

Incorporation of Air Toxics and Improved Speciation for Nonroad Emissions in MOVES

Lawrence Reichle¹, Rich Cook², Darrell Sonntag², Megan Beardsley², Cay Yanca², Harvey Michaels², David Brzezinski², Ed Glover², Alison Eyth³, Laurel Driver³, Alexis Zubrow³

Presentation for the International Emissions Inventory Conference

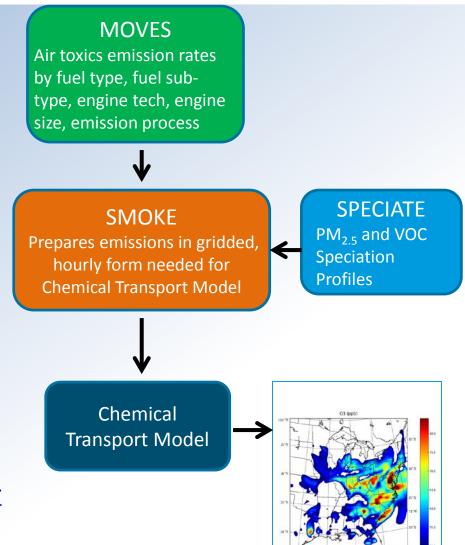
San Diego, CA

April 16, 2015

¹Former ORISE Participant hosted by the U.S. EPA Office of Transportation & Air Quality ²U.S. EPA Office of Transportation & Air Quality ³U.S. EPA Office of Air Quality Planning & Standards

Background

- <u>Motor Vehicle Emission Simulator</u>
- Current release MOVES2014, July 2014 (updated October 2014)
 - NONROAD added to the model
- Nonroad air toxics previously estimated from volatile organic compounds (VOCs) and PM in NONROAD2008 and postprocessing with the National Mobile Inventory Model (NMIM)
- Nonroad toxics will be added to MOVES2014a
 - VOCs including benzene, formaldehyde, acrolein, etc.
 - Polycyclic aromatic hydrocarbons (PAHs) (gaseous and particle, including naphthalene)
 - Metals (e.g. mercury, chromium IV)
 - Dioxin/Furans (17 congeners)
- New speciation profiles of nonroad exhaust emissions


Motivation for Updating Nonroad Air Toxics

- Current nonroad toxics modeling is outdated and data is not well characterized
 - Do 2-stroke or 4-stroke engines have different exhaust composition?
 - Does ethanol in fuel matter?
 - Do diesel emission standards (i.e. control Tiers) change the composition of engine exhaust emissions?
 - Do nonroad engines have an exhaust composition similar to onroad engines?
- Nonroad inventory is expected to become a larger part of the picture with onroad control programs and high rates of growth

Nonroad Speciation using MOVES2014

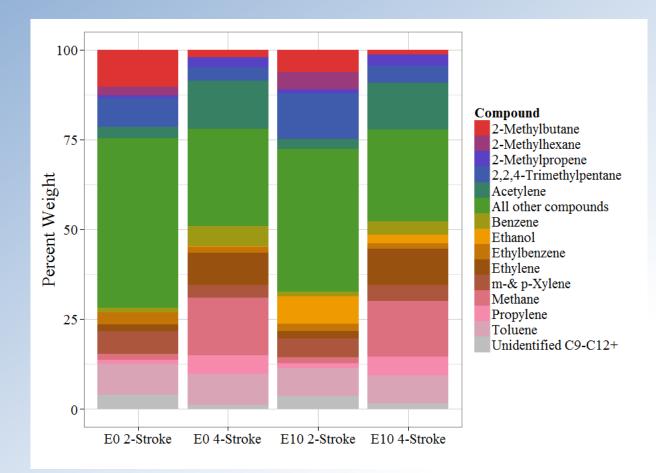
- Allows differentiation in VOC speciation profiles by:
 - Engine Technology
 - (e.g. stroke, engine Tier)
 - Engine size
 - (e.g. small and large horsepower)
 - Fuel Type
 - (gasoline, diesel, CNG, LPG)
 - Fuel Sub-Type
 - (E0, E10)
 - Emission process
 - Exhaust (composite)
 - Evaporative vapor venting, refueling, permeation
 - Crankcase
- Speciation profiles from SPECIATE 4.4
 - <u>http://www.epa.gov/ttn/chief/softwar</u>
 <u>e/speciate/index.html</u>

