

FEDERAL SYNTHETIC MINOR NSR INDIAN COUNTRY APPLICATION New Mexico Gas Company > Redonda Compressor Station

Prepared By:

Marcelle Fiedler

NEW MEXICO GAS COMPANY P.O. Box 97500 Albuquerque NM 87199-7500

Georgette Reeves - Senior Consultant

TRINITY CONSULTANTS 9400 Holly Ave. NE Building 3, Suite 300 Albuquerque, NM 87122 (505) 266-611 Fax: (505) 266-7738

March 2013

Trinity Project 133201.0058

Environmental solutions delivered uncommonly well

1. EXECUTIVE SUMMARY	3
2. EPA REGISTRATION FOR EXISTING SOURCES (FORM SYNMIN)	5
3. ATTACHMENTS TO SYNMIN	10
3.1. Proposed Emission Limitation	10
3.2. Proposed Compliance Demonstration	10
3.2.1. Initial Compliance Test	10
3.2.2. Periodic Compliance Testing	10
3.2.3. Monitoring	11
3.2.4. Recordkeeping	11
3.2.5. Reporting	11
3.3. Control Efficiency	11
4. CURRENT ACTUAL EMISSION CALCULATIONS	12
5. TOTAL ALLOWABLE EMISSION CALCULATIONS	13
6. POTENTIAL TO EMIT CALCULATIONS	14
7. POTENTIAL TO EMIT QUANTIFICATION	15
7.1. Natural Gas-Fired Compressor engines	15
7.2. Tank Calculations	15
7.3. Greenhouse Gas (GHG) Calculations	15
8. APPLICABLE REGULATIONS	16
APPENDIX A: DETAILED EMISSION CALCULATIONS	19

New Mexico Gas Company (NMGC) owns and operates Redonda Compressor Station, located on the Laguna Pueblo in New Mexico, UTM Zone 13, 307.500 km easting, 3863.000 km northing (Latitude: 34° 53' 28.175" N, Longitude: 107° 6' 23.760" W). The facility is an existing facility with the following equipment located at the site:

- One 70 bbl used oil tank;
- One 70 bbl wastewater tank (not a source of air emissions);
- > One 143 bbl Ethylene Glycol and lube oil tank;
- > One pressurized mercaptan bullet tank (not a source of air emissions);
- One 47 bbl pipeline liquids tank;
- > One natural gas fired Waukesha L 7042 GL, maximum rated capacity of 1478 horsepower;
- > One natural gas fired Waukesha L 7044 GSI, maximum rated capacity of 1680 horsepower; and
- One natural gas fired Baldor/GM emergency generator driven by a 50.8 horsepower natural gas fired engine (to be installed).

NMGC acquired the Redonda Compressor Station in early 2009 as a part of the acquisition of all assets belonging to the PNM Resources gas utility business. The records transferred to NMGC as a part of that purchase showed that PNM resources considered the Redonda Compressor Station a minor source and reported the station as such in submissions to the EPA region 6. Based on those documents, NMGC had identified the Redonda Compressor Station as a minor source to be registered with EPA in accordance with 40 CFR 49.160. While compiling the necessary documentation to meet the March 1st, 2013 minor source registration, it was discovered that the facility (Unit 2, specifically) was operating with a catalyst that was not "enforceable as a practical matter," and therefore the facility's Potential to Emit may have been above major source thresholds. On February 27, 2013, NMGC voluntarily disclosed this information to the United States (US) Environmental Protection Agency (EPA) and is applying for a synthetic minor source permit under both the Title V (Part 71) and Prevention of Significant Deterioration (PSD) permitting programs to seek federally enforceable conditions limiting the facility's potential to emit by requiring the use of the currently existing catalyst.

The majority of the emissions at the station are from natural gas fired engines. Units 1 and 2 were constructed and/or re-constructed before July 1, 2008 and are not subject to the engine emission standards and corresponding control requirements found under New Source Performance Standards (NSPS) JJJJ. As such, NMGC is seeking a synthetic minor New Source Review (NSR) permit to establish federally enforceable limitations to lower the source's Potential to Emit (PTE). With a federally enforceable permit condition, the facility's PTE of all regulated pollutants are below the applicable major source thresholds of 100 tons per year (tpy) and 250 tpy under the Part 71 and PSD programs, respectively. As a result, Redonda Compressor Station is applying to be an existing synthetic minor source under the Federal Minor New Source Review Program in Indian Country.

This application is being submitted in accordance with 40 CFR §49.158 and includes EPA Form SYNMIN (*Synthetic Minor Application*) and the required supporting documentation. In accordance with Form SYNMIN, the following elements are addressed in this application:

- Proposed limitation and its effect on actual, allowable and potential to emit (demonstrated in the emission calculations);
- Proposed testing, monitoring, recordkeeping and reporting requirements to demonstrate compliance;
- > Description of control efficiency provided by the control devices;

New Mexico Gas Company | Redonda Compressor Station

- > Emission calculations of criteria pollutants, greenhouse gases (GHG) and hazardous air pollutants (HAPs) for actual, allowable and potential to emit; and
- > Supporting data including manufacturer's data, control device data and certifications, and other information used in emission calculations.

Table 1.1: Pre- a	and Post-Con	trol Facility											
	Status												
	Pre-	Post-											
	Control	Control											
Nox	Major	Minor											
СО	Major	Minor											
VOC	Minor	Minor											
Formaldehyde	Minor	Minor											
Total HAPs	Minor	Minor											
Greenhouse													
Gas	Minor	Minor											

This table below summarizes the facility's source status before and after the control.

2. EPA REGISTRATION FOR EXISTING SOURCES (FORM SYNMIN)

A completed EPA FORM SYNMIN for the Redonda Compressor Station is included here. Attachments required by this form are included as subsequent sections in this document.

The following items from the SYNMIN form are addressed as follows:

Item 1: The proposed limitation and a description of its effect on current actual, allowable and the potential to emit.

Addressed in: Table 1.1 and Section 3.1

Item 2: The proposed testing, monitoring, recordkeeping, and reporting requirements to be used to demonstrate compliance. Addressed in: Section 3.2

Item 3: A description of estimated efficiency of air pollution control equipment including documentation of manufacturer specifications and guarantees. Addressed in: Section 3.3 and manufacturer's guarantee included in Appendix A

Item 4: Estimates of the Post-Change Allowable Emissions that would result from compliance with the proposed limitation, including all calculations for the estimates. Addressed in: Sections 4 (Current Actual Emission Calculations), 5 (Total Allowable Emission Calculations), 6 (Potential to Emit Calculations), and Appendix A.

Item 5: Estimates of the potential emissions of Greenhouse Gas (GHG) Pollutants. Addressed in: Sections 4 (Current Actual Emission Calculations), 5 (Total Allowable Emission Calculations), 6 (Potential to Emit Calculations) 7.3, and Appendix A.

Item 6: Estimates of the potential emissions of Hazardous Air Pollutants (HAPs). Addressed in: Sections 4 (Current Actual Emission Calculations), 5 (Total Allowable Emission Calculations), 6 (Potential to Emit Calculations), and Appendix A.

OMB Control No. Pending Approval expires Pending

STATES STATES

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY FEDERAL MINOR NEW SOURCE REVIEW PROGRAM IN INDIAN COUNTRY 40 CFR 49.151

Application For Synthetic Minor Limit

(Form SYNMIN)

Use of this information request form is voluntary and not yet approved by the Office of Management and Budget. The following is a check list of the type of information that Region 8 will use to process information on your proposed project. While submittal of this form is not required, it does offer details on the information we will use to complete your requested approval and providing the information requested may help expedite the process. Use of application forms for this program is currently under Office of Management and Budget review and these information request forms will be replaced/updated after that review is completed.

Please submit information to following two entities:

Federal Minor NSR Permit Coordinator U.S. EPA, Region 8 1595 Wynkoop Street, 8P-AR Denver, CO 80202-1129 <u>R8airpermitting@epa.gov</u>

For more information, visit: http://www.epa.gov/region08/air/permitting/tmnsr.html The Tribal Environmental Contact for the specific reservation:

If you need assistance in identifying the appropriate Tribal Environmental Contact and address, please contact:

R8airpermitting@epa.gov

A. GENERAL INFORMATION

Company Name	Source Name						
Company Contact or Owner Name		Title					
Mailing Address							
Email Address							
Telephone Number	Facsimile Number						

B. ATTACHMENTS

For each criteria air pollutant, hazardous air pollutant and for all emission units and air pollutant-generating activities to be covered by a limitation, include the following:

Item 1 - The proposed limitation and a description of its effect on current actual, allowable and the potential to emit.

Item 2 - The proposed testing, monitoring, recordkeeping, and reporting requirements to be used to demonstrate and assure compliance with the proposed limitation.

Item 3 - A description of estimated efficiency of air pollution control equipment under present or anticipated operating conditions, including documentation of the manufacturer specifications and guarantees.

Item 4 - Estimates of the Post-Change Allowable Emissions that would result from compliance with the proposed limitation, including all calculations for the estimates.

Item 5 – Estimates of the potential emissions of Greenhouse Gas (GHG) pollutants.

Item 6 – Estimates of the potential emissions of Hazardous Air Pollutants (HAPs) if seeking a synthetic minor limit for HAPs.

The public reporting and recordkeeping burden for this collection of information is estimated to average 6 hours per response. Send comments on the Agency's need for this information, the accuracy of the provided burden estimates, and any suggested methods for minimizing respondent burden, including through the use of automated collection techniques to the Director, Collection Strategies Division, U.S. Environmental Protection Agency (2822T), 1200 Pennsylvania Ave., NW, Washington, D.C. 20460. Include the OMB control number in any correspondence. Do not send the completed form to this address.

Instructions

Use this form to provide general and summary information about the synthetic minor NSR source (source or plant) on Tribal lands and to indicate the emissions limitations requested. Submit this form once, in addition to FORM NEW, for each synthetic minor NSR source on Tribal lands.

