EPA International Emission Inventory Conference

San Diego, CA April 15, 2015

Study purpose: Develop improved information for use in decision- and policy-making

- Task 1 Health Risk Assessment
 - Evaluate air toxics data collected in the Canadian Lower Fraser Valley (CLFV) and perform a health risk assessment for those pollutants.
- Task 2 Update the Emissions Inventory (EI) of Toxic Air Pollutants (TAPs)
 - Update the air toxics EI with an emphasis on the prioritized pollutants based on cancer and noncancer health risks.

Study Area, Monitoring Sites, and Pollutants

Task 1 – Risk Assessment

- Hazard Identification Determine which pollutants are of concern.
- Dose-Response Assessment Quantify the levels of concern.
- Exposure Assessment Quantify or estimate the concentrations to which people are exposed.
- Risk Characterization Quantify risk and hazard levels.

CLFV Average Cancer Risk

CLFV Average Noncancer Hazard

Comparisons with Other Cities

Background Contributions

Task 2 – Update the EI of TAPs

Background and context

- A year-2000 EI of TAPs was previously developed for the CLFV airshed.
- The goal of this task is to develop an updated (2010) EI for priority TAPs in the CLFV airshed.
- The 2010 TAP EI is a tool air quality managers may reference when considering which TAPs and sources to address with mitigation actions.

Methodology (1)

- Screening-level EI
 - Processed point, on-road, non-road, and nonpoint sources separately
 - Data/approach selection hierarchy
 - TAP emissions (e.g., MOVES, NPRI data)
 - Speciation of criteria air pollutant (CAP) emissions
 - Local profiles
 - SPECIATE 4.4

Methodology (2)

- Refined EI
 - Processed point, on-road, non-road, and nonpoint sources separately
 - Data/approach selection hierarchy
 - Adopt TAP emissions (e.g., MOVES, NPRI data)
 - Estimate emissions by applying emission factors (EF)
 TAP EF × Activity (e.g., aircraft, residential wood combustion)
 - HAP augmentation (i.e., EPA 2011 NEI)
 - Speciation of CAP emissions (i.e., screening-level EI)

HAP = Hazardous air pollutant NEI = National emissions inventory

Source Category Contributions by Region

Diesel PM

Acrolein

Emissions Spatial Distribution

besite PM (kilotonnes/sqkm-yr)

Diesel PM

Acrolein

Important TAPs for Cancer Risk

Estimated average excess lifetime cancer risk for the CLFV

- Diesel PM: 224 per million people (with low certainty)
- All other TAPs studied, combined:
 98 per million people

Key Sources of Diesel PM

Total CLFV Emissions: 1451 tonnes

Key TAPs for Noncancer Hazard

- Estimated average noncancer hazard quotients for the CLFV
 - Acrolein: 15.2
 - All other TAPs studied, combined: 1.2
 - The second- and thirdhighest contributors to hazard:
 - Formaldehyde: 0.23
 - Acetaldehyde: 0.20

Conclusions

Total CLFV Emissions: 43.5 tonnes

Conclusions

Key Sources of 1,3-Butadiene

Total CLFV Emissions: 104 tonnes

For more information about atmospheric transformations of 1,3-Butadiene that form acrolein, see: Formation and Reaction of Hydroxycarbonyls from the Reaction of OH Radicals with 1,3-Butadiene and Isoprene Jillian Baker, Janet Arey, and Roger Atkinson, *Environmental Science & Technology* 2005 *39* (11), 4091-4099.

Metro Vancouver Policy Context

- MV has delegated authority for regional air quality management:
 - 2011 Integrated Greenhouse Gas & Air Quality Management Plan has goals and strategies that include TAPs, particularly diesel PM.
 - Pursuant to our previous TAP Risk Assessment and EI (2007), MV developed a Non-Road Diesel Engine Emission Regulation targeting largest (onshore) regional source of diesel PM.

Metro Vancouver Policy Implications (1)

- Diesel PM remains by far the largest source of cancer risk and risk weighted emissions
 - Continue and potentially enhance Non-Road Diesel Engine Emission Regulation.
 - Investigate measures to reduce diesel PM emissions from on-road heavy diesels.
 - IMO North American Emission Control Area will play vital role in reducing marine diesel PM emissions.

IMO = *International Maritime Organization*

Metro Vancouver Policy Implications (2)

- On-road and non-road gasoline engines remain key sources of TAPs
 - Termination of the regional AirCare I&M program for on-road LDVs is a concern.
 - New Regional Ground Level Ozone
 Strategy may motivate VOC reduction policies.
- Residential wood burning is a surprisingly large source of TAPS
 - Development of regulations on residential wood burning currently underway.

Recommendations

- Monitoring
 - Add permanent monitoring of acrolein, formaldehyde, acetaldehyde, and ethylene oxide.
 - Apply optical saturation correction of black carbon measured with aethalometers to improve characterization of wood smoke and diesel PM (following published methods).
 - Monitor PCDDs, PCDFs, and PAHs intermittently (e.g., every 3rd or 5th year) to assess local concentrations.

PCDDs = polychlorinated dibenzodioxins PCDFs = polychlorinated dibenzofurans PAHs = polycyclic aromatic hydrocarbons

Recommendations

- Exposure modeling
- Data analyses
 - Analyze spatially resolved emissions and receptor data as a simplified alternative to exposure modeling.
 - Compare results to other Canadian studies when available.
 - Characterize co-benefits of pollutant reductions.
- Policy development
 - Continue existing diesel emissions regulatory programs.
 - Investigate new programs for sources not currently regulated at the regional level: additional diesel PM sources, on-road vehicles, non-road engines, and wood burning.

Contact

Dana Sullivan dana@sonomatech.com Sonoma Technology, Inc. 707.665.9900 sonomatech.com

Francis Ries francis.ries@metrovancouver.org

Metro Vancouver 604.436.6803 metrovancouver.org