Modeling Air Toxics

- Two applications of the profiles
 - Toxics estimated within MOVES2014a
 - Speciation for air quality modeling occurs in SMOKE
- Gaseous VOCs
 - Toxic/VOC fractions
 - Based on VOC speciation profiles
- PAHs
 - PAH/VOC ratios for gas-phase PAHs
 - PAH/PM2.5 ratios for particle-phase PAHs
- Dioxins, furans, metals
 - Emission rates applied to fuel consumption

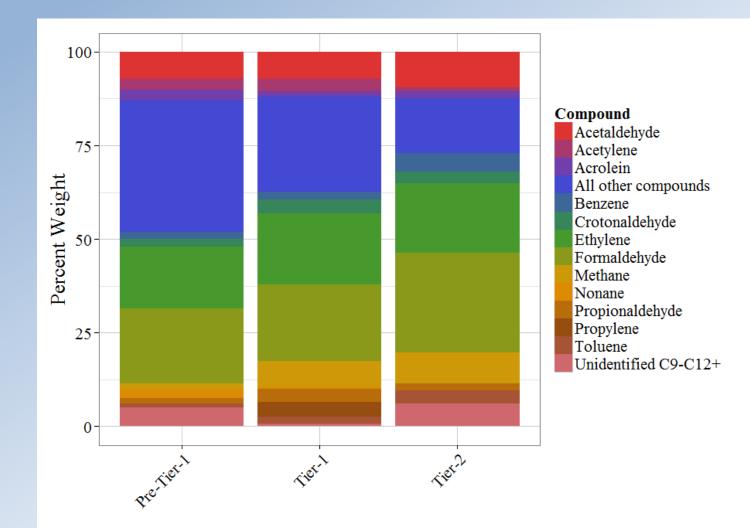
Developing TOG Speciation Profiles

- Two EPA test programs, contracted to SwRI
 - Spark-Ignition (SI) engines and equipment ¹
 - 4-stroke engines mowers, riding mowers, generators, and a blower
 - 2-stroke engines all-terrain vehicles and nonroad motor cycles
 - E0 and E10 like fuels
 - Paraffins, olefins, aromatics, alcohols, and methane speciation (GC-FID)
 - Aldehyde and ketone speciation (HPLC)
 - Compression-Ignition (CI) engines ^{2,3}
 - Construction engines and equipment, forklift truck, and an agricultural tractor
 - Similar compounds and analysis



Speciation Profiles for SPECIATE4.5

- 2-stroke EO (Spark-Ignition Exhaust Emissions from 2-stroke off-road engines -Non-oxygenated gasoline)
- 2-stroke E10 (Spark-Ignition Exhaust Emissions from 2-stroke off-road engines E10 ethanol gasoline)
- 4-stroke EO (Spark-Ignition Exhaust Emissions from 4-stroke off-road engines -Non-oxygenated gasoline)
- 4-stoke E10 (Spark-Ignition Exhaust Emissions from 4-stroke off-road engines E10 ethanol gasoline)
- Pre-Tier 1 Diesels (Diesel Exhaust Emissions from Pre-Tier 1 Off-road Engines)
- Tier 1 Diesels (Diesel Exhaust Emissions from Tier 1 Off-road Engines)
- Tier 2 Diesels (Diesel Exhaust Emissions from Tier 2 Off-road Engines)



Compounds which are the largest contributors to spark-ignition profiles

Compounds which are the largest contributors to compression-ignition profiles

Comparing VOC Reactivity and Ozone Formation Between Speciation Profiles

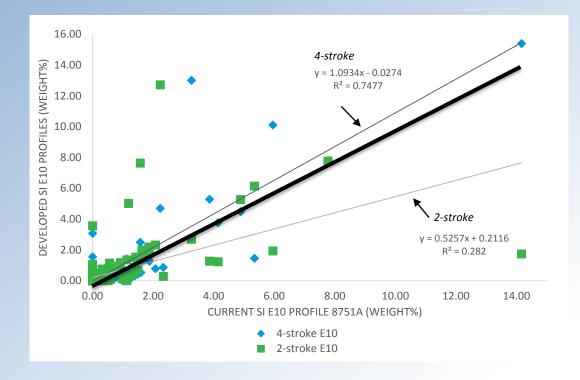
- Maximum Incremental Reactivity of VOC used to determine ozone formation potential
- Engine and fuel type changes VOC reactivity
- Ozone formation may be different between onroad and nonroad engines

		∆Reactivity w/ [EtOH] (% diff)	AReactivity Nonroad vs. Onroad Profiles
Engine	Fuel	(700111)	(%diff)
4-stroke	E0	7.6	1.2
	E10	8.2	11.6
2-stroke	E0	2.3	0.6
	E10	2.3	0.4

