

U.S. EPA Emission Inventory Conference, San Diego, CA April 12 - 16, 2015

> Richard Billings Eastern Research Group

Introduction

PROCEDURES FOR EMISSION INVENTORY PREPARATION Here fdi

VOLUME IV: MOBILE SOURCE

BY

TECHNICAL SUPPORT DIVISION
OFFICE OF AIR QUALITY PLANNING AND STANDARDS

AND

EMISSION CONTROL TECHNOLOGY DIVISION OFFICE OF MOBILE SOURCES

OFFICE OF AIR QUALITY PLANNING AND STANDARDS U. S. ENVIRONMENTAL PROTECTION AGENCY RESEARCH TRIANGLE PARK, NC 27711

JULY 1989

here f_{di} = the apportioning factor for distillate rate sold in port i,

 $N_{i < 18}$ = the number of vessels with less than 18 feet of draft using port i,

 N_{i218} = the number of vessels with 18 feet or more of draft using port i,

 $N_{s<18}$ = the number of vessels with less than 18 feet of draft using all ports within the state,

 $N_{\rm S218}$ = the number of vessels with 18 feet or more of draft using all ports within the state.

In Equation 7-6, larger vessels (those drawing 18 feet of more) are weighted by a factor of 2, which accounts for both the greater quantity of fuel used by these vessels while moving, and the use of auxiliary power generation systems by these larger vessels while at dockside. The estimated quantity of distillate fuel sold in port i is the product of the total distillate fuel sold in the state for marine use and the apportioning factor,

All of the fuel sold in port i is not used there. An assumption can be made, however, that 25 percent of the residual oil and 75 percent of the distillate oil sold in port i is used there. This is based on methods developed by the EPA. The total estimated quantities of residual and distillate oil used in port i are:

 $Q_{ri} = 0.25 \times f_{ri} \times Q_{rs}$ for residual, and (7-7a)

 $Q_{di} = 0.75 \times f_{di} \times Q_{ds}$ for distillate (7-7b)

where \mathbf{Q}_{ri} and \mathbf{Q}_{di} = the quantities of residual and distillate oil, respectively, used in port i;

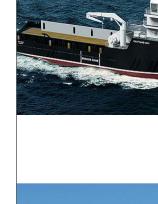
 f_{ri} and f_{di} = the apportioning factors for residual and distillate oil, computed from Equations 7-5 and 7-6, respectively, and

 Q_{rs} and Q_{ds} = the total quantities of residual and distillate oil sold in the state for marine use. from Reference 11.

To estimate emissions, an emission factor is applied to the quantities $Q_{\rm ri}$ and $Q_{\rm di}$. These emission factors are found in AP-quantities $Q_{\rm ri}$ and $Q_{\rm di}$. These emission factors are found in Table 7-2 for motor vessels and Table

Category 1/2 Census

CATEGORY 2 VESSEL CENSUS, ACTIVITY, AND
SPATIAL ALLOCATION ASSESSMENT
AND CATEGORY 1 AND CATEGORY 2 IN-PORT/AT-SEA SPLITS



John Mueller and Penny Carey Office of Transportation and Air Quality U.S. Environmental Protection Agency Ann Arbor, MI 48105

