Effects of Temperature on Gasoline Exhaust VOC speciation

Anirban Roy¹, Darrell Sonntag², Charles Schenk², Joseph McDonald², Rich Cook², Catherine Yanca², David Hawkins², Yunsoo Choi¹

USEPA's Annual Emissions Inventory Conference April 16th, San Diego

¹ University of Houston
² USEPA, Ann Arbor

The VOC ozone problem

 VOC major contributor to ozone in urban regions, which are NO_x-saturated i.e. VOC sensitive.

Choi et al., 2012

Motor Vehicle VOC emissions

- Two urban counties New York (NYC-Manhattan) and Harris (Houston)
- Major contributor to urban VOC emissions.
- Gasoline VOCs- comprise of Mobile Source Air Toxics (MSATs)
- Gasoline dominates the split for both emission cases.

USEPA NEI, 2011

Temperature dependence of VOC emissions

Motivation for current work

- Previous studies focused on total hydrocarbons and MSATS at different temperatures.
- Little quantification of uncertainty in emission factors
- No comprehensive evaluation of speciation profiles imperative for air quality modeling.
- This work intends to build on previous work to develop comprehensive temperature dependent speciation profiles.

Key questions

- How do the speciation profiles for gasoline exhaust vary under temperature?
- What is the uncertainty in the emission factors for species classes?
- How does the MSAT content (both species and total) in VOCs vary with temperature?
- What implications do the results have for air quality modeling?

Vehicle fleet

Name	Year	Technology	Standard	Mileage	Configuration
Buick Lucerne	2010	MPFI	Tier 2/Bin 4	22000	3.9L V-6
Honda Accord	2010	MPFI	Tier 2/Bin 5	24000	2.4L I-4
Jeep Patriot	2010	MPFI	Tier 2/Bin 5	22000	2.0L I-4
Kia Forte EX	2010	MPFI	Tier 2/Bin 5	25000	2.0L I-4
Mazda 6	2010	MPFI	Tier 2/Bin 5	24000	2.5L I-4
Mitsubishi Galant	2010	MPFI	Tier 2/Bin 5	38000	2.4L I-4

Temperatures

- 0 °F
- 20°F
- 75°F

Driving conditions

- FTP (urban conditions)
- US-06 (aggressive highway)

Additional details

- Testing done at the USEPA's OTAQ premises.
- All vehicles used 10% ethanol by volume.
- 160 compounds, grouped into following species classes Aromatics
 - Alkanes
 - Cyclic Alkanes
 - Alkenes
 - Alkynes
 - Ethers
 - Aldehydes
 - Ketones
- Methane evaluated separately
- FTP 3 phases: Cold Start, Running and Hot Start.
- Cold Start evaluated separately

Bootstrap Method

- Example with FTP Cold Start at 0°F.
- Distribution of means from random sampling.
- Uncertainty shown by 95% confidence interval.

FTP Composite Emissions: Monte Carlo method

0.43*Cold Start+Running+0.57*Hot Start

Temperature dependence of mean emission factors

- Significant decrease with temperature due to increasing catalyst efficiency.
- US-06 emissions significantly lower than FTP-Composite.

Uncertainty in mean emission factors

	0 °F	20 °F	75 °F
Aromatics	265 (188-356)	51 (76-99)	12 (9-15)
Alkanes	256 (189-317)	61 (46-74)	8 (7-10)
Cyclic Alkanes	41 (25-59)	11 (7-14)	1.1 (0.8-1.3)
Alkenes	125 (100-150)	36 (26-46)	5 (4-6)
Alkynes	19 (14-24)	3.3 (2.3-4.3)	0.4 (0.2-0.6)
Alcohols	54 (39-69)	18 (10-28)	7 (2-13)
Aldehydes	9 (8-11)	7 (6-8)	3 (4-11)
Ketones	1.2 (1-1.3)	1.7 (1-2.5)	0.6 (0.5-0.7)
Methane	34 (29-39)	12 (9-14)	5 (3-7)

- Example with FTP composite emissions, units in mg mi⁻¹.
- Broadly factor of 2, uncertainty.

What influences composite emissions?

- Two scenarios:
- CASE 1 : Cold Start dominates by orders of magnitude.
- Applicable to most hydrocarbons at all temperatures.
- **CASE 2:** Hot Start and Running comparable to Cold Start.
- Applicable to all oxygenates alcohols, aldehydes and ketones.

Speciation profiles

- Significant increases seen in speciation for alcohols, aldehydes and methane.
- Alkanes show definitive decrease with temperature for both Cold Start and composite phases of the FTP cycle.
- Aromatics significantly fall with temperature for the US-06 cycle.

MSAT fraction in TOG profile

- Three distinct patterns.
- FTP, Cold Start MSAT fraction increases marginally with temperature. Speciation constant.
- FTP, Composite Substantial change in MSAT fraction and speciation.
- US06- MSAT fraction unchanged, substantial change in speciation.

Ozone forming potential: the Carter MIR scale

Ozone potential = VOC mass fraction x MIR x emission rate (1 ton/day)

- US-06: definitive changes with temperature, especially at 75°F.
- Weaker trends for FTP-Composite profiles.
- Need detailed air quality modeling representing varying NO_x conditions to accurately understand the impacts.

http://www.cert.ucr.edu/~carter/emitdb/

Conclusions

- Significant difference in speciation across temperatures and driving conditions.
- Cold Start emissions were the dominant FTP phase for most hydrocarbons, greater by at least 2 order of magnitude than Running and Hot Start emissions.
- For alcohols and carbonyls, Cold Start, Running and Hot Start emissions were comparable.
- Three distinct patterns for MSAT fractions with temperature.

Cold Start: Marginal change in MSAT fraction, speciation unchanged **Composite :** Significant change in MSAT fraction and speciation **US06:** Marginal change in MSAT fraction, significant for speciation

 Ozone forming potential decreased at 75°F for Composite and US-06 profiles.

Future directions

- Speciation results will be available at the USEPA's SPECIATE database for the next version.
- Use these profiles to inform and update MOVES model to build motor vehicle emissions inventories.

Acknowledgements

 University of Houston-College of Natural Sciences and Mathematics for funding.