1. Who Can Request Federally-Enforceable Limitations Under the Tribal NSR Authority?

The Tribal NSR Rule applies only to sources located within the exterior boundaries of an Indian reservation in the United States of America or other lands as specified in 40 CFR part 49, collectively referred to as "Indian country". So, to use the authority in the Tribal NSR Rule to create federally-enforceable limitations, a source must be located within Indian country. Land ownership status (for example, whether the land is owned by a Tribal member or whether the land is owned in fee or in trust) does not affect how the rule applies.

2. Who Might Want to Request Federally-Enforceable Limitations?

The primary reason for requesting federally-enforceable limitations is to avoid an otherwise applicable federal Clean Air Act program, rule or requirement. Many federal Clean Air Act programs use a source's "potential to emit" (PTE) air pollution to determine which rules or requirements apply. A source's PTE is based on the maximum annual operational (production, throughput, etc) rate of the source taking into consideration the capacity and configuration of the equipment and operations. Emission or operational limits can also be taken into consideration as maximums if they are federally enforceable. So, using a synthetic minor NSR permit to establish federally enforceable limitations can lower a source's PTE and possibly allow the source to avoid certain federal Clean Air Act requirements.

Three examples of federal Clean Air Act programs that use PTE to determine whether they apply are (1) the Prevention of Significant Deterioration (PSD) construction permitting program, (2) the Title V operating permit program, and (3) the Maximum Achievable Control Technology (MACT) program. For example, existing sources that are considered "major" for Title V (meaning they have the potential to emit air pollution at levels defined in that rule as "major") must apply for a Title V operating permit. If a source accepts a federally-enforceable limitation through a synthetic minor NSR permit that reduces their PTE to below the "major" threshold, and the source does not meet any of the other requirements that would trigger applicability to the part 71 program, then the source no longer needs a Title V operating permit. When planning for the construction of a new source or expansion of an existing source, a source can also accept limitations on PTE (using a synthetic minor NSR permit) that allow the source to avoid PSD. Limitations on PTE can similarly help a source to avoid new MACT standards that would otherwise apply to the source.

3. Section B. ATTACHMENTS

This section lists the information that must be attached to the application form for each requested limitation. The requested limitation(s) must be described for each affected emissions unit (or pollutant-generating activity) and pollutant and must be accompanied by the supporting information listed on the form and described below. Note that applicability of many federal Clean Air Act requirements (such as Title V, PSD and MACT) is often based on source-wide emission levels of specific pollutants. In that case, all emissions units at a source and all pollutants regulated by that given rule or regulation must be addressed by this section of the application form.

Item 1 – The requested limitation and its effect on actual emissions or potential to emit must be presented in enough detail to document how the limitation will limit the source's actual or potential emissions as a legal and practical matter and, if applicable, will allow the source to avoid an otherwise applicable requirement. The information presented must clearly explain how the limitation affects each emission unit and each air pollutant from that emission unit. Use the information provided in response to Item 4 below to explain how the limitation affects emissions before and after the limitation is in effect.

Item 2 – For each requested limitation, the application must include proposed testing, monitoring, recordkeeping and reporting that will be used to demonstrate and assure compliance with the limitation. Testing approaches should incorporate and reference appropriate EPA reference methods where applicable. Monitoring should describe the emission, control or process parameters that will be relied on and should address frequency, methods, and quality assurance.

Item 3 – The application must include a description and estimated efficiency of air pollution control equipment under present or anticipated operating conditions. For control equipment that is not proposed to be modified to meet the requested limit, simply note that fact; however, for equipment that is proposed to be modified (e.g. improved efficiency) or newly installed to meet the proposed limit, address both current and future descriptions and efficiencies. Include manufacturer specifications and guarantees for each control device.

Items 4 – Any emission estimates submitted to the Reviewing Authority must be verifiable using currently accepted engineering criteria. The following procedures are generally acceptable for estimating emissions from air pollution sources:

- (i) Source-specific emission tests;
- (ii) Mass balance calculations;

(iii) Published, verifiable emission factors that are applicable to the source. (i.e., manufacturer specifications).

- (iv) Other engineering calculations; or
- (v) Other procedures to estimate emissions specifically approved by the Reviewing Authority.

<u>Post-Change Allowable Emissions</u>: A source's allowable emissions for a pollutant is expressed in tpy and generally is calculated by multiplying the allowed hourly emissions rate in pounds per hour (lbs/hr) times allowed hours (which is the number of hours in a year) and dividing by 2,000 (which is the number of pounds in a ton).

Item 5 - New construction projects that have the potential to emit GHG emissions of at least 100,000 tpy CO_2e and 100 or 250 tpy on a mass basis, modifications at existing PSD facilities that increase GHG emissions by at least 75,000 tpy CO_2e and minor sources that increase GHG emissions by at least 100,000 tpy CO_2e and 100 or 250 tpy on a mass basis are subject to PSD permitting requirements, even

if they do not significantly increase emissions of any other pollutant. As such, any requested limits to avoid PSD must take into account greenhouse gases.

Therefore, please include in your permit application estimates of the potential emissions of the following pollutants. More information about GHG permitting and how to calculate CO_2 equivalents (CO_2e), the mass emissions of each individual GHG adjusted for its Global Warming Potential (GWP) can be found at: http://epa.gov/nsr/ghgdocs/ghgpermittingguidance.pdf

- 1. Carbon dioxide (CO₂)
- 2. Methane (CH₄) and its CO₂e
- 3. Nitrous oxide (N_2O) and its CO_2e
- 4. Hydrofluorocarbons (HFCs) and its CO₂e
- 5. Perfluorocarbons (PFCs) and its CO_2e
- 6. Sulfur hexafluoride (SF₆) and its CO₂e

3.1. PROPOSED EMISSION LIMITATION

NMGC's Redonda Compressor Station is located on the Laguna Indian Reservation located outside of Rio Puerco, New Mexico. Redonda compresses pipeline quality natural gas for pipeline transportation to end users. Operations at Redonda also include some incidental liquids/oil removal from the natural gas; some odorizing liquids are also stored on-site in storage vessels. NMGC has not included mobile sources as they are considered activities that are exempt as stated at 40 CFR §49.153(c).

Redonda's engines only operate when the compression is needed to handle specific quantities of gas within the pipeline. The requested synthetic minor permit limits have been based on 8,760 hours of operation as it is critical that NMGC can provide the maximum level of service possible to their customers; however, as demonstrated by the actual emission calculations included as part of this application, it is rare for both engines to operate simultaneously for extended periods of time.

Unit 2 at Redonda is currently equipped with a catalyst. This catalyst is designed to provide an 86% reduction in NOx and CO emissions, and a 84% control efficiency for VOCs. NMGC is seeking a synthetic minor New Source Review (NSR) permit to establish federally enforceable limitations to lower the source's Potential to Emit (PTE) by requiring the use of the catalyst on Unit 2, as well as recordkeeping and reporting requirements to demonstrate the reduction efficiency of the federally enforceable catalyst on Unit 2.

3.2. PROPOSED COMPLIANCE DEMONSTRATION

In accordance with the requirements on form SYNMIN, NMGC is proposing testing, monitoring, recordkeeping and reporting requirements to demonstrate compliance with all applicable regulations and air quality permits.

3.2.1. Initial Compliance Test

To demonstrate compliance with permitted emission limits, NMGC is proposing an initial performance test of Unit 2 within 60 days of receipt of permit. The test will be conducted in accordance with EPA Reference Method 19 for NOx and CO, contained in 40 CFR Part 60, Appendix A, and with the requirements of Subpart A, General Provisions, 60.8(f). Alternative test methods may be requested by NMGC.

NMGC is proposing to demonstrate the NOx and CO reduction efficiency across the catalyst bed within 90 days of receipt of permit and annually thereafter. NMGC will utilize a properly calibrated portable analyzer, and the test will be conducted at 90% or greater of full load. The test will also include the exhaust volume flow rate (dscf) and the NOx and CO emission rate (lb/hr).

3.2.2. Periodic Compliance Testing

NMGC proposes annual testing of NOx and CO reduction efficiency across the catalyst bed on Unit 2. NMGC will utilize a properly calibrated portable analyzer, and the test will be conducted at 90% or greater of full load. The test will also include the exhaust volume flow rate (dscf) and the NOx and CO emission rate (lb/hr).

Unit 2 is also equipped with an air fuel ratio (AFR) controlling device. NMGC will demonstrate proper operation of the AFR annually by measuring and recording exhaust oxygen or NOx concentrations with a properly calibrated portable analyzer.

3.2.3. Monitoring

NMGC has, and will continue, to monitor the hours of operation of both units.

3.2.4. Recordkeeping

NMGC will keep all records relating to compliance testing and demonstration for a minimum of two (2) years. These will be made available to the EPA upon request.

3.2.5. Reporting

NMGC proposes to notify EPA Region 6 at least thirty (30) days prior to the compliance test date and allow a representative of EPA to be present during the testing. NMGC will provide EPA Region 6 with a testing protocol at least thirty (30) days in advance of the proposed test.

3.2.6. Quality Assurance Procedures

NMGC utilizes a third-party contractor to perform required emission tests. NMGC will only contract with emission testing firms that comply with all required Quality Assurance procedures and methods specified within applicable regulations.

3.3. CONTROL EFFICIENCY

As demonstrated in emission calculations, and verified through manufacturer's guarantees included in this application, Unit 2 is controlled by a catalyst that provides a 86.3% reduction in NOx, 86.1% reduction in CO and 84% reduction in VOC. NMGC will maintain the catalyst and the engine to ensure proper ongoing efficiency. Detailed emission calculations and supporting data regarding these emissions reductions is included in Appendix A of this application.

As required in EPA's form SYNMIN, NMGC is presenting the facility's current actual emissions. These emissions are presented for informational purposes only, and are not intended to be an enforceable limit. Detailed emission calculations and supporting documentation can be found in Appendix A of this application.

