

Top-Down Estimation of Emissions from Oil and Gas Production and their Impact on Air Quality within a Regional Air Quality Model

Stu McKeen^{1,2}

R. Ahmadov^{1,2}, W. Angevine^{1,2}, K. Aikin^{1,2}, J. Brioude^{1,2}, C. Brock², S. Brown², Y. Cui^{1,2},
G.J. Frost^{1,2}, J. de Gouw^{1,2}, J. Gilman^{1,2}, A. Koss^{1,2}, B. Lerner^{1,2}, J.A. Neuman^{1,2}, J. Peischl^{1,2}, J.M. Roberts², T. Ryerson², M. Trainer², P. Veres^{1,2}, C. Warneke^{1,2},

and B. Yuan^{1,2}

¹ Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, ² Earth System Research Laboratory, National Oceanic and Atmospheric Administration

Special Thanks: Alexis Zubrow

April 16, 2015

Field Studies with 15 to 50 VOC, CH₄, and Observed CH₄ Emissions

DJB

Uintah Basin Wintertime Ozone Study (2012,2013)

Karion et al., GRL, 2013 CH₄ flux = 1450 ton/day

Summertime Ozone Near Natural Gas Emissions (SONNE) July/August, 2012

G. Petrón et al., JGR, 2014 CH₄ flux = 510 ton/day

R. Ahmadov, et al., ACP, 2015

J. Gilman, et al., EST, 2013

Southeast Nexus (SENEX) June/July 2013,southeast U.S.

Background Example: Uintah Basin 2012/2013 Study (Ahmadov et al., 2015)

Oil and Gas Production Inventories used in emission comparison and model study

 Bottom-up: NEI-2011 (version 1) Uses - V1 model platform metadata (available 11/8/13) SPECIATE 4.3 VOC speciation WRAP-III VOC and NOx emissions for 9 O&G Basins

2) Top-down: VOC/CH₄ and NOy/CH₄ ratios from Horse Pool observations during winters of 2012 and 2013
 Karion et al (2013) CH₄ fluxes determined from aircraft during winter of 2012

Examples of CH₄ regressions, VOC/NOy measurements at the Horse Pool site

Diurnal average CH₄ fluxes from both inventories

Department of Oil, Gas and Minerals (May, 2012)

Oil and gas emission totals (Uintah and Duchesne Counties)

Inventory	Source Tons/Year	NOx	VOC	CH ₄
NEI-2011	Oil & Gas	18,131	111,536	110,539
	All Other Activity	4,514	3,047	1,597
	Bonanza Power Plant	6,590	46	-
NEI-2005	Oil & Gas	-	-	-
	All Other Activity	2,585	3,525	1,231
	Bonanza Power Plant	6,712	63	-
Top-down	Oil & Gas	4,583	203,389	531,457

Total CH₄ flux for Top-down is from *Karion et al., 2013*

Total CH_4 and NMVOC emissions in NEI2011 are lower by a factor of 4.4 and 1.6 than in the top-down estimates respectively.

Conversely NOx emissions are 4. times higher in the NEI2011 inventory.

WRF/Chem Model, Uintah Basin Studies of 2012, 2013 Ahmadov et al., ACP, 2015

Horizontal resolution	12 and 4 km nested domains			
Vertical resolution	60 layers (18 within lowest 500m)			
Meteorological input	NAM analysis			
PBL and surface layer schemes	Mellor-Yamada Nakanishi and Niino			
Land Surface	Noah Land Surface Model			
Microphysics	WRF Single-Moment 5-class			
Shortwave and longwave radiation	RRTMG			
Gas-phase chemistry	RACM_ESRL			
Transport of species	advection and vertical mixing			
Advection option for chemical variables	Monotonic			

Observed and modeled ozone time series at the Horsepool site

Observed and modeled ozone time series at the Horsepool site, 2013

Daytime (9-17MST) statistics: Bottom-up case: *r*= 0.33, *med. bias*= -39.8 *ppb, med. (mod./obs.)*= 0.51 Top-down case: *r*= 0.85, *med. bias*= -5.3 *ppb, med. (mod./obs.)*= 0.93

Oil/Gas Sector Emissions used in the 5-Basin model comparisons (Model runs for summertime June/July SENEX-2013 period)

1) Base – No Oil/Gas activity emissions:

NEI-2011 (version 1) with Oil/Gas sources removed over entire U.S. Nonpoint SCCs: 231000000-2310199999 removed Point: 31000101-31088811, 40400300-40400340, 30600801-30600999

 2) Bottom-up: Base emission case with NEI-2011 in 5 Basins: Version 2 Oil/Gas sector SCC to VOC profile assignments. (gsref_voc_2011v2_platform_05jan2015_v5.txt) SPECIATE 4.4 VOC speciation for oil/gas sector.

3) Top-down: Base emission case with Top-Down data in 5 Basins: VOC and NOy correlations with CH₄ from each basin. CH4 emissions from aircraft measurements (mass-balance technique) Spatial allocation normalized according to NEI-2011, version 1 VOC.

