

The 2011 National Air Toxics Assessment (NATA)

Madeleine Strum, US EPA strum.madeleine@epa.gov

Emission Inventory Conference San Diego, CA April 15, 2015

What is NATA?

- Characterization of air toxics across the nation
 - Nationwide assessment with <u>census tract</u> resolution for hazardous air pollutants (HAPs) plus diesel particulate matter (DPM)
 - Emissions, modeled ambient concentrations and estimated inhalation exposures from outdoor sources
 - Cancer and noncancer risk estimates for about 130 HAPs with health data based on chronic exposures
- Tool for EPA and State/Local/Tribal Agencies to prioritize pollutants, emissions sources and locations of interest

Who Uses NATA?

EPA

- Office of Air Quality Planning and Standards (OAQPS)
 - Report to Congress, Monitoring, Grants, Risk and Technology Rules (RTR)
- Office of Transportation and Air Quality (OTAQ)
 - National Rules
- Office of Research and Development (ORD)
 - Research agenda, field studies, community tools (Community-Focused Exposure and Risk Screening Tool)
- Office of Environmental Information (OEI)
 - Environmental Justice /Community Tool— EJ SCREEN NATA is one of several environmental layers in the soon to released EJSCREEN model developed by OEI/OEJ

States/local/Tribal

- Many State Air Toxics Programs set priorities using NATA (Oregon, New York, New Jersey)
- Identify gaps in emissions inventories, encourage inventory improvements

Academia

NATA referenced in over a hundred papers and numerous health studies

NATA History

1996 NATA

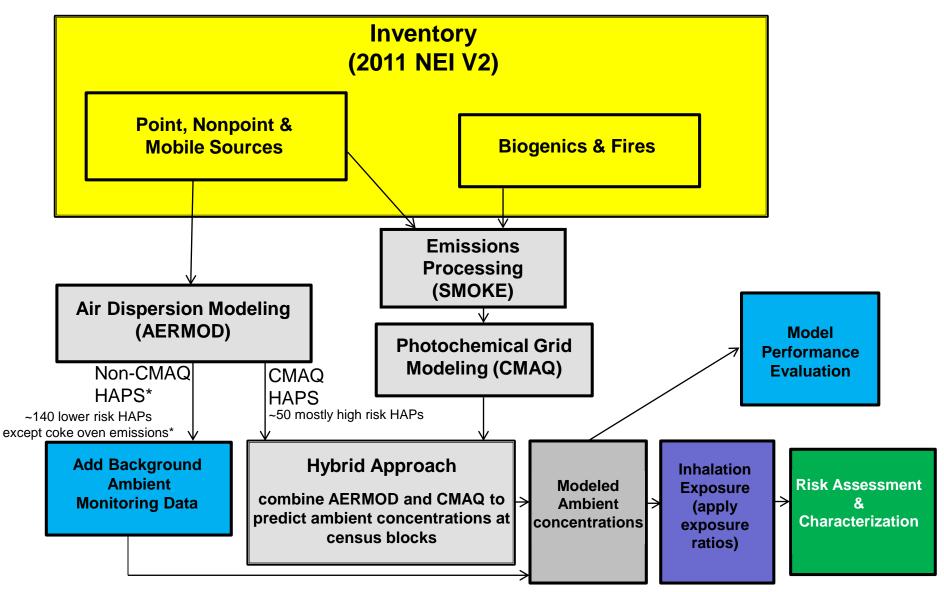
- Based on 1996 National Toxics Inventory Assessment System for Population Exposure Nationwide (ASPEN)
- Released in May 2002 (6 year lag)
- 33 HAPs + DPM
- Census tract resolution

1999 NATA

- Based on 1999 National Emissions Inventory (NEI), ASPEN and American Meteorological Society (AMS) and U.S. EPA Regulatory Model (AERMOD)
- Released in February 2006 (7 year lag)
- 177 HAPs + DPM
- Census tract resolution