Unit 2 is currently equipped with a catalyst. With this application, this facility is seeking a federally enforceable permit condition requiring the use of controls on Unit 2. As such, NMGC is presenting the post-catalyst emission rates as the actual emissions estimates. The engines may have varying operating hours; for purposes of this application, actual emissions have been calculated using the average operating hours for the units during the previous three (3) years.

Actual Total - Emission Summary

		NO _x (lb/hr)	NO _x (tpy)	CO (lb/hr)	CO (tpy)	VOC (lb/hr)	VOC (tpy)	SO2 (lb/hr)	SO2 (tpy)	CH2O (lb/hr)	CH2O (tpy)	HAPs (tpy)	CO2e (facility wide, tpy)
													2459
1	7042 GL	4.69	5.76	8.28	10.18	3.12	3.84	0.08	0.10	0.57	0.70	3.40	hours
~													261
2	7044 GSI	0.95	0.95	0.84	0.84	0.01	0.01	0.19	0.02	0.37	0.05	2.40	hours
2	Baldor Emergency	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0 hara
З	Gen	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Unrs
	Tanks	-	-	-	-	0.12	0.51	-	-	-	-	0.01	
	Total	5.64	6.71	9.12	11.01	3.25	4.36	0.27	0.13	0.94	0.75	5.81	4,138.3

Actual Emission Calculations (based on 3-year average operating hours)

Emissions are provided for informational purposes only and are not intended to be an enforceable limit.

Total allowable emissions are represented below. These total allowable emissions represent NMGC's requested permit limits (where permit limits are applicable).

Allowables Total - Emission Summary

Allowables Emission Calculations (controlled emissions, 8760 operating hours)

		NO _x (lb/hr)	NO _x (tpy)	CO (lb/hr)	CO (tpy)	VOC (lb/hr)	VOC (tpy)	SO2 (lb/hr)	SO ₂ (tpy)	CH2O (lb/hr)	CH ₂ O (tpy)	HAPs (tpy)	CO2e (facility wide, tpy)
1	7042 GL	4.69	20.53	8.28	36.27	3.12	13.69	0.08	0.36	0.57	2.50	3.40	
2	7044 GSI	7.30	31.97	6.42	28.11	0.11	0.50	0.19	0.83	0.37	1.60	2.40	
3	Baldor Emergency Gen* Tanks	0.53	0.13	2.17	0.54	0.00	0.00	0.00	0.00	0.02	0.07	2.30 0.01	
	Total	12.52	52.63	16.86	64.92	3.35	14.69	0.27	1.19	0.95	4.17	8.11	13,327.9

*Assumes 500 hours of operation per year.

A summary of the calculated facility-wide Potential to Emit for Redonda Compressor Station is provided in the table below. Detailed emission calculations including emission factors are provided in Appendix A of this synthetic minor permit application.

PTE Total - Emission Summary

Potential Emission Calculations (uncontrolled, 8760 operating hours)

		NO _x (lb/hr)	NO _x (tpy)	CO (lb/hr)	CO (tpy)	VOC (lb/hr)	VOC (tpy)	SO2 (lb/hr)	SO ₂ (tpy)	CH2O (lb/hr)	CH2O (tpy)	HAPs (tpy)	CO2e (facility wide, tpy)
1	7042 GL	4.69	20.53	8.28	36.27	3.12	13.69	0.08	0.36	0.57	2.50	3.40	
2	7044 GSI	53.27	233.33	46.17	202.22	0.71	3.11	0.19	0.83	0.37	1.60	2.40	
	Baldor Emergency												
3	Gen*	0.53	0.13	2.17	0.54	0.00	0.00	0.00	0.00	0.02	0.07	2.30	
	Tanks	-	-	-	-	0.12	0.51	-	-	-	-	0.01	
	Total	58.49	253.99	56.62	239.03	3.95	17.30	0.27	1.19	0.95	4.17	8.11	13,327.9

*Assumes 500 hours of operation per year.

This section of the NSR Synthetic Minor application presents the methodology used to quantify the potential to emit (PTE) from the Redonda Compressor Station. Complete documentation of emission factors and computation of Potential to Emit are provided in Appendix A.

7.1. NATURAL GAS-FIRED COMPRESSOR ENGINES

Potential to Emit from the natural gas-fired compressor engine is calculated based on the rated capacity of each engine, and emission factors provided by the manufacturer or obtained from AP-42. Annual emissions are calculated based on continuous operation (8,760 hours per year). A sample calculation for potential annual CO emissions for one of the engines is provided below:

Potential Annual CO Emissions - Compressor Engine

$$= Horsepower (hp)x Emission Factor \left(\frac{lb}{hp - hr}\right) x \left(\frac{ton}{2,000 \ lb}\right) x 8,760 \frac{hr}{yr}$$
$$= 1417 (hp)x 5.84E - 03 \left(\frac{lb}{hp - hr}\right) x \left(\frac{ton}{2,000 \ lb}\right) x 8,760 \frac{hr}{yr}$$

= 36.3 tpy

7.2. TANK CALCULATIONS

Tanks 4.09d was used to calculate emissions from the storage tanks located at the site. Tanks 4.09d estimates working and breathing losses from storage tanks. NMGC is presenting a worst-case scenario for all tanks; even with a worst-case scenario, emissions from the tanks are negligible. Detailed tank calculations is included in Appendix A of this application.

7.3. GREENHOUSE GAS (GHG) CALCULATIONS

The vast majority of Greenhouse Gas (GHG) emissions at this facility results from stationary combustion. GHG emissions resulting from stationary combustion were calculated based on methodologies and emission factors found in 40 CFR 98, Subpart C, Tier 1. This facility is not subject to reporting their GHG's at this time; based on actual operational data, it is not above any applicable GHG reporting threshold. As the vast majority of emissions from this site would be from stationary combustion (and as the site, not subject to GHG reporting, does not have directly measured data from storage tanks as would be required for this source category), and as the site's Potential to Emit for GHG is based on full operation of both units simultaneously (which is highly unlikely), NMGC is presenting only PTE for GHG emissions resulting from the maximum operating hours for the two compressors for the stationary combustion. A sample calculation is included below.

$CO_2 = 1 \ge 10-3$ *Fuel*HHV*EF

- = 1x10-3*221736004.664 scf*.001028 mmBtu/scf *53.02 kg CO2/mmBtu
- = 12,085.62 metric tons CO₂. * 1.1023
- = 13,322.3 tons per year CO_2

New Mexico Gas Company | Redonda Compressor Station

8. APPLICABLE REGULATIONS

FEDERAL REGU- LATIONS CITATION	Title	Applies to Entire Facility	Applies to Unit No(s).	Federally Enforce- able	Does Not Apply	JUSTIFICATION:
40 CFR Part 49	Indian Country: Air Quality Permitting and Management	Х		X		The facility operates on Laguna Indian Reservation and is therefore subject to requirements found in this regulation. However, it is not applicable in its entirety. Subpart A is the tribal authority rule and Laguna has not applied for TAS status. In addition, Subparts D-H and J-M are applicable to FIPs for regions other region 6. Finally, 40 CFR 49.121-139 is applicable to Region 10. As such, only 49 CFR 49.151 – 173 are applicable to sources on Laguna lands.
Title VI – 40 CFR 82	Protection of Stratospheric Ozone	X		X		This regulation establishes a regulation for protection of the stratospheric ozone. The regulation is applicable to facilities which service, maintain or repair class I or class II appliances or disposes of the appliances. NMGC owns appliances containing CFCs and is therefore technically subject to this requirement. NMGC uses only certified technicians for the maintenance, service, repair, and disposal of appliances and maintains the appropriate records for this requirement.
Clean Air Act (CAA) Section 112(r)	Chemical Accident Prevention	Х		х		This facility is equipped with a pressurized Mercaptan tank. While Mercaptan is a regulated substance under this regulation, the facility does not have the potential storage on-site of 10,000 pounds and therefore does not have more than a threshold quantity of a regulated substance in a process, as determined under §68.115.
40 CFR 50	NAAQS				Х	This regulation defines national ambient air quality standards. For existing sources applying for a synthetic minor source permit pursuant to 49.151(c)(1)(ii), demonstration of compliance with applicable national ambient air quality standards is not required.
NSPS 40 CFR 60, Subpart A	General Provisions		3	Х		This regulation defines general provisions for relevant standards that have been set under this part. The facility would be subject if any other NSPS applies. Unit 3 was manufactured after July 1, 2008, so NSPS JJJJ applies; as another subpart applies, Subpart A also applies.

FEDERAL REGU- LATIONS CITATION	Title	Applies to Entire Facility	Applies to Unit No(s).	Federally Enforce- able	Does Not Apply	JUSTIFICATION:
NSPS 40 CFR 60, Subpart Kb	Standards of Performance for Volatile Organic Liquid Storage Vesselsfor Which Construction, Reconstruction or Modification Commenced after July 23, 1984				Х	There is not volatile organic liquid storage capacity on-site larger than 75 cubic meters (471 bbls).
NSPS 40 CFR 60, Subpart 0000					х	All natural gas fired compressors and storage vessels were constructed prior to August 23, 2011. NSPS 0000 does not apply.
NSPS 40 CFR 60, Subpart JJJJ			3	Х		Units 1 and 2 were manufactured prior to July 1, 2008. NSPS JJJJ does not apply. Unit 3 is manufactured after July 1 2008, and will comply with applicable requirements of NSPS JJJJ.
NESHAP 40 CFR 61 Subpart A	General Provisions				Х	This part applies to the owner or operator of any stationary source for which a standard is prescribed under this part. Based on information gathered after reasonable inquiry, NMGC has determined the regulation does not apply as the facility is not subject to any 40 CFR 61 standards.
NESHAP 40 CFR 63, Subpart HH	National Emission Standards for Hazardous Air Pollutants from Oil and Natural Gas Production Facilities				Х	This facility is an area source of HAPS and does not process, upgrade of store hydrocarbon liquids. Furthermore, the facility is not equipped with any equipment covered under this regulation.
NESHAP 40 CFR 63, Subpart HHH	National Emission Standards for Hazardous Air Pollutants from Natural Gas Transmission and Storage Facilities				Х	The facility is not a major source of HAPs; this regulation does not apply.

