Evaluating CMAQ Simulations of Ammonia Sources and Impacts using Surface, Aircraft, and Satellite Data

C. R. Lonsdale¹, J. D. Hegarty¹, K. E. Cady-Pereira¹, <u>M. J. Alvarado¹</u>, D. K. Henze², M. Turner², S. Capps², J. B. Nowak³, J. Murphy⁴, M. Markovic^{4,5}, T. VandenBoer^{4,6} and R. Ellis⁴

> ¹Atmospheric and Environmental Research, Inc. ²Univerisity of Colorado – Boulder ³Aerodyne Research, Inc. ⁴University of Toronto ⁵NOAA ESRL and CIRES ⁶Memorial University of Newfoundland

© Atmospheric and Environmental Research, Inc., 2015. Government sponsorship acknowledged.

NH₃ is an important PM_{2.5} precursor

 $NH_3 + HNO_3 \leftarrow \rightarrow NH_4NO_3$ 2 NH₃ + H₂SO₄ $\rightarrow (NH_4)_2SO_4$

PM_{2.5}

Long-range export

Long-range import

Nitrogen Deposition

- Increase incidence of cardiovascular and respiratory diseases
- Increase number of CCN
- Harmful algal blooms
- Loss of species diversity

SO₂, NO_X decreasing but NH₃ forecast to increase

Atmospheric and Environmental Research

aer

NH₃ sources are not well known

Biomass burning

Automobiles (catalytic converters)

- Large urban centers
 - 50% of NH₃ in LA area (Nowak et al., GRL, 2012)

Bi-directional

Flux

Industry

- Fertilizer
- Coal Mining
- Power generation

AGRICULTURE

- Animal waste (temperature dependent)
- Fertilizer application

Atmospheric and Environmental Research

Monitoring NH₃ is difficult

NH₃ is highly reactive
 → highly variable in space and time

 NH₃ from an Open path Quantum Cascade Laser (QCL) on a moving platform in the San Joaquin Valley during DISCOVER-AQ 2013.

Miller et al., AMT 2013

Better emissions with TES NH₃

Atmospheric and Environmental Research

Zhu et al., 2013, JGR

 Using TES NH₃ data, along with surface and aircraft data, to investigate NH₃ emissions during 2010 CalNex Campaign.

 Using the Cross-Track Infrared Sounder (CrIS) to investigate NH₃ sources in California and Southeast US.

CalNex 2010 field campaign

Combined satellite, aircraft and ground-based measurement campaign 38 focused on the California Central Valley and Los Angeles Basin during 36 -May – June 2010. Provides rich data set for 34 studying NH₃ emissions. 32 -122 -120 -118 -116 -124

NOAA WP-3D Flight Tracks

Bakersfield site – mostly agricultural sources

Los Angeles site – urban setting: agricultural, industrial and mobile sources

WRF and CMAQ Modeling

- WRF-ARW v3.5 with 3 nest levels of 36, 12 and 4 km
 41 levels, 1st layer ~50 m
- CMAQv5.0.1 run on inner 4 km domain only.
 - cb05 photochemistry with updated toluene chemistry
 - ae6_aq aerosol module 6 with aqueous chemistry
 - No bi-directional NH₃ flux
- CMAQ boundary conditions provided by GEOS-Chem on a 2.0^o x 2.5^o grid.
- Emissions provided by California Air Resources Board (CARB)

WRF Domains

Lonsdale et al., in prep.

CARB NH₃ Emissions

Atmospheric and Environmental Research

Environmental Research

Atmospheric and Environmental Research • CMAQ seems to be biased low compared to TES for the highest NH₃ RVMRs.

aer

Surface Observations of NH₃ Diurnal Cycles

 But too high at night

Los Angeles

 Opposite pattern

Results aren't sensitive to BCs, gas-aerosol partitioning, or diurnal changes in transport directions.

Are PBL height errors responsible?

SJV: PBL errors negligible.

e

LA: Celiometer suggests PBL errors negligible, but HSRL shows negative bias consistent with daytime NH₃ overestimate.

HSRL data from Scarino et al., ACP, 2014. Celiometer data from Haman et al., JAOT, 2012.

For Bakersfield, satellite, surface, and aircraft data give a consistent picture.

Date	Time (PST)	NH _x	
		Slope	R ²
20100524	16:00-22:00	0.20 ± 0.07	0.17
20100614	11:00-18:00	0.76 ± 0.07	0.73
20100616	11:00-18:00	0.56 ± 0.04	0.55
20100618	11:00-18:00	0.52 ± 0.08	0.64
Average		0.51 ± 0.13	

- Afternoon flights also show CMAQ underestimating NH₃ by a factor of 2, consistent with surface and satellite data.
- No such underestimate seen for CO.
- Since HSRL data suggests WRF PBL is good in SJV, most likely explanation is an error in the diurnal cycle and/or daily magnitude of SJV NH₃ emissions.

LA is more complicated. CMAQ gives reasonable NH_x/CO slopes relative to aircraft data...