2002 NATA

- Based on 2002 NEI, ASPEN and AERMOD
- Released in June 2009 (7 year lag)
- 180 HAPs + DPM
- Census tract resolution


2005 NATA

- Based on 2005 NEI, ASPEN, AERMOD, and secondary formation from the Community Multi-Scale Air Quality (CMAQ) model
- Released in March 2011 (6 year lag)
- 178 HAPs + DPM
- Secondary using CMAQ
- Census tract/block resolution

2011 NATA

- Based on 2011 NEI, AERMOD and CMAQ (hybrid approach)
- Release expected in mid 2015 (4 year lag)
- Improved temporal and spatial allocations
- Approximately 178 HAPs + DPM
- Census tract/block resolution
- Improved atmospheric chemistry
- Enhanced mapping tools
- Integrate with CMAQ (Hybrid)

2011 NATA Approach

Key Features of 2011 NATA: Emissions

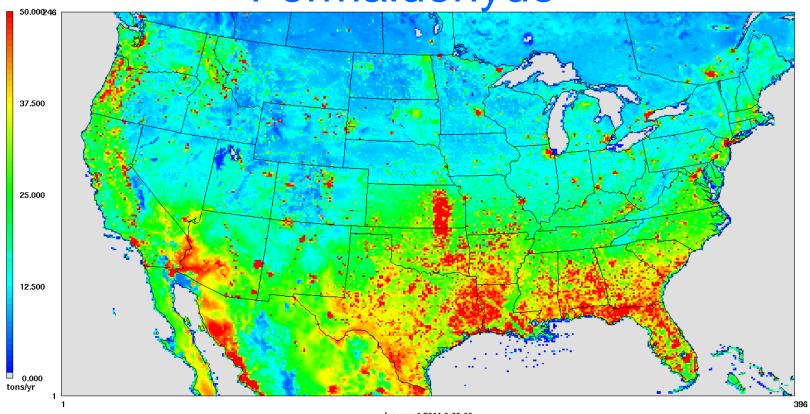
- NEI emissions from S/L/T and gap filled by EPA
- 2011 NEI Version 1 "dry run"
 - Preliminary risk estimates of point and nonpoint portions of emissions inventory were calculated and reviewed by regions/state/local agencies
- 2011 NATA uses Version 2 of the 2011 NEI
- The 2011 NEI/emissions processing includes key improvements over 2005, e.g., oil&gas, commercial marine vessel spatial resolution, improved spatial surrogates and temporal allocation approaches
- Most nonpoint/mobile inventories are at county level and allocated to tracts for modeling using surrogates
 - This leads to increased modeling uncertainty at finer scale resolutions
- Utilize MOVES2014 to develop emissions for mobile onroad

2011 NATA General Approach Spatial Allocation

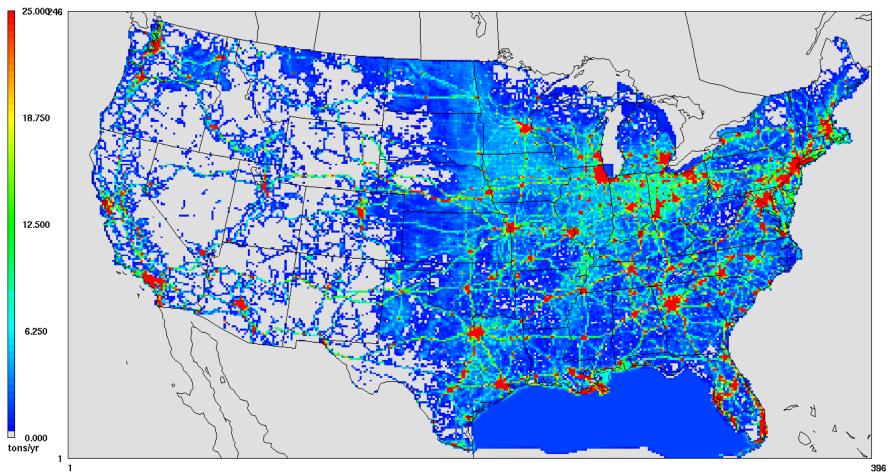
Category	Inventory Resolution	Spatial Approach for AERMOD	Spatial approach for CMAQ
Point (non Airports)	Point	Point – vertical stack and fugitive	12km by 12 grid cells, Vertical based on plume calculations
Airports	Point	Point – runways & 10mX10m areas	12km by 12 grid cells
Locomotives	Point (railyards) and County/Shape	Nonpoint - Tracts Point - Point Fugitives	12km by 12 grid cells
Commercial Marine Vessels	County/Shape	Shapes	12km by 12 grid cells
Onroad, Nonroad Equipment and other nonpoint	County	Tracts	12km by 12 grid cells
Fires (prescribed and wild)	Point	Not Modeled	12km by 12 grid cells, Vertical based on plume calculations