FEDERAL REGU- LATIONS CITATION	Title	Applies to Entire Facility	Applies to Unit No(s).	Federally Enforce- able	Does Not Apply	JUSTIFICATION:
MACT 40 CFR 63, Subpart A	General Provisions	Х		Х		This regulation defines general provisions for relevant standards that have been set under this part. Subpart A in 40 CFR 63 applies because other subparts apply.
MACT 40 CFR 63, Subpart ZZZZ	National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines (RICE MACT)		1-3	X		This regulation defines national emissions standards for HAPs for stationary reciprocating Internal Combustion Engines. The facility is an area source of HAPs, and engines at the facility are subject to this regulation. Engines 1 and 2 are existing remote stationary RICE per 63.6590(a)(1)(i). Per 63.6675, these RICE are "remote stationary RICE" as defined below: (2) Stationary RICE located on a pipeline segment that meets both of the criteria in paragraphs (2)(i) and (ii) of this definition. (i) A pipeline segment with 10 or fewer buildings intended for human occupancy and no buildings with four or more stories within 220 yards (200 meters) on either side of the centerline of any continuous 1–mile (1.6 kilometers) length of pipeline. Each separate dwelling unit in a multiple dwelling unit building is counted as a separate building or a small, well-defined outside area (such as a playground, recreation area, outdoor theater, or other place of public assembly) that is occupied by 20 or more persons on at least 5 days a week for 10 weeks in any 12–month period. The days and weeks need not be consecutive. The building or area is considered occupied for a full day if it is occupied for any portion of the day. The Baldor/GM units is an emergency or black start stationary RICE with a site rating of less than or equal to 500 hp located at an area source of HAP emissions. NMGC will comply with applicable requirements under NSPS JJJJ for this unit.
40 CFR Part 64	Compliance Assurance Monitoring				Х	NMGC seeking a synthetic minor NSR permit to establish federally enforceable limitations to lower the site's PTE. NMGC is employing the use of a catalyst on Unit 2 in order to reduce emissions below major source thresholds. Once the synthetic minor permit is issued, Compliance Assurance Monitoring (CAM) will not apply.
40 CFR Part 71	Federal Operating Permit Programs				Х	NMGC is seeking a synthetic minor NSR permit to establish federally enforceable limitations to lower the site's PTE below Part 71 thresholds. This facility is an existing synthetic minor source and upon issuance of the synthetic minor permit, the facility will be a synthetic minor source under this regulation.

Potential Emission Calculations (uncontrolled, 8760 operating hours)

	NO _x (lb/hr)	NO <u>,</u> (tpy)	CO (lb/hr)	СО (tpy)	VOC (lb/hr)	VOC (tpy)	50 <u>,</u> (lb/hr)	SO₂ (tpy)	CH₂O (lb/hr)	Cil ₂ O (tpy)	HAPs (tpy)	CO₂e (facility wide, tpy}
1 7042 GL	4.69	20.53	8.28	36.27	3.12	13.69	0.08	0.36	0.57	2.50	3,40	
2 7044 GSI	53.27	233.33	46.17	202.22	0.71	3.11	0.19	0.83	0.37	1.60	2.40	
Baldor												
Emergency												
3 Gen*	0.53	0.13	2.17	0.54	0.00	0.00	0.00	0.00	0.02	0.07	2.30	
Tanks	· ·	-	•	•	0.12	0.51		-	•	•	0.01	
Total	58,49	253.99	56.62	239.03	3.95	17.30	0.27	1.19	0.95	4.17	6,11	13,327,9
*Assumes 500 h	ours of ope	ration per y	ear.									
Allowables Total - Emission Summary												

Allowables Emission Calculations (controlled emissions, 8760 operating hours)

		NO _x (lb/hr)	NO _r (tpy)	CO (lb/hr)	CO (tpy)	VOC (lb/hr)	VOC (tpy)	50₂ (lb/hr)	SO2 (tpy)	CH2O (lb/hr)	СН₂О (tру)	HAPs (tpy)	CO₂e (facility wide, tpy)
1	7042 GL	4.69	20.53	8.28	36.27	3.12	13.69	0.08	0.36	0.57	2,50	3.40	
2	7044 GSI	7.30	31.97	6,42	28.11	0.11	0.50	0.19	0.83	0.37	1.60	2.40	
	Baldor												
	Emergency												
з	Gen*	0.53	0.13	2.17	0.54	0.00	0,00	0.00	0.00	0.02	0.07	2.30	
	Tanks	-	-	-	•	0.12	0.51	-	-	•	•	0.01	
	Total	12.52	52.63	16.86	64.92	3.35	14.69	0.27	1.19	0.95	4.17	8.11	13,327.9
	*Assumes 500 hours of operation per year.												
	Actual Total - Emission Summary												

Actual Emission Calculations (based on 3-year average operating hours)

	NO _x (lb/hr)	NO _x (tpy)	CO (lb/hr)	СО (tpy)	VOC (lb/hr)	VOC (tpy)	SO2 (lb/hr)	SO2 (tpy)	CH2O {Ib/hr}	СН₂О (Фу)	HAPs (tpy)	CO2e (facility wide, tpy)
1 7042 GL	4.69	5.76	8.28	10,10	3.12	3.84	0.08	0.10	0,57	0.70	3.40	2459 hours
2 7044 GSI Baldor Emergency	0.95	0.95	0.84	0.84	0.01	0.01	0,19	0,02	0.37	0.05	2.40	261 hours
3 Gen 🕺	0.00	0.00	0.00	0.00	0.00	0,00	0.00	0.00	0.00	0.00	0.00	0 hrs
Tanks	- 1	-	•	•	0.12	0.51	-	•	•	-	0.01	
Total	5.64	6.71	9.12	11.01	3.25	4.36	0.27	0.13	0.94	0.75	5.91	4,138.3
Emissions ar	e provide	d for info	ormationa	i purpo:	ses only a	nd are n	ot intend	ed to be	an enforc	eable li	mit.	

New Mexico Gas Company --Redonda Compressor Station

Waukesha L7044 GSI

Emission Unit:	2					
Source Description:	natural g	as-fired rea	ciprocating e	engine		
Manufacturer:	Waukesh	a				
Model:	L7044 GS	51				
Туре	Naturally	-aspirated	, four-cycle,	rich-bur	n engine v	with catalytic converter
3-Year Average Operating Hours	261					
Engine specd	1200	rpm				
Sea level hp	1680	hp				
Elevation	5370	ınsl				
Derate	4.1%		3% per 10	00 ft ove	er 4000 ft	
Site hp	1611	hp				
Potential Emission Calculations						
	NOx	CO	VOC	SO2		_
	53,3	46.2	0.7	0.2	lb/hr	Hourly emission rate
	233.3	202.2	3,1	0.8	tpy	Annual emission rate (8760 hrs/yr)
Allowable Emission Calculations						
	NOx	со	voc	SO ₂		
	53.3	46.2	0.7	0.2	lb/hr	Hourly emission rate
·	86.3	86.1	84.0	0.0	%	Control efficiency
	7,3	6.4	0,1	0,2	lb/hr	Hourly emission rate post catalyst
	32.0	28.1	0.5	0.8	tpy	Annual emission rate (8760 hrs/yr)
Actual Emission Calculations						
	NOx	CO	voc	SO2		
	53,3	46.2	0.7	0.2	lb/hr	Hourly emission rate
	86.3	86.1	84.0	0.0	%	Control efficiency
	1.0	0.8	0.0	0.0	tpy	Annual emission rate (3-year average)

Sample Calculations

NOx:	Manufacturer's emission factor with AFRC = 15 g/hp-hr NOx
	Catalytic converter manufacturer's guaranteed NOx reduction = 90%
	15 g/hp-hr * (1 - 0.9) ≈ 1.5 g/hp-hr
	1.5 g/hp-hr * 1596 hp / 453.6 g/lb = 5.3 lb/hr
	5.3 lb/hr * 1.25 = 6.6 lb/hr (25% safety factor)
	6.6 lb/hr * 8760 hrs/yr / 2000 lb/ton = 28.9 tons/yr
CO:	Manufacturer's emission factor with AFRC = 13 g/hp-hr CO
	Catalytic converter manufacturer's guaranteed CO reduction = 85%
	13 g/hp-hr * (1 • 0.85) = 1.95 g/hp-hr
	1.95 g/hp-hr * 1596 hp / 453.6 g/lb = 6.9 lb/hr
	6.9 lb/hr * 1.25 ≈ 8.6 lb/hr (25% safety factor)
	8.6 lb/hr * 8760 hrs/yr / 2000 lb/ton = 37.6 tons/yr
VOC:	Manufacturer's emission factor with AFRC = 0.2 g/hp-hr VOC
	Catalytic converter manufacturer's guaranteed VOC reduction = 50%
	0.2 g/hp-hr * (1 - 0.5) = 0.1 g/hp-hr
	0.1 g/hp-hr * 1596 hp / 453.6 g/lb = 0.35 lb/hr
	0.35 lb/hr * 1.25 = 0.4 lb/hr (25% safety factor)
	0.4 lb/hr * 8760 hrs/yr / 2000 lb/ton = 1.9 tons/yr
SO2:	Fuel sulfur content: 5 gr S/100 scf
	5 gr/100 scf * 13.6e3 scf/hr / 7000 gr/lb * 64 lb SO ₂ /32 lb S = 0.19 lb/hr
	0.19 lb/hr * 8760 hrs/yr / 2000 lb/ton = 0.85 tons/yr

GE Energy Gas Engines

Gas Engine Exhaust Emission Levels

Waukesha's approach to exhaust emission levels is to offer various stages of emission control technology. This approach ollows the customer to select the exhoust emission level required for a particular instollation.