Reichle, L. et al. 2015⁴

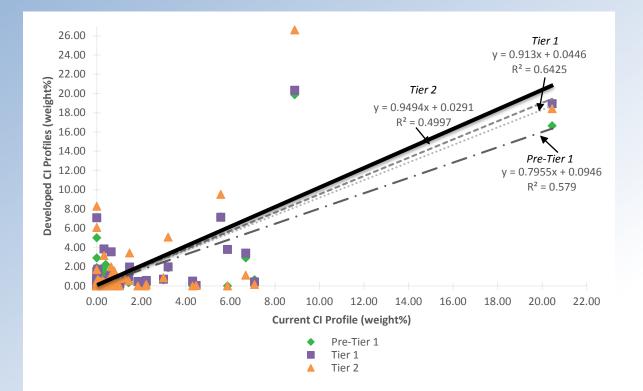
Comparing VOC Reactivity and Ozone Formation Between Speciation Profiles

• While ozone forming potential goes up with Tier, overall HC goes down between Tiers (lowering overall ozone)


		ΔReactivity	ΔReactivity
		with Tier*	Onroad:Nonroad
Engine	Fuel	(%diff)	Profiles (%diff)
Tier 1	Diesel	2.8	8.2
Tier 2	Diesel	3.3	11.3

*Compared to a pre-Tier 1 baseline

Comparison of onroad pre-Tier 2 gasoline vehicle E10 profile to nonroad SI E10 profiles



Weight percents represent the contribution of an individual species to the total of organic gases

Reichle, L. et al. 2015⁴

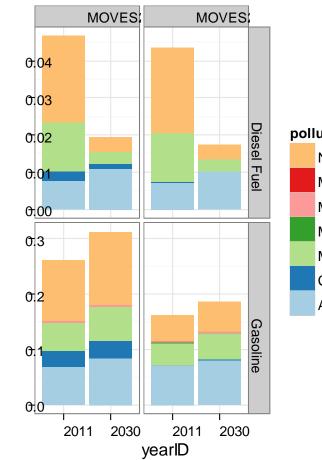
Comparison of onroad pre-2007 diesel profile 8774 to nonroad CI profiles

VOC Toxics

- Gasoline engines
 - EPA SI test program
- Diesel engine
 - Tiers 0 3, Tier 4 < 56 kW</p>
 - EPA CI test program
 - Tier 4 ≥ 56 kW
 - Advanced Collaborative Emissions Study (ACES) ⁵ of onroad diesel vehicles
- CNG engines
 - Uncontrolled MY2000 CNG Transit bus (CARB) ⁶
- LPG engines
 - 3 LDV fueled with LPG ⁷

Pollutants					
Benzene	Hexane				
Formaldehyde	Propionaldehyde				
Acetaldehyde	Styrene				
Acrolein	Toluene				
1,3-butadiene	Xylene				
Ethanol	Naphthalene				
2,24-Trimethylpentane	MTBE				
Ethyl Benzene					

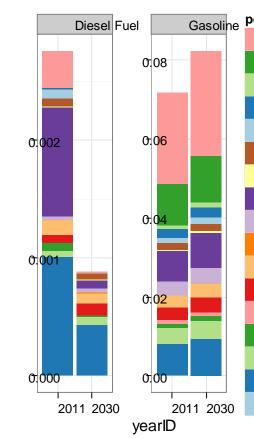
Polycyclic Aromatic Hydrocarbons


- 16 PAH compounds in model
 - Gasoline vehicles
 - Emission fractions from Kansas City Light-Duty Vehicle Emissions Study ⁸ (cars and light trucks, model years 1968-2004)
 - 99 vehicles
 - Diesel
 - Tiers 0 3, Tier 4 < 56 kW EPA CI test program
 - Tier $4 \ge 56 \text{ kW} \text{ACES}$
 - CNG and LPG
 - Based on MY2000 CNG transit bus data (CARB) ⁹

Metals

Annual emissions (tons)

- Fuel-based emission factors estimated from onroad studies
- Manganese and nickel
 - Gasoline from Kansas City Vehicle Emissions Study
 - Earlier diesels from CRC E-75
 - Advanced diesels from ACES
- Hexavalent chromium
 - Analysis of EPA Ann Arbor test samples at University of Wisconsin
- Arsenic
 - 2000/2001 tunnel study data
- Mercury
 - Data from EPA/ORD National Exposure Research Laboratory


pollutantNameNickel CompoundsMercury ParticulateMercury Elemental GaseousMercury Divalent GaseousManganese CompoundsChromium 6+Arsenic Compounds