2011 NATA Mobile Source Modeling - Airports

- NEI Point Source Data Category
- 20,000 facilities, including heliports, sea plane bases.
- AERMOD
 - Nearly 13,000 airports modeled as line sources with emissions assigned to runways
 - Remainder are modeled as 10m² area sources centered around the NEI coordinates for smaller airports
- Key pollutants: formaldehyde, acrolein, napthalene, and 1,3-butadiene

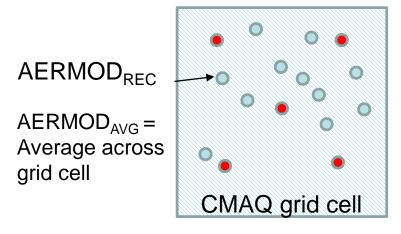

2011 NATA Mobile Source Modeling - Commercial Marine Vessels (CMV)

- Modeled in AERMOD as ~370 port shapes and ~3500 underway shapes
- CMV emissions assigned to shapes by EPA, reported to these shapes by S/L/T
- PM from diesel and residual oil vessels modeled as diesel PM
- Key pollutants: nickel, hexavalent chromium, arsenic, formaldehyde, diesel pm (noncancer)



Gridded Emissions input to CMAQ
Formaldehyde

Gridded Emissions Input to CMAQ Diesel Particulate Matter


Key Features of 2011 NATA: AQ Modeling

- Using a two-pronged approach
 - **AERMOD** is run for all air toxics pollutants to estimate pollutant concentrations at all US census tracts and blocks
 - **CMAQ** is run for the US (lower 48) at 12km grid resolution to capture chemistry and long-range transport and specific sources such as fires
- Using consistent gridded meteorological data in both CMAQ and AERMOD
- Final estimates of ambient pollutant concentrations will be based on a hybrid approach that combines data from AERMOD and CMAQ

Hybrid Concept

- Use CMAQ for mass conservation, transport, chemistry. All sources including biogenic emissions and fires. Criteria & HAPs
- Use AERMOD receptor concentrations (AERMOD_{REC}) to determine subgrid cell variability. Point, nonpoint, onroad, nonroad
- Approach allows source attribution (e.g., point, nonpoint, onroad, nonroad, secondary, fires)

- Census block centroid receptor
- Evenly placed receptor ensures low or no population grid cells have at least 5 receptors

$$C_{hybrid_REC} = AERMOD_{REC} imes rac{CMAQ_{P_NFB}}{AERMOD_{AVG}} + CMAQ_{SEC_NFB} + CMAQ_{FIRE} + CMAQ_{BIOG}$$

Adjusted AERMOD concentration from non-fire, non-primary non-fire, non-biogenic sources concentration from biogenic sources concentration from from biogenic emissions