The following tables indicate emission levels that are volid for new engines for the duration of the standard warronty period ond ore ottainable by on engine in goad operating condition running on commercial quality natural gos of 900 BTU/ft³ (35.38 MJ/m³ [25, V[0; 101.325]]) SLHV, Woukesha Knock Index* of 91 or higher, 93% methone content by volume, and at ISO standard conditions. Emissions are based on standard engine timing at 91 WKI* with an absolute humidity of 42 grains/lb. Refer to engine specific WKI Power & Timing curves for standard timing. Unless otherwise noted, these emission levels can be ochieved across the continuous duty speed range and from 75% to 110% of the ISO Standard Power (continuous duty) roting. <u>Contact the local Waukesha* gas engine representative or Waukesha's Sales Engineering Department for</u> <u>emission values which can be obtained on a case-by-case basis for specific ratings, fuels, and site conditions.</u>

The tobulated emission levels for GL models are achieved at the standard engine settings. Trade aff adjustments can be made to reduce emissions or fuel consumption, but not both. <u>Contact the local Waukesha gas engine representative or</u> <u>Waukesha's Sales Engineering Department for more Information</u>.

As on aid in evoluoting emission requirements, tables of <u>opproximate</u> unit conversion factors for exhaust emission levels are included.

Both G and GSI engines that are monually adjusted have the potential to achieve the same emission values as engines equipped with an air/fuel ratio control device. The exhaust emissions, however, must be manitored and the engine adjusted to compensate for changes in ambient conditions and the heating value of the fuel gas. Porticularly with cotalytic exhaust after treatment, a Waukesha CEC AFM (Custom Engine Control* Air/Fuel Module) is recommended to achieve optimum emissions control.

Waukesho emission control systems are designed for long life and consistent engine emission levels as listed in the following tables. It must be recognized, however, that engine condition and the quality of engine maintenance hove a direct bearing on emission control. <u>A control system cannot compensate for engine or maintenance deficiencies</u>.

Some acceptable instruments for site engine adjustment of emissions are portable analyzers with two percent (2%) accurocy, for example:

- Horiba Mexa-201GE CO NDIR Analyzer with 0.5% and 2% ronges
- Teledyne Model 320A Oxygen Anolyzer
- ECOM Model AC+
- Testo 335 Combustion Analyzer with overall outo-dilution**.

** Contact lacal Waukesha Distributor for specific port and ordering information. Reference Waukesha Form M398D, latest revision.

NOTE: Provision to lower the exhaust sample dew point to 40° F or less is required.

Gas Engine Exhaust And Emission Levels DATE: 3/11

Page 1 of 12

8483-6

GE Energy Gas Engines

Environmental

1

APG* Series Emission Levels

MODEL	NOx	ENGINE SPEED		GRAM	S/BHP-HR	% OBSERVED DRY	EXCESS AIR		
	SETTING	(RPM)	NO ₄ III	со	NMHC ¹⁴⁾	тнс	02*	RATIO	
	T.A. Luft NOx	1500	1.0	1.4	0,2	2.4	9.6	17	
16/160170 / 4001000	1/2 T.A. Luft NOx	. 1500	0,5	1,6	0,2	2.4	9.2	1,7	
TOATOOLOA MA21000	1.0 gm NOx	1000	1.0	1.5	0,4	2,2	9.5	1,68	
	0,6 gm NOx	1800	0.6	1.60	0,42	2.59	9.5	1,68	

* % Oz is given as a reference number only. APG Series engines are set to a specific NOx value.

<u>NOTE</u>: The above table indicates emission levels that are valid for new engines for the duration of the standard warranty period and ore attainable by an engine in good operating condition running an commercial quality natural gas of 900 BTU/ft³ (35.38 MJ/m³ (25, V(0; 101.325))) SLHV, Waukesha Knack Index of 94 or higher, 93% methane content by volume, and at ISO standard conditions. Emissions are based on standard engine timing at 94 WKI with an absolute humidity of 42 grains/lb. Unless otherwise noted these emission levels can be achieved from 75% to 100% of the ISO Standard Power (continuous duty) rating. <u>Contact the local Waukesha gas engine representative or</u> <u>Waukesha's Sales Engineering Department for emission values which can be obtained on a case-by-case basis for specific ratings, fuels, and site conditions.</u>

MODEL	NOx	ENGINE SPEED	LT TEMP		GRAM	S/BHP-HR	% OBSERVED DRY	EXCESS	
HOULE	SETTING	(RPM)	° C (° F)	NO _X ^[1]	co ·	ИМНС №	тнс	% OBSERVED DRY O ₂ * 11.8 11.5 11.7 11.7 12.7 12.0 11.6 11.7	RATIO
		1200	45 (113)	1.0	1.7	0.9	5.9	11.8	2,1
	T.A. Luft NOx		55 (131)	1,0	1.6	0,8	5,1	11,5	2.0
		1500	45 (113)	1.0	1.7	0,9	5.8	11.7	2.1
12V220GL / APG2000 &			55 (131)	1.0	1.8	0.9	6,1	11,2	2.0
18V220GL/APG3000		1000	45 (113)	0,5	3.0	1,5	9.9	12.7	2,2
	1/27 100 100	1200	55 (131)	0,5	3:1	1.6	10.4	12,0	2,1
	172 FA LUIT NOX	1500	45 (113)	0,5	2,4	1.2	8.2	11.6	2,0
			55 (131)	0.5	2,5	1.2	8.1	11,7	2.1

* % O_2 is given as a reference number only. APG Series engines are set to a specific NO_x value.

NOTE: The above table indicates emission levels that ore valid far new engines far the duratian of the standard warranty period and are attainable by an engine in good aperating condition running on commercial quality natural gas of 900 BTU/ft³ {35.38 MJ/m³ [25, V[0; 101.325]]} SLHV, Waukesha Knock Index of 91 or higher, 93% methane content by volume, and at ISO standard conditions. Emissions are based on standard engine timing at 91 WKI with an obsolute humidity of 42 grains/lb. These emission levels can be achieved at 100% of the ISO Standard Power (continuous duty) rating. <u>Contact the local Waukesha gas engine representative or Waukesha's Sales Engineering Department for emission values which can be obtained on a case-by-case basis for specific ratings, fuels, and site conditions.</u>

Gas Engine Exhaust And Emission Levels	EN: 152808 DATE: 3/11	Ref.
--	--------------------------	----------

Page 2 of 12

GE Energy Gas Engines

Environmental

VHP* Emission Levels

MODEL	CARBURETOR		GRAMS/BHP-HR				% OBSERVEO DRY			EXCESS AIR
	SELLING	NOx ^{III}	со	NMHC (1)	тнс	со	02	<i>P</i> UT N ¹¹⁴	201 Nº7	RATIO
	Lowest Manifold (Best Power)	8.5	32.0	0,35	2,3	1,15	0,30	15.5:1	9,3:1	0.97
	Equal NOx & CO	12,0	12.0	0,35	2.3	0.45	0,30	15.9;1	9.6:1	0,99
G, GSI	Cotolytic Conv. (nput {3-way³}	. 13.0	9,0	0.30	2.0	0,38	0,30	15.95:1	9,6:1	0.99
	Stondard (Best Economy)	22.0	1.5	0.25	1.5	0.02	1,35	17.0:1	10.2;1	1.06
F3514GSI	Equal NOx & CO	14.0	14.0	0.25	1.1	0.45	0.30	15,85;1	9.5:1	0.99
F3524GSI	Cololylle Conv,	(150)	13.0	0,20	1,0	0.38	0.30	15.95:1	9.6:1	0.99
	Equal Nox & CO	13.5	13,5	0,45	3.0	0.45	0,30	15.85:1	9.5:1	0.99
L5794GSI	Catolytic Conv. Input (3-way³)	14.5	11.0	0.45	2.9	0.38	0.30	15.95:1	9.6:1	0.99
GL	Stondord	1,5	2.65	1,0	5.5	0.06	9,8	28.0:1	16,8;1	1.74
L5774LT#	Standard	2,6	2.0	· 0,60	4.0	0.04	8.0	24.7:1	14.8;1	1.54
L5794LT#	Standard	2.6	2,0	0.60	4.0	0,04	7.8	24.5;1	14.7:1	1.52

#L5774LT and L5794LT emission levels are based on 1000 – 1200 rpm operation. For information at all other speeds contact Waukesha's Sales Engineering Department.

MODEL	CARBURETOR SETTING		grams/BHP-Hr				% OBSERVED DRY		VOLUME	EXCESS
		NO ₂ ^{III}	со	NMHC **	тнс	со	٥٤	AFR 🕅	AFR 18	RATIO
AT25GL	28:1	1.0	2,25	1.0	8,0	0.06	9.8	28.0:1	16.8:1	1.74
AT27GL	28:1	1.5	1,7	0,50	5,0	0,06	9.8	28.0:1	16.8:1	1,74
275GL/AT27GL	32:1	2.0	1.5	0.40	3.5	0.05	11.2	. 32.0:1	19,2;1	2.00
275GL+	34:1	0.5	1,6	0.6	6,0	0.04	11.6	34:1	20,4	2,12

275GL+/275GL/AT-GL Emission Levels *

[‡] These AT-GL emission levels are based on 900 - 1000 rpm operation. For information at all other speeds contact Waukesha's Sales Engineering Deportment.