Latitude and Longitude Limits of the 5 Basins

Uintah Basin: From Ahmadov et al. (2015) – Winter O_3 studies

Denver-Julesburg: From SONNE (2012) Erie Tower Measurements 2-variable regression fits (propane, acetylene); Gilman et al. (2013) NOx/CH4 oil/gas ratio = 0. for DJB VOC/CH4 ratios agree with Petrón et al. (2014) (for 5 reported VOC)

SENEX-2013 aircraft: Orthogonal linear regressions – no weighting VOC with significant CH_4 correlations ($r^2 > 0.5$) use calculated regressions as is.

VOC with lower CH_4 correlations use Uintah and DJB regressions, scaled to the lightweight alkane having equivalent difference between Uintah and DJB ratios (relative to CH_4).

Example of SENEX-2013 regressions: C₃H₈ versus CH₄

Haynesville, 6/10/13 flight

Top-Down VOC and NOx regression slopes – relative to Propane

Top-Down VOC and NOx regression slopes – relative to CH₄

Adopted VOC and NOx emission ratios – relative to CH₄

NOx emissions Top-Down versus NEI-2011 for all 5 Basins

Basin	Top-Down O&G	NEI-2011v2 O&G	NEI-2011 on and off road	NEI-2011 point
Uintah	12.6	53.6	8.3	24.3
Denver-Julesburg	0.0	18.4	90.5	68.2
Haynesville/West	17.5	56.1	50.6	86.1
Haynesville/East	15.5	41.1	55.7	35.0
Fayetteville/West	19.8	13.2	37.9	5.0
Fayetteville/East	23.4	15.4	16.4	11.3
Marcellus	15.7	23.5	61.7	6.4

NOx emissions (ton/day) in the 5 Basins

Top-Down Oil/Gas sector NOx emissions are much lower than NEI-2011, except for the Fayetteville Basin.

NOx emission differences are significant, relative to mobile onroad/nonroad sources, except for the Denver-Julesburg Basin.

The Top-Down Oil/Gas sector NOx emissions are upper limits, since part of the NOx/CH4 observed correlation may have onroad/nonroad contributions.

VOC emissions Top-Down versus NEI-2011 for all 5 Basins

		-		
	Top-Down	NEI-2011v2	NEI-2011 on	NEI-2011
Basin	Ó&G	O&G	and off road	point
Uintah	62.7	15.9	4.2	6.0
Denver-Julesburg	36.5	9.5	60.6	12.4
Haynesville/West	19.9	5.1	20.7	4.8
Haynesville/East	17.4	2.0	35.2	10.2
Fayetteville/West	6.5	0.3	14.8	1.2
Fayetteville/East	7.7	0.4	13.9	0.8
Marcellus	3.8	0.06	45.7	1.7

Toluene emissions (kmole/day)

Top-Down Oil/Gas sector VOC emissions are much higher than NEI-2011.

Top-Down Oil/Gas sector VOC dominate or comparable to anthropogenic VOC sources, except in the Marcellus Basin.

June 2013 average, 19:00 UTC

NEI-2011 NOy diff (ppbv)

Control = NEI-2011 version 1, Oil/Gas activity emissions removed Perturbation = Control with NEI2011 version 2 O/G activity emissions included

Control = NEI-2011 version 1, Oil/Gas activity emissions removed Perturbation = Control with NEI2011 version 2 O/G activity emissions included

Control = NEI-2011 version 1, Oil/Gas activity emissions removed Perturbation = Control with Top-Down Emissions for 5 basins

Model predicted maximum O₃ differences (June/July 2013) (coincident with O₃ monitor location)

Top-Down Emissions:

Maximum Oil/Gas Impact on $O_3 = 8.5$ ppbv, Northeast of Denver (8-hr average O_3 difference = 3.8 ppbv)

NEI-2011, version 2 Oil/Gas:

Maximum Oil/Gas Impact on $O_3 = 11.4$ ppbv, Uintah Basin (8-hr average O_3 difference = 4.9 ppbv)

Shale Oil and Natural Gas Nexus (SONGNEX-2015) March 22 – May 1, 2015

Summary

- CH₄ emissions, NOy and VOC/CH₄ ratios from oil/gas activity in 5 Basins were used to derive Top-Down emission estimates of NOx and dozens of VOC species.
- Top-Down NOx emissions from the oil/gas sector are much lower than those from NEI-2011 for 4 out of 5 of the Basins.
- Top-Down VOC emissions from the oil/gas sector are much higher than those from NEI-2011.
- Oil/gas sector VOC speciation profiles from the new version 2 platform data are reasonably consistent with Top-Down estimates for < C7 normal alkanes. Aromatic emissions are too low (factor of 4-10) relative to CH₄ or C₃H₈, in all but one Basin.
- WRF/Chem model results show reduced impact from oil/gas activity emissions using the Top-Down inventory, compared to using NEI-2011 (version 2), due to reduced NOx emissions.

Additional Considerations

The 5-Basin oil/gas inventory for CH₄, NOx, and 21 VOC is available for use on a 4-km EPA CONUS grid, zipped text files.

Results from SONGNEX-2015 will be added, extending the Top-Down inventory to ~9 more basins.

EPA guidance on spatial allocation within Basins?

NOAA/CSD actively involved in inverse modeling of DJB and SENEX-

13 sample regions.