Dioxins

Annual emissions (grams)

- Fuel-based emission factors estimated from onroad studies
- MOVES2014 estimates emissions for 17 dioxin and furan congeners.
 - Emissions estimated as toxic equivalents (TEQs)
 - MOVES2010b reported mass emissions
 - Gasoline vehicle EFs from 1998 API-sponsored tunnel study
 - Diesel EFs from EPA Ann Arbor testing

pollutantName

2,3,7,8-Tetrachlorodibenzo-p-Dioxin 1,2,3,7,8-Pentachlorodibenzo-p-Dioxin 1,2,3,4,7,8-Hexachlorodibenzo-p-Dioxin 1,2,3,6,7,8-Hexachlorodibenzo-p-Dioxin 1,2,3,7,8,9-Hexachlorodibenzo-p-Dioxin 1,2,3,4,6,7,8-Heptachlorodibenzo-p-Dioxin Octachlorodibenzo-p-dioxin 2,3,7,8-Tetrachlorodibenzofuran 1,2,3,4,6,7,8-Heptachlorodibenzofuran 1,2,3,4,7,8,9-Heptachlorodibenzofuran 1,2,3,4,7,8-Hexachlorodibenzofuran 1,2,3,6,7,8-Hexachlorodibenzofuran 1.2.3.7.8.9-Hexachlorodibenzofuran 1.2.3.7.8-Pentachlorodibenzofuran 2,3,4,6,7,8-Hexachlorodibenzofuran 2,3,4,7,8-Pentachlorodibenzofuran Octachlorodibenzofuran

Limitations and Data Needs

- Limited number of test programs on full nonroad engine exhaust speciation
- Limited sample size and low number of tests
- Lack of data on diesel engines with varying power ratings within a control tier
- Limited types of nonroad engines with speciated air toxics data
 - Need outboard and stern-drive marine engines,
 - SI engines with catalytic converters,
 - CI engines meeting Tier 3 and 4 U.S. EPA standards,
 - Engines running on liquefied petroleum gas, and
 - Engines running on compressed natural gas.

Summary

- MOVES2014a will include nonroad air toxics for the first time
- MOVES2014a will be used for the 2014 National Emissions Inventory
- Nonroad speciation data incorporated into MOVES2014
 - 2-stroke and 4-stroke SI engine and E0 and E10 fuel differences have an effect on inventories and air quality modeling
 - Using separate profiles for these engines is critical
 - New profiles for nonroad diesel engines are different from onroad profiles
 - Will improve AQ modeling of nonroad diesel engines
 - PAHs updated from CI test program
 - Onroad surrogates used for the remainder of PAHs, dioxins, and metals using data from recent test programs
- More speciated VOC and PM data from nonroad engines is needed

References

- 1- U.S. Environmental Protection Agency. 2014. Broad Emissions Testing Support for In-Use Vehicles and Engines. EPA-420-R-14-029.
- 2- M. Starr (2004) Air Toxic Emission from In-Use Nonroad Diesel Equipment. US EPA Contract 68-C-98-158, Work Assignment 3-04.
- 3- M. Starr (2004) Nonroad Duty Cycle Testing For Toxic Emissions. US EPA Contract 68-C-98-158, Work Assignment 3-05.
- 4- Lawrence J. Reichle, Rich Cook, Catherine A. Yanca & Darrell B. Sonntag (2015): Development of Organic Gas Exhaust Speciation Profiles for Nonroad Spark Ignition and Compression Ignition Engines and Equipment, Journal of the Air & Waste Management Association, DOI: 10.1080/10962247.2015.1020118
- ⁵ Khalek, I., Bougher, T., and Merritt, P. M. (2009). Phase 1 of the Advanced Collaborative Emissions Study. Prepared by Southwest Research Institute for the Coordinating Research Council and the Health Effects Institute, June 2009. Available at <u>www.crcao.org</u>.
- ⁶ Ayala, A., Gebel, M., Okamoto, R., Rieger, P. et al. (2003). "Oxidation Catalyst Effect on CNG Transit Bus Emissions," Society of Automotive Engineers, SAE Technical Paper 2003-01-1900, 2003. (http://papers.sae.org/2003-01-1900).
- ⁷ U.S. Environmental Protection Agency. SPECIATE Database epa.gov/ttn/chief/software/speciate/index.html (Date accessed March 23, 2015)
- 8- USEPA (2008). Kansas City PM Characterization Study: Final Report. EPA420-R-08-009. Office of Transportation and Air Quality. Assessment and Standards Division, . http://www.epa.gov/oms/emissionfactors-research/420r08009.pdf.
- 9- Kado, N. Y.; Okamoto, R. A.; Kuzmicky,, P. A.; Kobayashi, R.; Ayala,A.; Gebel, M. E.; Rieger, P. L.;Maddox, C.; Zafonte, L.; (2005). Emissions of Toxic Pollutants from Compressed Natural Gas and Low Sulfur Diesel-Fueled Heavy-Duty Transit Buses Tested over Multiple Driving Cycles. Environmental Science & Technology 2005 39 (19), 76387649