<u>NOTE:</u> The above toble indicates emission levels that are valid for new engines for the duration of the standard warronty period and ore attainable by an engine in good operating condition running on commercial quality natural gos of 900 BTU/ft³ (35.38 MJ/m³ (25, V(0; 101.325))) SLHV, Waukesha Knock Index of 91 or higher, 93% methone content by volume, and at ISO standard conditions. Emissions are based on standard engine timing at 91 WKI with on absolute humidity of 42 grains/lb. Refer to engine specific WKI Power & Timing curves for standard timing. Unless otherwise noted these emission levels can be achieved ocross the continuous duty speed range and from 75% to 110% of the ISO Standard Power (continuous duty) rating. <u>Contact the local Waukesha gas engine representative or Waukesha's Sales Engineering Department for emission values which can be obtained on a case-by-case basis for specific ratings, fuels, and site conditions.</u>

Page 3 of 12

Ref.

S

8483-6

Emissions Control Equipment Specification Summary Ref: New Mexico (Duplicate of KC-930)

APPLICATION

of Engines: Engine Operation: Fuel: Lubrication Oil:

Engine Data: Engine: Power Output: Design Exhaust Temp: Design Exhaust Flow Rate:

Catalytic Converter System Data: Catalytic Converter Model: Inlet / Outlet Pipe Size; Overall Length: Diameter: Converter Pressure Loss:

Sound Attenuation

Catalyst Section Internals: Shell / Body Construction: Inlet / Outlet Connection: Instrumentation Ports: Oxygen Sensor Ports: Temperature Limits: Gas Compression Natural gas 0.6 wt% sulfated ash or less

Waukesha 7044GSI 1680HP@ 1200rpm (1152F)- 20 deg F 111740 #hr

MCS-363618-14-C1

14" 36" 109" 3.69" WC (Housing + Catalyst: Flange to Flange) 25-30 dBA

304 SS CS

Standard 125# ANSI Bolt Pattern Flanges -- FF 1 inlet / 1 outlet (1/2" NPT) 1 outlet (18 mm) 750-1250° F (inlet)/1,350° F (outlet)

EMISSION REQUIREMENTS

Exhaust Gases	Engine Outputs (gm/bhp-hr)	Reduction (%)	Converter Output (gm/bhp-hr)	Area Limits (gm/bhp-hr)
NOr	12.8	88.3	(1.50)	1.50
co	14.0	86.1	(1.95)	1.95
NMHC	0.25	84.0	0.04	0.04
VOC (nmnehc)	0.15	0.0	0.15	1.00
Formaldehyde	0.05	0.0	0.05	0.05
Oxygen	< 0.3 %			

MIRATECH guarantees the performance of the converter, as stated above, if the engine output emissions and exhaust temperature at the catalyst are maintained as stated above using an air fuel ratio controller and the engine is operated in accordance with the manufacturer's recommended guidelines for maintenance and operations.

By: David Douthitt

Date: 10-16-02

10-14-2002

2

New Mexico Gas Company -Redonda Compressor Station

Waukesha 7042 GL

Emission Unit:	1		
Source Description:	Natural ga	as-fired re	ciprocating engine
Manufacturer:	Waukesha	a	
Model:	7042 GL		
Туре	Turbocha	rged, four	-cycle, lean burn engine
3-Year Average Operating Hours	2458.33	hrs	
Engine speed	1200	rpm	
Sea level hp	1478	hp	
Elevation	5370	msl	
Derate	4.1%		3% per 1000 ft over 4000 ft
Site hp	1417	hp	

Potential Emission Calculations

	NOx	CO	VOC	SO ₂ (1)		_
-	1.5	2.65	1		g/hp-hr	Mfg. data
	4.7	8.3	3.1	0.082	lb/hr	Hourly emission rate
	20.5	36.3	13.7	0.4	tpy	

(1) SO₂ emissions based on fuel sulfur content of 5 gr S/100 scf, or 0.00714 lb S/Mscf.
 0.00714 lb S/Mscf* fuel consumption (Mscf/hr) * 64 lb SO₂/32 lb S = lb/hr SO₂
 CO2 CH4 N2O

Greenhouse Gases

Allowable Emission Calculations equal PTE (no controls)

Actual Emission Calculations (three year average)

	NOx	CO	VOC	SO ₂ (1)	
	4.7	8.3	3.12	0.082	lb/hr
	5.8	10.2	3.8	0.1	tpy
Engine BMEP					
Displacement	7040	cubic in.	Mfg data		
Engine BMEP	133	psia	(hp * 792	2,000) / (r	pm * displaceme
Fuel Consumption					
Heat Rate	7292	Btu/hp-hi	Mfg data		
Fuel heat value	900	Btu/scf	Nominal;	natural ga	as
Heat Input	10.3	MMBtu/h	Heat Rate	e * hp	
Fuel consumption	11.5	Mscf/hr	Heat inpu	it / fuel he	eat value
Annual fuel usage	101.5	MMcf/yr	8760 hrs	/yr operat	tion
Exhaust Parameters					
Exhaust temp	725.0	deg F		Mfg Data	ı
-	14760.0	lb/hr		Mfg Data	ı
Exhaust flow	7773.6	acfm		·	
Stack diameter	1.17	ſt		Design	
Exhaust velocity	120.5	ft/sec		Exhaust	flow / stack area
Stack height	45	ft		Design	

STANDARD EQUIPMENT

OIL COOLER - With thermostatic temporature controller and pressure regulating valve. Not mounted

OIL PAN - Base type, 50 gation (340 litres) capacity including filter and cooler.

PAINT - Okield orange primer.

PISTONS - Aluminum with floating pin. 10.5:1 compression ratio. Oil cooled.

SHIPPING SKID -- Steel for domestic truck or rail.

TURBOCHARGERS - Two, dry type. Wastegate controlled.

VIBRATION DAMPER - Two, viscous type, Guard included with remote mounted radiator or no rediator. WATER CIRCULATING SYSTEM

Auxiliary Circuit - For oil cooler and intercooler, Pump is belt driven from crankshaft pulicy. Includes thermostatic valve.

Engine Jacket - Belt driven water circulating pump, duster type thermostatic temperature regulating valve, full flow bypass type. Flange connections and mating flanges for (2) 4" (102 mm) intels and (1) 5" (127 mm) outlet.

WAUKESHA CUSTOM ENGINE CONTROL, DETONATION SENSING MODULE (DSM) - Includes individual cylinder sensors, Detonation Sensing Module, filter and cables. Device is compatible with Waukesha CEC Ignition Module only. Sensors are mounted and wired to engine junction box. Detonation Sensing Module and filter are shipped loose. One 11 ft, cable provided for connection between engine punction box and filter. One each 15 fl. cable provided for connection between filter and DSM and Ignition Module and DSM. One 20 ft, cable provided for power and ground for filter. All cables are shipped loose. Packager is responsible for power supply and ground to the DSM 24V DC power is required. The DSM meets Canadian Standards Association Class 1, Group D, Division 2, hazardous location requirements.

Nodel, PHICH, Tubechaged and bioscelul, Teorize Calindar, Laun Cambradion, Four-Cacia

SFECIEICATIONS

tr: E

POWER RATINGS: L7042GL VHP SERIES GAS ENGINES

				Wb Outpu	put)		
Modél	I.C. Water Inlet Temp. °F. (°C): (Tcra)	C.R.	800 rpm	900 rpm 5	1000 rpm	. 11 00 rpm	, 1 200 rpm ;
High Speed Turbo	85° (29°)	10.5:1	928 (692)	1160 (865)	1289 (961)	1418 (1057)	1547 (1154)
High Speed Turbo1	130° (54°)	10.5:1	886 (661)	1108 (826)	1232 (919)	1355 (1010)	1478 1102)
Low Speed Turbo ²	85° (29°)	10.5:1	1031 (769)	1160 (865)	1289 (961)		이 가지 않는 것이 있다. 1993년 1993년 1993년 1993년 1993년 19
Low Speed Turbo ²	130° (54°)	10.5:1	985 (735)	1108 (826)	1232 (919)		

'High speed turbocharger match - 1001-1200 rpm

4 ow speed lurbocharger match ~ 700 1000 rpm

Rating Standard; All models: Ratings are based on ISO 3046/1-1995 with mechanical efficiency of 90% and auxiliary water temperature Tora (clause 10.1) as specified above limited to ± 10° F (± 5° C). Ratings are also valid for SAE J1349, BS5514, DIN6271 and AP178-11C standard atmospheric conditions.

ISO Standard Power/Continuous Power Rating: The highest load and speed which can be applied 24 hours a day, seven days a week, 365 days per year except for normal maintenance. It is permissible to operate the engine at up to 10% overload, or maximum load indicated by the intermittent rating, whichever is lower, for two hours in each 24 hour period.

All natural gas engine ratings are based on a fuel of 900 Blufh³ (35.3 MJ/nm³) SLHV value, with a 91 Waukesha Knock Index⁴

For conditions or fuels other than standard, the Waukesha Engine Sales Engineering Department.

PERFORMANCE: L7042GL VHP SERIES GAS ENGINES

English Open	130° FICW	85° F ICW	Métrical	54° CICW	29° C ICW
RPM	1200 1000	1200 1000	RPM	1200 1000	1200 1000
Power (Bhp)	1478 1232	1547 1289	Power (kWb)	1103 919	1154 962
BSFC (Blu/bhp-hr)	7155 6815	7180 6840	BSFC (kJ/kW-hr)	10124 9643	10160 9679
NOx (grams/bhp+hr)	0.90 0.90	0.70 0.70	122 NOx (g/nm³)	0.37 0.37	0.29 0.29
CO (grams/bhp-hr)	2.75 2.65	2.65 2.55	පිනි CO (g/nm³)	1,14 1.10	1.10 1.05
NMHC (grams/bhphr)	1.00 1.00	1.10 1.10	NMHC (g/nm ³)	0.41 0.41	0.45 0.45
BSFC (Btu/bhp-hr)	6910 6615	6935 6640	BSFC (kJ/kW-hr)	9778 9360	9813 9396
NOx (grams/bhp-hr)	1.50 1.60	1.30 1.40	<u>මුල්ලි</u> NOx (g/nm³)	0.62 0.66	0.54 0.58
CO (grams/bhp-hr)	3.00 2.75	2.90 2.65	ੇ 2 🖉 CO (g/nm³)	1.24 1.14	1.20 1.10
NMHC (grams/bhphr)	0.70 1.00	0.80 1.10	NMHC (g/nm³)	0.29 0.41	0.33 0.45

NOTES

- 1) Performance ratings are based on ISO 3046/1-1995 with mechanical efficiency of 90% and Tora limited to \pm 10° F
- Fuel consumptions based on ISO 3046/1-1995 with a +5% tolerance for commercial quality natural gas having a 900 Blu/II³ saturated low heat value.
- 3) Data based on standard conditions of 77° F (25° C) ambient temperature, 29.53 91,cor inches Hg (100kPa) barometric pressure, 30% relative humidity (0.3 inches Hg / (2324 mm) 1 kPa water vapor pressure).
- 4) Data will vary due to variations in site conditions. For conditions and/or fuels other than standard, consult the Waukesha Engine Sales Engineering Department.

