Arsenic Removal During Iron Removal

Darren A. Lytle U.S. Environmental Protection Agency ORD, NRMRL, WSWRD, TTEB, Cincinnati, Ohio 45268

Lyile.darren@epa.gov

Arsanic Rula Wabcast October 20, 2004

Building a scientific foundation for sound environmental decisions

Iron-Based Arsenic Removal Processes

- Adsorptive properties of iron mineral toward arsenic are well known
- That knowledge is the basis for many arsenic treatment processes
 - IRON REMOVAL
 - Coagulation with iron coagulant
 - Iron-based adsorption media

Building a scientific foundation for sound environmental decisions

Arsenic Treatment - Process Selection Guide

Building a scientific foundation for sound environmental decisions

Removal of 1 mg/L of iron

achieves

removal of 50 ug/L arsenic (Optimized conditions and As[V])

Building a scientific foundation for sound environmental decisions

Iron and Arsenic (and Mn) Removal

Building a scientific foundation for sound environmental decisions Fe(II), As(III)

Iron and Arsenic (and Mn) Removal

Fe(II)/Fe(III), As(III) and/or As(V)

Aeration Cl₂, KMnO₄,

other

Building a scientific foundation for sound environmental decisions Fe(III)

Iron and Arsenic (and Mn) Removal

Oxidation, particle development, arsenic adsorption/coprec.

Building a scientific foundation for sound environmental decisions

Case Studies

Factors the impact arsenic removal during iron removal.

Building a scientific foundation for sound environmental decisions

Form of Arsenic As(III) vs As(V)

- As(III) is removed during iron removal and other iron-based processes- just not as well as As(V)
- Aeration will oxidize Fe(II) to Fe(III) but not As(III) to As(V)

Building a scientific foundation for sound environmental decisions

As (III) Oxidation

Effective!

- Free Chlorine
- Potassium Permanganate
- Ozone
- Solid Oxidizing Media (MnO₂ solids)
 Ineffective
- Chloramine
- Chlorine Dioxide
- UV Radiation
- · Oxygen

Building a scientific foundation for sound environmental decisions

Oxidant Type

- Depends on As, Fe and Mn
- Aeration
 - May need contact basin
 - Will not address Mn and As oxidation
 - Iron particles have less surface area
 - May have longer filter run lengths
- Strong oxidants (chlorine, permanganate, etc)
 - Address Mn and As oxidation
 - Shorter filter run time possible
 - More particle surface area
 - Difficult to feed
 - Probably no contactor needed

Building a scientific foundation for sound environmental decisions

Oxidation- Case Study 2- Ohio Source Water Quality

Parameter Arsenic - ug/L As III As V Calcium - mg/L Magnesium - mg/L Iron - mg/L Manganese -mg/L Sulfate - mg/L Silica - mg/L pH - units

Concentration 69 - 132 85 % 15 % 115 58 - 60 0.5 - 1.4 0.2 - 0.9 1.2 - 10.0 NA 7.9

Building a scientific foundation for sound environmental decisions

Effect of Oxidant Type and Concentration Case Study 2- Ohio- pH 8.2, 1.7 mg O₂/L

Building a scientific foundation for sound environmental decisions

Effect of Oxidant Type and Concentration Case Study 2- Ohio- pH 8.2, 1.7 mg O₂/L

Building a scientific foundation for sound environmental decisions

Oxidation

pH=8, DIC=10 mg C/L, As(V)=100 ug/L, Fe=1 mg/L Point of Application and Contact Time

Contact time, min

Building a scientific foundation for sound environmental decisions

Oxidation- Point of Application Case Study 3- Michigan

<u>Parameter</u>

Arsenic - ug/L As III As V Calcium - mg/L

Magnesium - mg/L Iron - mg/L Manganese -mg/L

Sulfate – mg/L Silica – mg/L pH – units

<u>Concentration</u>

19 - 2495 % 5 % 74 - 84 30 - 33 0.5 - 0.60.02 50 - 60 12 - 13 7.1 - 7.3

Building a scientific foundation for sound environmental decisions

Pilot Plant Rapid Mix, Flocculation, Sedimentation

Building a scientific foundation for sound environmental decisions

Pilot Plant Filters

Building a scientific foundation for sound environmental decisions

Arsenic Pilot Plant Screening Runs Arsenic Removal

(pH 7.2 with 20 mg/L DIC and 1.5 mg/L Fe)

<u>Date</u>	<u>Floc</u>	<u>Cl₂ (mg/L)</u>	<u>As (mg/L)</u> <u>As</u> ((mg/L)*final
8/12	Yes	1	100 (V)	7
8/13	Yes	-	100 (V)	13
8/14	No	-	100 (V)	30**
8/18	No	1	100 (V)	7
8/19	Yes	-	100 (V) added after floc 85	
8/20	Yes	1	100 (V) added after floc 48	
8/22	Yes	-	100 (III)	44
8/25	Yes	1	100 (III)	8

* Average filter effluent value over complete test run

** Soluble iron passed filter

Building a scientific foundation for sound environmental decisions

Arsenic Pilot Plant Runs Headloss Build-Up (pH 7.2 with 20 mg/L DIC and 1.5 mg/L Fe) NO Calcium

Building a scientific foundation for sound environmental decisions

Process Modifications Increasing As Removal

Utility with iron removal in place or will be in place but can not meet MCL:

- Increase iron concentration
- Adjust pH
- Replace media w/ As adsorption media
- Change point of oxidant addition

Building a scientific foundation for sound environmental decisions

Conclusions

- Iron removal = arsenic removal
- Arsenic speciation is important
- Oxidant type is important
- Point of oxidant application is important
 - Arsenic removal impacted
 - Plant operation impacted

Thank-you.