14 - 20100508	Dete	NH _x :CO	O Slope
12 20100514 12 20100516 • • Flight	Dale	FLIGHT	CMAQ
	20100509	0.028 ±	0.029 ±
(qdd	20100508	0.005	0.004
Ŭ × 6-	20100514	0.035 ±	0.019 ±
4		0.002	0.001
2	20100516	0.024 ±	0.024 ±
		0.001	0.001
CO (ppb)	20100510	0.036 ±	0.032 ±
• Only using data in LA urban core. I	Does not incl	udeodata fron	noctatiry
 farms downwind of LA. Model NH_x/CO slopes consistent v analysis of Nowak et al., GRL, 201 	/ith2@ ft@ pa@on 2.	0.029 ± aircraft data 0.002	0.020 ± and 0.003
	Avorado	0.030 ±	0.025 ±
	Average	0.006	0.005

Environmental Research

...but aircraft data suggest CMAQ underestimates NH_x in afternoon in LA, opposite of surface data.

Date	Time (PST)	NH _x	
		Slope	R ²
20100508	11:00-18:00	0.61 ± 0.09	0.51
20100514	10:00-16:00	0.42 ± 0.03	0.82
20100516	11:00-18:00	0.84 ± 0.07	0.73
20100519	11:00-16:00	0.51 ± 0.04	0.71
20100620	11:00-17:00	0.70 ± 0.10	0.37
Average		0.62 ± 0.16	

 Using TES NH₃ data, along with surface and aircraft data, to investigate NH₃ emissions during 2010 CalNex Campaign.

 Using the Cross-Track Infrared Sounder (CrIS) to investigate NH₃ sources in California and Southeast US.

Why switch to CrIS?

- TES is past its design lifetime, taking little new data, and has low spatial coverage
- CrIS could monitor global NH₃ with high spatial coverage for many more years (>2022)

	TES	CrIS
Satellite	AURA	NPP
Available Data	July 2004-present	October 2011-present
Resolution	0.06 cm ⁻¹	0.625 cm ⁻¹
Footprint	5x8 km rectangle	14 km diameter circle
Repeat cycle	Once every 16 days	Daily
Equatorial crossing	1:30 am and 1:30 pm	1:30 am and 1:30 pm
Noise in NH ₃ window	0.09 – 0.12 К	0.03 – 0.06 K

TES and CrIS versus surface NH₃

• QCL directly under TES transect in the San Joaquin Valley on January 28, 2013

Application of CrIS NH₃ to California

Application of CrIS NH₃ to SENEX

Summary

- Satellite, surface, and aircraft data all suggest diurnally constant NH₃ emissions in CARB CalNex inventory for California Central Valley are likely incorrect.
- For LA, surface observations suggest CARB estimates of industrial NH₃ emissions are either too high or are more constant through the day, but aircraft observations give conflicting information.
- The CrIS satellite instrument can detect NH₃ as well as TES, but has much greater spatial coverage, providing much more data for model evaluation.

Future Work

 Use CMAQ Adjoint, along with CrIS, CalNex, and SENEX data, to constrain NH₃ emissions in California and Eastern US.

Acknowledgements

- Juliet Zhu, Colorado State University
- John Walker and Robert Pinder, EPA
- Armin Wisthaler, University of Innsbruck
- Kang Sun and Mark Zondlo, Princeton
- Amy Jo Scarino, NASA Langley
- Jeremy Avise and Leo Ramirez, CARB
- Ming Luo, Jet Propulsion Laboratory, California Institute of Technology
- NOAA CPO AC4 Program Grant Numbers
 NA13OAR4310060 and NA14OAR4310129
- TES Science Team
- NASA Suomi-NPP Science Team

BACKUP SLIDES

CrIS microwindows and constraints

- Lower spectral resolution of CrIS required different microwindows.
- A priori and constraints from TES (Shephard et al., 2011)
 - Polluted, Moderately polluted, and Unpolluted profiles
- A priori selected based on signal to noise ratio (SNR) and thermal contrast

Copernicus Publication: Bahnhofsallee 1e 37081 Göttingen Contact publications@copernicus.org http://publications.copernicus.org Phone +49-551-900339-50 Fax +49-551-900339-70 Legal Body Copernicus Gesellschaft mbH Based in Göttingen Registered in HRB 131 298 County Court Göttingen Tax Office FA Göttingen USt-ldNr. DE216566440

NH₃ signal from TES and CrIS

CrIS NH₃ Retrieval: Simulated Spectra

Future Work on CrIS NH₃ Retrieval

- Validate against SENEX, FRAPPE, and other field NH₃ measurements.
- Use CMAQ adjoint to test ability of CrIS to optimize NH₃ emissions.
- Deliver CrIS NH₃ retrieval algorithm to NASA

NH₃ mixing ratios (ppbv) measured by the NOAA WP-3 aircraft during SENEX 2013. (Figure courtesy of Jesse Bash, US EPA NERL.)

CMAQ – CALNEX Aircraft Comparison

- CMAQ with CARB emission inventory generally captures the locations of the NH₃ plumes observed by aircraft.
- But absolute concentrations too low.

- Both instruments most sensitive to NH₃ between 950 and 600 mbar
- TES is more sensitive to amounts lower in the atmosphere
- 1 piece of information or less: DOFS<1.0
- Collapse all information to a single point: RVMR
 - Easier to compare with *in situ* measurements, models and other instruments