Eastern Research Group, Inc. 1600 Perimeter Park Drive Morrisville, NC 27560

February 16, 2007

C1/C2 Vessel Categories / Data Source

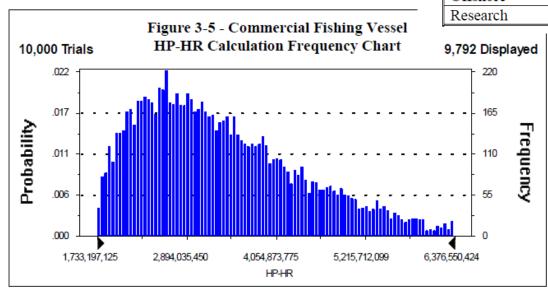
Vessel Type	Vessel Characteristics	Activity	Spatial elements
Tugboats	American Waterways Operators	American Waterways	BTS Transportation Atlas
	U.S. Coast Guard Merchant Vessels of the U.S.	Operators	U.S. ACE Waterborne Commerce.
	U.S. ACE Waterborne Transportation Lines of the U.S.	U.S. ACE Waterborne	U.S. ACE Waterborne Transportation
	Inland River Record	Commerce.	Lines of the U.S.
	IHS Registry of Ships	U.S. Coast Guard Vessel	U.S. ACE Waterway Link Commodity
	American Bureau of Shipping	Movement Database	Data
Commercial	U.S. Coast Guard Merchant Vessels of the U.S.	NOAA, National Marine	NOAA, National Marine Fisheries
Fishing	California Commercial fishing Data	Fisheries Service	Service
	Alaska CFEC permits		
	Washington Department of Fish and Wildlife.		
Coast Guard	U.S. Coast Guard Website		U.S. Coast Guard Website
Ferries	Inland River Record	American Public	BTS National Ferry Data base
	American Bureau of Shipping	Transportation Association,	
		Public Transportation Fact	
		book	
Small	IHS Register of Ships	U.S. ACE Vessel Clearance and	BTS Transportation Atlas
deepwater	American Bureau of Shipping	Entrance Data	U.S. ACE Waterway Link Commodity
cargo vessels		U.S. Coast Guard Vessel	Data
		Movement Database	
Offshore	Offshore Marine Service Association	BOEM Gulf of Mexico	BOEM Gulf of Mexico emission
support	Rig zone	emission inventory	inventory
vessels	U.S. Coast Guard Merchant Vessels of the U.S.	Workboat (publication)	EPA 2011 NEI data file
	Offshore Support Vessels of the World.		
Great Lake	IHS Register of Ships	U.S. ACE Vessel Clearance and	•
Vessels	American Bureau of Shipping	Entrance Data	U.S. ACE Waterway Link Commodity
		U.S. Coast Guard Vessel	Data
		Movement Database	
Research	IHS Register of Ships	University of Delaware	University of Delaware database of
Vessels	American Bureau of Shipping	database of Research vessels	Research vessels
		University- National	University- National Laboratory
		Laboratory System	System
		Ocean Physics Laboratory	

General Approach Data Compilation / Activity Estimation

$$Thp\text{-}hr_{ij} = VP_i \times UR_i \times EN_i \times HP_{ij} \times DO_{ij} \times 24 \times LF_{ij}$$

Where:

```
Thp-hrii
           = Total horsepower hours for vessel type i in mode j
           = Population of vessel type i
VP_i
           = Utilization rate for vessel fleet i
URi
           = Average number of engines on vessel type i
\mathrm{EN}_{\mathrm{i}}
HP_{ij}
           = Horsepower of vessel type i
           = Days of operation for vessel type i in mode j
DOii
           = Hours per day
24
           = Load factor of vessel type i propulsion engines in mode j
LFij
           = Vessel type (i.e., deep water, tow, ferries commercial fishing,
i
               Great Lakes, Coast Guard, offshore support, and research)
            = Mode of operation (i.e, underway cruise, underway idle)
```



Variance / Uncertainty

Table 1-3. Category 2 Propulsion Horsepower Hours by Vessel Type

Vessel Type	Mean Values (million hp-hrs)	Standard Deviation (million hp-hrs)
Deep Water	2,666	698
Towboat	7,920	3,020
Ferry	1,464	443
Fishing	3,413	1,143
Great Lakes	1,393	405
Coast Guard	1,441	496
Offshore	27,810	11,933
Research	654	217

Port/Underway splits

Table 1-4. Average In-Port and At-Sea Fraction by Vessel Type for Vessels Equipped with 2 Propulsion Engines

Vessel Type	In-Port	At-Sea
Towboats	17%	83%
Fishing	5%	95%
Offshore	4%	96%
Ferries	65%	35%
Deepwater	1%	99%
Research	1%	99%
Great Lakes	1%	99%
Government	59%	41%
Weighted Average	10%	90%