6.6 million receptors (census) block centroids + evenly placed receptors

• 56,500 12km x12km grid cells that cover the continental US

Air Toxics in CMAQ

Gas Phase – stationary & mobile

Pollutant	Inhalation Health Impacts
BENZENE	Cancer, Noncancer
FORMALDEHDYE	Cancer, Noncancer
ACETALDEHYDE	Cancer, Noncancer
1,3 BUTADIENE	Cancer, Noncancer
NAPHTHALENE	Cancer, Noncancer
ACROLEIN	Noncancer
METHANOL	Noncancer
XYLENES (M, O, P)	Noncancer
TOLUENE	Noncancer
PAHs (9 Groups)	Cancer

Particle and multi-phase – stationary & mobile

Pollutant	Inhalation Health Impacts
NICKEL	Cancer, Noncancer
HEX CHROMIUM	Cancer, Noncancer
ARSENIC	Cancer, Noncancer
CADMIUM	Cancer, Noncancer
BERYLLIUM	Cancer, Noncancer
MANGANESE	Noncancer
LEAD	Noncancer
DIESEL PM	Noncancer
MERCURY	Noncancer

Gas Phase – stationary

<u>Gas Phase – stationary</u>	
Pollutant	Inhalation Health
Foliutant	Impacts
ACRYLONITRILE	Cancer, Noncancer
CARBON TETRACHLORIDE	Cancer, Noncancer
CHLORINE	Noncancer
CHLOROFORM	Noncancer
1,4-DICHLOROBENZENE	Cancer, Noncancer
1,3-DICHLOROPROPENE	Cancer, Noncancer
ETHYLENE DIBROMIDE	Cancer, Noncancer
ETHYLENE DICHLORIDE	Cancer, Noncancer
ETHYLENE OXIDE	Cancer, Noncancer
HEXAMETHYLENE-	
1,6-DIISOCYANATE	Noncancer
HYDROCHLORIC ACID	Noncancer
HYDRAZINE	Cancer, Noncancer
MALEIC ANHYDRIDE	Noncancer
METHYLENE CHLORIDE	Cancer, Noncancer
PROPYLENE DICHLORIDE	Noncancer
QUINOLINE	Neither
1,1,2,2-	
TETRACHLOROETHANE	Neither
2,4-TOLUENE DIISOCYANATE	Cancer, Noncancer
TRICHLOROETHYLENE	Cancer, Noncancer
TRIETHYLAMINE	Noncancer
VINYL CHLORIDE	Cancer, Noncancer

Key Features of 2011 NATA: Exposure/Risk

- Updated exposure factors using HAPEM7
 - Includes near roadway exposures
- Health benchmarks are consistent with those used in RTR rulemakings
 - Several benchmarks have been updated since 2005 NATA but none appear to be risks drivers
 - EPA does not quantify cancer risks from Diesel PM
- Results provided to the public at census tract level
- Risk apportionment information provided (i.e., information on sources and pollutants), allowing states to use NATA to focus their air toxics efforts
- Are developing new ways to present data in web-based map formats (e.g. GeoPlatform)