WAUKESHA ENGINE DRESSER, INC. 1000 West St. Paul Avenue Waukesha, WI 53188-4999 Phone: (262) 547-3311 Fax: (262) 549-2795 waukeshaergine.dresser.com WAUKESHA ENGINE DRESSER INDUSTRIAL PRODUCTS, B.V. Farmsumerweg 43, Postbus 330 9900 AH Appingedam, The Netherlands Phone: (31) 596-652222 Fax: (31) 596-628111 Consult your local Waukesha Distributor for system application assistance. The manufacturer reserves the right to change or modify without notice, the design or equipment specifications as herein set forth without incurring any obligation either with respect to equipment previously sold or in the process of construction except where otherwise specifically guaranteed by the manufacturer.

Bulletin 7005 0102

Waukesha, VAP and Waukesha Knock index are trademarks/segislered trademarks of Waukesha Engine, Dresser, Inc. Copyright 2002 Dresser, Inc.

		1	T-GL	EMISSIO	N LEV	els †				
	A LODUDETOR		GRAME	S/BHP-HR		% OBSER	VED DRY	MASS	VOLUME	EXCESS AIR
MODEL SE	SETTING	NOx ⁽¹⁾	co	NMHC (4)	THC	со	Oz	AFR **	AFH "	RATIO
			0.06	1 10	80	0.06	98	28.0:1	16.8;1	1 74
AT25GL	Standard	1.0	2.25	1.0		0.05	0.8	28.0:1	16.8:1	1,74
	Standard	1.5	1.7	0.5	<u> 50</u>	0,00			10.0.1	2 00
AT27GL	Ultra Lean	1.25	1.5	0.4	3.5	0.05	11.2	32.0:1	19.5.1	2.00

The AT-GL emission levels are based on 900 - 1000 rpm operation. For information at all other speeds contact Waukesha's Sales Engineering Department.

·		GRAMS/BI		GRAMS/BHP-HA		GRAMS/BHP-HA % OBSERVED DRY MASS VOLUM		GRAMS/BHP-HR % OBSERVED DRY MAS		GRAMS/BHP-HA % OBSERVED DI		% OBSERVED DRY		ED DRY MASS		EXCESS AIR RATIO
MODEL SETTING	NOx (1)	CO	NMHC (4)	THC	со	O2	AFR '*'	AFR **/								
	Lowest Manifold	85	32 0	0.35	23	1.15	0 30	15.5:1	9.3:1	0.97						
	Foual NOx & CO	12.0	12.0	0.35	2.3	0 45	0.30	15.9:1	9,6,1	0,99						
G, G\$1	Catalytic Conv.	13.0	9.0	0 30	2.0	0.38	0.30	15.95:1	9.6:1	0.99						
	Standard (Best	22.0	1.5	0.25	1.5	0.02	1.35	17.0:1	10.2:1	1.06						
	Economy)	14.0	14.0	0.25	1.1	0,45	0.30	15.85:1	9.5:1	0.99						
F3524GSI,	Catalytic Conv.	15.0	13.0	0.20	1.0	0.38	0,30	15.95:1	9.6:1	0.99						
L7044G\$I	Standard (Best	23.0	2.0	0.20	0.8	0.02	1.35	17.0:1	10.2:1	1.06						
		13.5	13.5	0.45	3.0	0.45	0.30	15.85:1	9.5:1	0.99						
	Catalytic Conv.	14.5	11.0	0.45	2.9	0.38	0.30	15.95:1	9.6:1	0.99						
L5/94GSI	Standard (Best	22.0	3.0	0.35	2.4	0.02	1.35	17.0:1	10.2:1	1.06						
	Economy)	15	2.65	1.0	5.5	0.06	9.8	28.0:1	16.8:1	1.74						
GL	Standard		20	0.60	4.0	0.04	8.0	24.7:1	14.8:1	1.54						
L5774LT	Standard	2.0	2.0	0.60	4.0	0.04	7.8	24.5:1	14.7:1	1.52						
1 57941 7	Standard	2.6	2.0	0.00	1		·····									

VHP EMISSION LEVELS

L5774LT and L5794LT emission levels are based on 1000 - 1200 rpm operation. For information at all other speeds contact Waukesha's Sales Engineering Department.

NOTE: The above tables indicate emission levels that are valid for new engines for the duration of the standard warranty period and are attainable by an engine in good operating condition running on commercial quality natural gas of 900 BTU/ft³ (35.38 MJ/m³ [25, V(0; 101.325)]) SLHV, Waukesha Knock IndexTM of 91 or higher, 93% methane content by volume, and at ISO standard conditions. Emissions are based on standard engine timing at 91 WKITM with an absolute humidity of 42 grains/ib. Refer to engine specific WKITM Power & Timing curves for standard timing. Unless otherwise noted these emission levels can be achieved across the continuous duty speed range and from 75% to 110% of the ISO Standard Power (continuous duty) rating. Contact your local Waukesha representative or Waukesha's Sales Engineering Department for emission values which can be obtained on a case-by-case basis for specific ratings, fuels, and site conditions.

Ref. EN: 125515 S GAS ENGINE EXHAUST EMISSION LEVELS DATE: 4/01 8483-4 Waukesha

Page 2 of 7

FORMALDEHYDE EMISSION LEVELS

The following table provides formaldehyde (CH₂O) levels that are valid for new engines for the duration of the standard warranty period and are attainable by an engine in good operating condition running on commercial quality natural gas of 900 BTU/ft³ (35.38 MJ/m³ [25, V(0; 101.325)]) SLHV, Waukesha Knock IndexTM of 91 or higher, 93% methane content by volume, and at ISO standard conditions. Values are based on standard engine timing at 91 WKITM with an absolute humidity of 42 grains/lb. Refer to engine specific WKITM Power & Timing curves for standard timing. Unless otherwise noted, these emission levels can be achieved across the continuous duty speed range at the load levels tabulated. *Contact your local Waukesha representative or Waukesha's Sales Engineering Department for emission values which can be obtained on a case-by-case basis for specific ratings, fuels, and site conditions.*

		CH₂O GF BHP-	RAMS/ HR	% OBSERVED DRY			VOLUME AFR ²	EXCESS AIR
MODEL	SETTING	PERCENT LOAD		<u>^</u>	0.	MASS AFN		RATIO
	1	100%	75%					
AT25CI	lean Burn	0.18	0,20	0.06	98	28.0.1	16,8:1	1.74
A1250C	Loop Burn	0.18	0.20	0.06	9.8	28.0.1	16.8:1	1.74
AT27GL	Leanborn	0.18	0.20	0.05	11.2	32.0 1	19.2:1	2.00
	Ulua Lean	0.10	0.05	0.02 - 1.15	0.30 - 1.35	15.5:1 - 17.0.1	9.3:1 - 10.2:1	0.97 - 1.06
VHP G, GSI	Rich Burn	0.05	0,05	0.02 1.10	0.30 - 1.35	15 85:1 - 17.0:1	9.5:1 10.2:1	0.99 - 1.06
VHP Series 4 GSI	Aich Burn	0.05	0.05	0.02 - 0.45	0.30 - 1.00	10.0011		
L5774LT	Lean Bum	0,22	0.25	0.04	7.8 - 8.0	24.5:1 - 24.7:1	14.7:1 14.8:1	1.52 ~ 1.54
		(0.20)	0.34	0.06	9.8	28.0:1	18.8:1	1.74
VHP GL	Lean Rom	0.25	0.04	0.20 - 1.1	0.18 - 2.4	15.5:1 - 18.0:1	9.3:1 - 10.8:1	0.97 - 1.12
VGF G, GSID	Rich Burn	0.05	0.05	0.20 - 1.1	79.00	21 51 - 25 41	13.9:1 - 15.2:1	1.53 - 1.65
VGF GL, GLD, GLD/2	Lean Bum	0.19	0.22	0.03 - 0.04	7.8 - 9.0	21.3.1 - 23.4.1	0.3.1 - 10.8.1	0.97 - 1.10
VSG G. GSI, GSID	Aich Burn	0.05	0.05	0.02 - 1.15	0.29 - 2.10	15.5:1 - 17.7:1	9.3.1 - 10.0.1	0.07 - 1.06
F1107Q	Rich Sum	0.05	0.05	0.04 1.35	0.30 - 1.35	15.5:1 - 17.0:1	9.3:1 - 10.2:1	0.87 = 3.00
F817G	Rich Burn	0.05	0.05	0.04 - 1.30	0.30 1.35	15.5 :1 - 17.0:1	9.3:1 - 10.2:1	0.97 ~ 1.06

Waukesha

GAS ENGINE EXHAUST EMISSION LEVELS EN: 125515 DATE: 4/01 Page 5 of 7

HEAT BALANCE

HEAT REJECTION AND OPERATING DATA MODEL 7042GL 130° F (64° C) I.C. WATER TEMPERATURE WITH LOW FUEL PRESSURE SYSTEM (1) (2)