Four-stroke nonroad spark-ignition test equipment and engines without exhaust catalysts

Туре	Year ^a	Equipment Make/Model	Engine Make/Model	E0 Tests ^b	E10 Tests ^c
22" Mower	2006	MTD 11A-084F229	Briggs & Stratton 10T502158	1	1
Mower	2007	Honda HRC 2163HXA	Honda GXV160	1	1
Riding Mower	2007	MTD 638RL Yard Machine 13A1762F229	Techumseh OV 358 EA	1	1
Riding Mower	2007	Snapper S150X	Kawasaki FH641V-ES25-R	1	1
Generator	2004	Briggs & Stratton Elite Series 6200 30386	Briggs & Stratton 1015499427	1	1
Generator	2006	Honda EB11000	Honda GX620KI	1	1
Blower	2007	Makita BHX2500	Makita EHO25	2	2

^a California certification year

^b E0-like fuels include ARB E0, CERT2

^c E10 fuels include ARB E10-7, ARB E10-10, EPA-E10

Two-stroke nonroad spark-ignition recreational equipment engines without exhaust catalysts

Туре	Model Year	Engine Make/Model	Oil Lubrication	E0 Tests ^a	E10 Tests ^b
NRMC	2007	Honda CR125	Pre-mixed	1	2
NRMC	2002	Kawasaki KX250	Pre-mixed	1	2
ATV	2006	Yamaha Blaster	Injected	1	3
ATV	2005	Polaris Trailblazer	Injected	1	2

^a E0-like fuel is CERT1

^b E10 fuels include ARB E10-7, ARB E10-10

Nonroad compression-ignition test engines

Intended Application	Manufacturer	Year/Model	Tier	Horse-	Trans by C	sient Tests ycle
				power	FT	BHL
					Р	
motor grader	Deere	1996 6068T	0	160	4	2
forklift truck	Kubota	1999 V2203E	1	50	4	4
telescoping boom	Cummins	2001 ISB190	1	194	4	2
excavator						
excavator	Cummins	1997 M11C	1	270	4	2
construction equipment	Cummins	1999 QSL9	1	330	4	4
rubber-tired loader	Caterpillar	1999 3408	1	480	4	4
agricultural tractor	Caterpillar	2001 3196	2	420	4	2

Spark-ignition test fuel properties

Test fuel	Fuel description	Ethanol (Wt%)	RVP (psi)	T50 (deg F)	Т90 (deg F)	Aromatics (Vol%)	Olefins (Vol%)	Saturates (Vol%)	Benzene (Wt%)	Sulfur (ppm)
ARB E0	Non-oxygenated gasoline	< 0.2	7.2	228	304	31.8	1.2	67.0	0.3	<10
CERT1	Federal Certification, non- oxygenated	< 0.1	9.0	224	309	31.5	4.3	64.2	0.7ª	2.3
CERT2	Federal Certification, non- oxygenated	NP	9.2	223	318	27.9	0.4	71.7	NR	3.2
ARB E10-7a	10% ethanol, RVP 7 psi	9.7	7.0	214	315	22.1	5.2	63.6	1	<10
ARB E10-7b	10% ethanol, RVP 7 psi	9.9	6.8	213	314	24.9	5.4	60.3	0.7^{a}	2.8
ARB E10-10	10% ethanol, RVP 10 psi by adding butane to ARB E10-7	9.7	9.8	207	313	22.7	5.7	62.6	0.7ª	4.6
EPA-E10	10% ethanol, RVP 9 psi	9.4	9.0	211	319	24.7	8.6	66.7	0.7	21.9

NP = Not performed for this fuel

NR = Not reported

^a Benzene content reported as volume percentage

Compression-ignition test fuel properties

Test fuel	Type-2D	Nonroad-2D
Sulfur, ppm	390	2570
Cetane Number	48.0	46.1
T50 (deg F)	505	511
T90 (deg F)	618	613
Total Aromatics (Vol%)	32.15	31.9
Saturates (Vol%)	66.05	67.45
Specific Gravity	0.8444	0.8507
API Gravity	36.1	34.8

