Fundamentals of Radium and Uranium Removal from Drinking Water Supplies

> Dennis Clifford University of Houston

Important Radium Isotopes

Radium Isotope	Half Life	Primary Emission	Decay Series
²²⁶ Ra	1600 y	Alpha	Uranium
²²⁸ Ra	5.7 y	Beta	Thorium
²²⁴ Ra	3.64 d	Alpha	Thorium

Important Uranium Isotopes

Isotope, Emission	Natural Abundance %	Half Life yr	Specific Activity pCi/µg	Relative Activity %
²³⁸ U, α	99.276	4.51 x 10 ⁹	0.333	47.33
235 U, α/γ	0.7196	7.1 x 10 ⁸	2.144	2.21
²³⁴ U, α	0.0057	2.47 x 10 ⁵	6189.0	50.51

Natural abundance and half life from Lange's Handbook, 1973, p. 3-108

Specific activity and relative activity calculated from isotope mass, half life and natural abundance.

If present at natural abundance $1\mu g U = 0.67 pCi$

Chemical and Physical-Chemical Behavior of Isotopes

- Although possessing differing decay rates and modes of decay, the chemical and physical-chemical behavior of all isotopes is the same.
- 95% removal of ²²⁶Ra is also 95% removal of ²²⁸Ra when they are present together regardless of the ratio of their initial activities.
- 95% removal of ²³⁸U is also 95% removal of ²³⁵U when they are present together regardless of the ratio of their activities.

Radium and Uranium Speciation in Ground Water as a Function of pH

pH Range	Predominant Species	Predominant Species Charge
All	Ra^{2+}	a divalent cation
< 5	UO ₂ ²⁺	a divalent cation
5 to 6.5	UO ₂ CO ₃ ⁰	a neutral molecule
6.5 to 7.6	$UO_2(CO_3)_2^{2-}$	a divalent anion
≻7.6	$UO_2(CO_3)_3^{4-}$	a tetravalent anion

 $pCO_2 = 10^{-2} \text{ atm}, C_{T,U} = 2.38 \text{ mg/L}, 25 ^{\circ}C$

Above pH 10.5, positively charged uranyl hydroxide complexes are dominant.

Radium-Removal Methods

- Cation Exchange Softening (BAT) $2 RNa + Ra^{2+} \rightarrow R_2Ra + 2 Na+$
- Lime Softening (BAT)
- Reverse Osmosis (BAT)
- Sorption onto MnO₂ (HMO)
- Precipitation with BaSO₄ (by adding BaCl₂)
 (Excess)Ba²⁺ + (Trace)Ra + SO₄²⁻ = Ba(Ra)SO₄
- Sorption onto BaSO₄-Impregnated Media
 Media

 BaSO₄ + Ra²⁺ = Media
- Electrodialysis

POU Radium-Removal Methods

- Reverse Osmosis (BAT)
- Cation Exchange Softening $2 RNa + Ra^{2+} \leftarrow \rightarrow R_2Ra + 2 Na +$
- Sorption onto MnO₂-impregnated fibers or filters, e.g., DE or granular media.
- Sorption onto BaSO₄-Impregnated Resin or Activated Alumina

Radium removal by ionexchange softening with bypass blending of raw water.

Ion Exchange Resins for Radium Removal

Designation	Resin	Ionic	Capacity
	Description	Form	meq/mL
Strong Acid Cation exchange resin for radium removal: Amberlite IR-120+, Duolite C20, Purolite C100, Dowex HCR-S	Standard gel SAC resin, polystyrene-DVB matrix, —SO ₃ ⁻ exchange groups	Na ⁺	1.9

Magnesium, calcium and radium breakthrough curves for ion-exchange softening.

If feed water contains 10 pCi/L, the resin contains ~20 pCi/g at steady state operation. Waste brine contains ~600 pCi/L

Process flow schematic for radium removal by adsorption onto preformed MnO₂

Radium Removal as a function of MnO_2 dose. Houston GW with 120 mg/L hardness and pH = 7.5

Radium breakthrough curve for Dow Radium Selective Complexer (RSC), a BaSO4(s) loaded cation resin.

Radium breakthrough curves for plain and $BaSO_4$ -loaded activated alumina. EBCT = 3 min. Feed Ra = 8.7-11.3 pCi/L

Uranium-Removal Methods

- Anion Exchange (BAT) $4 RCl + UO_2(CO_3)_3^{4-} \leftarrow \rightarrow$ $R_4 UO_2(CO3)_3^{4-} + 4Cl^{-}$
- Lime Softening (BAT)
- Enhanced Coagulation /Filtration (BAT)
- Reverse Osmosis (BAT)
- Activated Alumina Adsorption
- Electrodialysis

POU Uranium-Removal Methods

- Anion Exchange $4 RCl + UO_2(CO_3)_3^{4-} \leftarrow \rightarrow$ $R_4 UO_2(CO3)_3^{4-} + 4Cl^{-}$
- Reverse Osmosis
- Activated Alumina Adsorption

Effect of pH and coagulant on uranium removal by coagulation with 25 mg/L dose. (Sorg 1990; Lee & Bondietti, 1983)

pH - units

Effect of pH (and lime dose) on uranium removal by lime softening. (Sorg 1990; Lee & Bondietti, 1983)

Ion-Exchange Resins for Uranium Removal

Designation	Resin	Ionic	Capacity
	Description	Form	meq/mL
Strong-Base Anion exchange resin for uranium removal Ionac A-642 Purolite A-500 Amberlite IRA 900	Type 1, macroporous, SBA resin, polystystrene-DVB matrix, —N(CH ₃) ₃ ⁺ exchange groups	Cŀ	1.0

Effect of uranium, sulfate, and chloride concentrations on BV to uranium exhaustion.

Processes for Radium Removal

Treatment Method	Removal	Comment
IX Softening (Na ⁺ , SAC)	>95%	Operate to hardness breakthrough, NaCl Regen.
Ba(Ra)SO ₄ Precipitation	50-95%	Add $BaCl_2$ to feed water before filtration.
MnO ₂ Adsorption	50-95%	Use preformed MnO_2 or MnO_2 -coated filter media.
RO	>99%	Effective but expensive

Processes for Uranium Removal

Treatment Method	Removal	Comment
Coagulation w Fe/Al	50-90%	Effective at pH near 6 and 10
Lime Softening	80-99%	Higher pH = greater removal. Mg ²⁺ helps at pH > 10.6.
Anion Exchange	>95%	Regenerate with 2-4 M NaCl after 10,000-50,000 BV
RO	>99%	Effective but expensive

Residuals

• The more effective the coagulant or adsorbent, the higher is the radioactivity in the residuals.

Ion Exchange Softening	600 pCi/L spent brine
for Radium Removal	20 pCi/g dry resin
Coag-Filt w MnO ₂ (s) for Radium Removal	21,000 pCi/g dry $MnO_2(s)$
Fe(III) Coag-Filtration for Uranium Removal	800 pCi/g Fe(OH) ₃ (s)
Anion Exchange for	80,000 pCi/L spent brine
Uranium Removal	(30,000 BV run length)