General Approach Spatial Allocations

Vessel Type

Example of Spatial Allocations

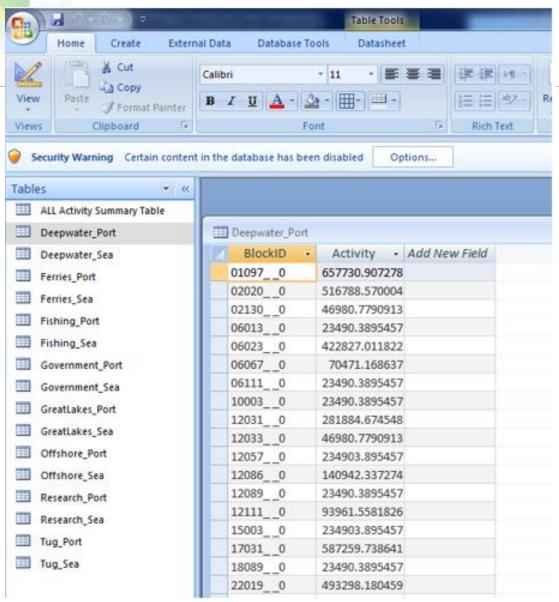

Figure B-1. Tug/Towboat In-Port Activity

Figure B-2. Tug/Towboat At-Sea Activity

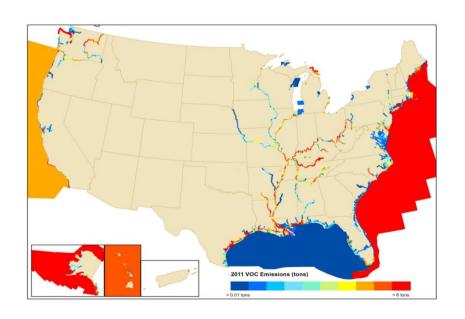
Data Generated

2011 Summary Results

The activity for port and underway operations for all C1/C2 vessel types were aggregated and used as a weight factor for each allocation block and vessel operations using the following equation:

$$SA_{iJ} = A_{iJ}/\sum A_{iJ}$$

Where:


 SA_{iJ} = Spatial activity factor for vessel type *i* operating in block *J*

A_{i,J} = Census Report activity for vessel type i in block J

i = Vessel type (e.g., tug, ferry, fishing) and operation (i.e., port, underway)

J = Specific spatial block

Voggal Tyma	% of Port	% of Sea
Vessel Type	Activity	Activity
Deepwater	0.0791%	7.8333%
Ferries	2.8246%	1.5210%
Fishing	0.5064%	9.6219%
Government	2.5239%	1.7539%
GreatLake	0.0413%	4.0934%
Support (Offshore &		
Research)	1.7766%	43.9192%
Tugs	3.9959%	19.5094%
Total	11.7479%	88.2521%

Improvements

 Disaggregation of Port of Southern Louisiana and Baton Rouge port emissions to include extended boundaries of the ports

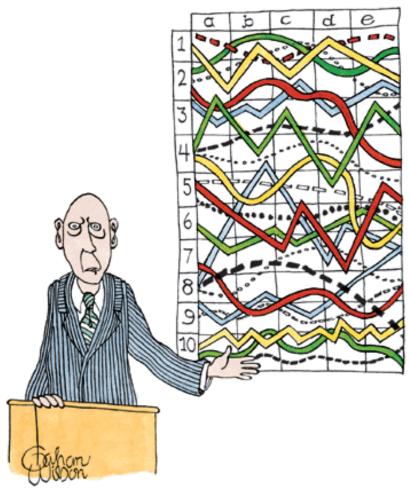
- Disaggregation of CT and MA ferry activities to all ports that reported ferry traffic in BTS' National Census of Ferry Operators
- Reviewed tug data to check high activity in the Ohio River area

Conclusions....

 Use of the C1/C2 census data allowed for a better approximation of port and underway activities

Allowed activity to be developed for different vessels categories

 Planning to update the C1/C2 census data and apply the kw-hrs to emission factors to get 2014 emissions for NEI.



Acknowledgments

- EPA staff that supported this effort,
 - Laurel Driver
 - Penny Carey
 - Brian Timin
- Staff who work on the original C1/C2 report
 - Dr. James Corbett
 - Sam Wells
 - Guiselle Aldrete
- Staff who helped with the 2011 CMV NEI
 - Roger Chang
 - Heather Perez
 - Jennifer Sellers

Questions?

15