Long-Term Trends in Mobile Source Emissions and Urban Air Quality

Brian McDonald^{1,2}, Si-Wan Kim^{1,2}, Stuart McKeen^{1,2}, Gregory Frost², Michael Trainer²

- 1. Cooperative Institute for Research in Environmental Sciences, University of Colorado-Boulder
- 2. Earth Systems Research Laboratory, Chemical Sciences Division, National Oceanic and Atmospheric Administration

Acknowledgments: Robert Harley (UC-Berkeley), Thomas Kirchstetter (UC-Berkeley), Joost de Gouw (NOAA), and Regional Tropospheric Chemistry Group (NOAA).

21st International Emission Inventory Conference April 16, 2015

Significant Improvement in U.S. Air Quality

Mean, 10th, and 90th percentiles shown across all EPA routine monitoring locations

Source: EPA 2011, "Our Nation's Air – Status and Trends"

Research Objectives

(1) Assess long-term trends in mobile source emissions

Focus on BC, CO, and NO_x

(2) Map motor vehicle emissions spatially and temporally

- Demonstrate a fuel-based approach to mapping emissions
- Account for differences between heavy-duty trucks (diesel) and passenger vehicles (gasoline)

(3) Urban air quality modeling

 Reconcile fuel-based mobile source emission inventory with observations

Fuel-Based Approach to Estimating Emissions

Emissions = Activity (kg fuel) x Emission Factor (g/kg fuel)

On-Road Emission Factors from Roadway Studies

Emissions = Activity (kg fuel) x Emission Factor (g/kg fuel)

Emission factors obtained from roadway studies

- IR remote sensing
- Tunnel studies

Other pollutants analyzed

• NO_x, VOCs, BC, POA

On-Road Emission Factors from Roadway Studies

Emissions = Activity (kg fuel) x Emission Factor (g/kg fuel)

Emission factors obtained from roadway studies

- IR remote sensing
- Tunnel studies

Other pollutants analyzed

• NO_x, VOCs, BC, POA

Large Off-Road Emission Factors (in g kg⁻¹ fuel)

PM and VOC emission factors for off-road engines are now larger than for on-road engines.

Emission factors from McDonald et al. (ES&T 2015)

Overall Decrease in BC Emissions

Similarity in Ambient BC and Emission Trends

Since 1970, mobile source emissions have dominated ambient BC in the SF Bay Area.

BC Emissions by Mobile Source Category

Diesel trucks are an important source of BC, but not the only mobile source contributor.

Large Decrease in CO Emissions

Increasing importance of off-road gasoline engines accounts for slower decrease in total anthropogenic emissions.

Similar Trends in Ambient CO

CO emissions dominated by mobile sources in LA.

Trends in Running Exhaust NO_x Emission Factors

McDonald et al. (JGR 2012)

Comparison with MOVES (EPA)

Comparison with EMFAC (ARB)

Trends in NO_x Emissions with Ambient Trends

 NO_x emissions dominated by mobile sources in LA.

Adapted from McDonald et al. (JGR 2012)

Fuel-Based Inventory of Vehicle Emissions

Taxable gasoline and diesel fuel sales by state

Census traffic count data

 Explicitly resolves ~70% of national passenger and ~80% of truck traffic

Road density

 Surrogate for remaining ~30% of passenger and ~20% of truck traffic

McDonald et al. (JGR 2014)

Heavy-duty trucks and passenger vehicles exhibit different spatial patterns of activity.

Air Quality Modeling of NO₂ (CalNex 2010)

May to July 2010, Local Time 13:30

WRF-Chem simulation of fuel-based inventory

Satellite retrieval of NO₂ columns

Similarity in spatial pattern of NO₂.

Temporal Patterns of Vehicle Activity (Urban)

Derived from ~70 weigh-in-motion stations across CA

Heavy-duty trucks and passenger vehicles exhibit different diurnal and day-of-week patterns.

McDonald et al. (JGR 2014)

Temporal Patterns of Vehicle Activity (Urban)

Defaults in MOVES treat light- and heavy-duty vehicles the same.

McDonald et al. (JGR 2014)

Good temporal agreement between fuel-based inventory and aircraft data.

Kim et al. (in prep)

Summary

Long-term trends of mobile source emissions

- Similarity in emissions and ambient trends suggests dominance of mobile sources for BC, NO_x, and CO in urban regions
- Growing importance of off-road engines to urban air pollution

High-resolution mapping of on-road emissions

- Merged fuel sales, traffic count, and weigh-in-motion data to map motor vehicle emissions spatially and temporally
- Light- and heavy-duty vehicles have different activity patterns

> Air quality modeling of fuel-based inventory

 Fuel-based inventory (input to WRF-Chem) reconciled with spatial and temporal patterns of NO₂ during CalNex 2010