Source Attribution – Concentrations/Risks by These Groups

Onroad and Nonroad

Refueling

Light duty gas

Light duty diesel

Heavy duty gas

Heavy duty diesel

Nonroad construction

Nonroad pleasurecraft

Nonroad gas other

Nonroad diesel other

Nonpoint nonroad

CMV-Ports
CMV-Underway

ocomotives

Bulk gasoline terminals

Chemical manufacturing

Mining

Industrial not elsewhere classified

Nonferrous metals

Oil and gas

Refineries

Storage and transfer

Gas stations

Industrial, commercial institutional fuel combustion

Landfills

Surface coating and industrial solvent

Wastewater

Waste disposal other

Commercial Cooking

Miscellaneous nonindustrial

Residential wood combustion

Residential fuel combustion except wood

Consumer & commercial solvent

Solvent degreasing

Solvent dry cleaning

Non-industrial surface coating

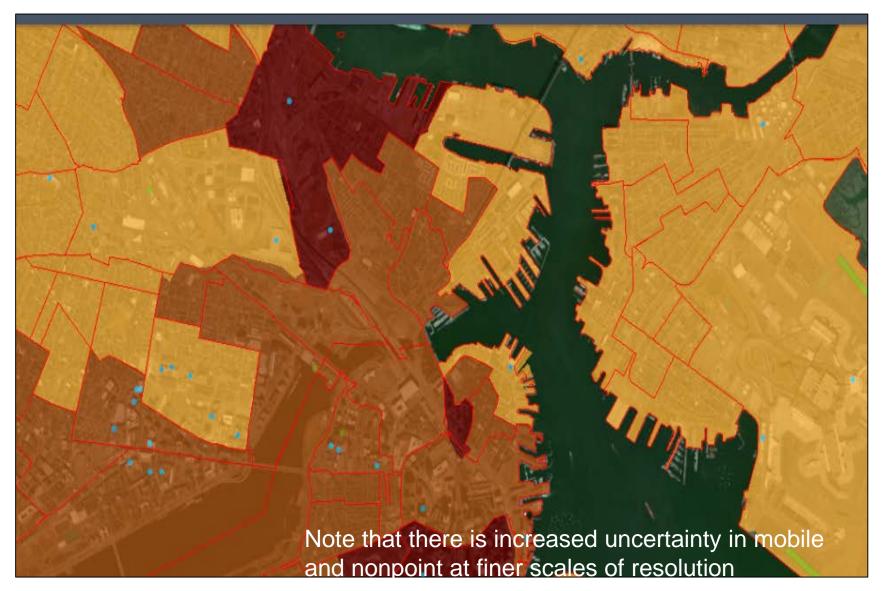
Point

Airports

Railyards

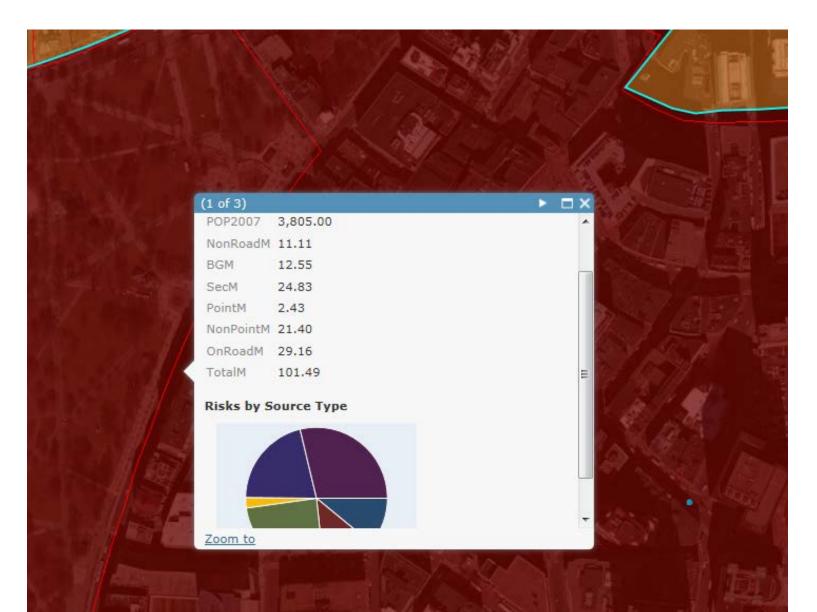
Other point

Other (CMAQ only)


Fires

Biogenics

Secondary formation



NATA Data in EPA's GeoPlatform - Overview

NATA Data in EPA's GeoPlatform - Detailed Tract Data

NATA Data in EPA's GeoPlatform – Data may be available on mobile devices

2011 Current Schedule

- AERMOD/CMAQ Modeling- complete
- Post Model Adjustments complete
- Hybrid Calculations/Exposures/Risk ongoing
- State Preview and NATA Release 2015

2011 NATA – EPA TEAM

- Madeleine Strum
- Ted Palma
- Rich Scheffe
- Bryan Hubbell
- Rich Cook
- James Thurman
- Mark Morris
- Sharon Phillips

- Alison Eyth
- Alexis Zubrow
- Rich Mason
- Laurel Driver