		1200 RPM		ł	1200 APM							
1000	RPM		1090	BMEP	1000		BMEP	1200 8218		890EP (p#i)	1200 HPM	
1	(D)(E) (RPN		(1961)			123	1408		132	682	
instanting and a second se	152	1356		152	440		190	1290	HEATTO	120	504	
•	128	1231		138	382	. POWER	100	1007	STERCOOLER	100	384	
mational Pa	125	1111	HEAT TO	125	328	(81127)	- 75	800	(BTUAR = 1000)	75	251	
(1995)	100	699	(TUHR & UDD)	100	231		50	533		50	138	
•	75	687		75	140		132	(7292)		132	325	
	i i i i i i i i i i i i i i i i i i i i	444		50	<u>65</u>	BRAKE BRAKE	120	7431	HEAT TO	120	328	l
		6944		152	307	fuel.	100	7747	RADIATION	100	321	ĺ.
	152			138	302	CONSUMPTION	75	6376	(DIOINI + (MO)	75	311	
BRAICE STRATEC	138	2002	HEATTO	125	209	faircon - mi	50	9635		50		
FUEL		76.04	HADIATION	100	295		132	10265		132	120	
	100	1201	())	75	292	FUEL	120	9515	TEMPERATURE	120	120	
Potence	75	0100	!	50	258	CONSUMPTION	100	8265	AFTER TURBINE (+/- 67 F)	100	<i>(</i> 10)	
م ىنىتىتىتىتى بىرىتىتىتىتىن بىرىتىت	50	5300	┨┠━━━━━━━━	152	703		75	6705		10	403	
	152	9410		120	692		50	5140		122	3325	1
	130	8595	TRUANCE	1.00	685		132	2720	1	120	3065	
FUEL	125	8006	ACTING TURGE	100	676	HEAT TO	120	2545	AIR FLOW (SCITH)	100	2705	Į
(31UAH2 = 1400)	100	6720	HH- 58" P)	100	671	ACKET WATEH	100	2260		75	2250	
	75	5440			443	(1903	5	50	1795	
	50	4160				{}	1 400	100		132	14760	Þ
	152	2515		152	23800		132	378	ECHALIST CAS FL (19)	120	13700	
1	138	2350		138	2/00	MEAT TO	100	348	(LBSATR)	100	12015	ļ
HEAT TO	125	2165	ATR PLOW	125	2605	(BTUHR x 1009)	75	310		75	9965	1
LACKET WATER	100	1680	(SCFN)	100	2250		50	273		60	7950	
	76	1680	11	75	1875							
	50	1277		50	1470	4						
	182	354		152	13240	Į			*			
1	139	337	EXHAUST	138	12400	· ·						
BEAT TO	126	\$19	QAS FLOW	125	11570							
· LURAC CAL	120	007	(tracentry	100	99985							
OSLINE A 1866 A 1800		2007	(9)	76	6305	. I		•				
1	. 70	200		60	6520	· ·						
1 · · ·	1.50		- Il							- Island on	d inducti	ΔŪ.

NOTES:

. .4

1

÷

۰.

1. All data are based on standard conditions of 100 kPa (29.54 inches Hg.) barometric pressure, 25° C (77° F) ambient and induction sit temperature, 30% relative humidity (1 KPa/0.3 inches Hg. water vapor pressure) and 82° C (180° F) engine jacket water outlet

2. Data are average values at this standard conditions and will vary for individual engines and with operating and ambient conditions and with changes to ignition timing. An adequate reserve should be used for cooling system or heat recovery conditions and with changes to ignition timing.

calculations. See also Cooling System Guidefines 56689-8. 3. For heet rejection changes due to engine jacket water cutlet temperature different from standard (Note 1), refer to \$7613-2. 4. Exhaust flow, AGFM = Edit, Flow, Buthr x (Ech. Temp. "F+ 460) ÷.,

.

٩,

5, Reference C976-18, 6. Low pressure (draw thru) fuol system.

Waukesha CORESSUR

HEAT REJECTION AND OPERATING DATA	EN 112022	Reft
MODEL 7042GL 130° F (54° C) LC. WATER TEMPERATURE WITH LOW FUEL PRESSURE SYSTEM	DATE 10/93	5 6124-49

_ .

Page1 of 1

1

1

Storage Tanks

Emission units: Tanks Number of Tanks 4

Used Oil Tank

63	bbl
5	ft
10	ft
2	bbl/day
	63 5 10 2

Ethylene Glycol TankVolume137Height20Diameter7

VOCs

Throughput	4	bbl/day
Uncontrolled Em	nissions	

VOCs

Uncontrolled E	missions		
VOCs	VOCs	_	
	0.075	lb/hr	Tanks 4.09d
	0.33	ton/yr	
HAPs	HAPs	_	
	0.002327626	lb/hr	Tanks 4.09d
	0.010	ton/yr	

Wastewater Tank

Not a source of air emissions.

Mercaptan Tank

Pressurized storage vessel. Not a source of air emissions.

	Negligible Negligible	lb/hr ton/yr	Tanks 4.09d
HAPs	HAPs 1.3973E-03 2.55E-04	lb/hr ton/yr	Tanks 4.09d

<u> Pipeline Liquids Tank</u>

Volume	47	bbl
Height (shell	10	ft
Diameter	6	ft
Throughput	1	bbl/day

Uncontrolle	d Emissions		
VOCs	VOCs	_	
	0.041	lb/hr	E&P Tanks
	0.179725	ton/yr	
HAPs	HAPs		
	Negligible	lb/hr	E&P Tanks
	0.01	ton/yr	

Emissions Summary

 HAPs (lb/hr)
 HAPs (tpy)
 VOC (lb/hr
 VOC (tpy)

 3.7249E-03
 0.010
 0.116
 0.51

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification	
User Identification:	Redonda Compressor Station
City:	
State:	New Mexico
Company:	
Type of Tank:	Vertical Fixed Roof Tank
Description:	Unit 4- Pipeline Liquids
Chall Llaisht (9)	0.40
Shell Height (II): Diamatar (B):	9.40
Diameter (n).	0.00
Ave Liquid Height (ft):	3.40 1 79
Volume (nations):	1 989 17
Turnovers:	10.00
Net Throughput/gally/):	19 881 70
Is Tank Heated (v/n):	N
Paint Characteristics	
Shell Color/Shade:	Red/Primer
Shell Condition	Good
Roof Color/Shade;	Red/Primer
Roof Condition:	Good
Roof Characteristics	
Туре:	Cone
Height (ft)	0.00
Slope (ft/ft) (Cone Roof)	0.06
Breather Vent Settings	
Vacuum Settings (psig):	-0.03
Pressure Settings (psig)	0.03

Meterological Data used in Emissions Calculations; Albuquerque, New Mexico (Avg Atmospheric Pressure = 12.15 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Redonda Compressor Station - Vertical Fixed Roof Tank

and an experimental and an experimental field of the fiel										·····			
		Da Terr	illy Liquid S perature (d	ant. eg F)	Liquid Bu% Temp	Vapo	r Pressure	(psla)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Modure/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	weight.	Fraci.	Fraci.	weight	Casculations
Crude of (RVP 5)	AJ	71.00	54.97	87.02	60.49	3,5556	2.6047	4.7659	50.0000			207.00	Option 4: RVP=5
1.2.4 Trimethy benzene						0,0314	0.0167	0.0564	120.1900	0.0033	0.0001	120.19	Option 2: A=7.04383, B=1573.287, C=208.56
Benzene						1.5722	1.0142	2.3827	78,1100	0.0060	0.0110	78,11	Option 2: A=6.005, B=1211.033, C=220.79
Cyclohexane						1.6197	1.0555	2.4117	84.1600	0.0070	0.0132	84.18	Option 2: A=6.841, B=1201.53, C=222.65
Ethylbenzene						0.1576	0.0909	D_2624	106.1700	0.0040	0.0007	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Hexane (-n)						2.5292	1.6762	3.7081	66.1700	0.0040	0.0118	88.17	Option 2: A=8.876, B=1171.17, C=224.41
Isoodane									114.2200	0.0010	0.0000	114.22	
Isopropyi benzene						0.0718	0.0398	0.1242	120.2000	0.0010	0.0001	120.20	Option 2: A=6.93666, B=1460.793, C=207.78
Touene						0,4609	0.2818	0.7281	92.1300	0.0100	0.0054	92.13	Option 2; A=6.954, B=1344.8, C=219.48
Unidentified Components						3,8888	3.8158	3,8350	49.0578	D.9497	0.9558	220.76	
Xylena (-m)						0.1317	0.0756	0.2205	108.1700	0.0140	0.0021	108.17	Option 2: A=7.009, B=1462.256, C=215.11

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Redonda Compressor Station - Vertical Fixed Roof Tank

Annual Emission Calcaulations										
Standing Losses (ib):	296.3338									
Vapor Space Volume (cu fi):	135.5047									
Vapor Density (io/cu ft);	0.0312									

TANKS 4.0 Report

Vapor Space Expansion Factor: Vented Vapor Saturation Factor:	0.3652 0.5255
Tank Vapor Space Volume: Vapor Space Volume (cu ft): Tank Diameter (th): Vapor Space Outage (th): Tank Shell Height (ft): Average Lquid Height (ft): Roof Outage (ft):	135.5047 6.0000 4.7925 9.4600 4.7300 0.0525
Roof Outage (Cone Roof) Roof Outage (N): Roof Reight (A): Roof Slope (NN): Shell Rodus (N):	0.0825 0.0000 0.0825 3.0000
Vapor Density Vapor Density (ła/ou fi): Vapor Molecular Weight (ła/o-mole): Vapor Pressure at Daity Average Liquid Surface Temperature (nsia):	0.0312 50.0000 3.5556
Daily Avg. Liquid Surface Temp. (deg. R): Daily Average Amblent Temp. (deg. F): Ideal Gas Constant R	530.6665 56.1542
(psia coth / (ib-mol-deg R)); Liquid Bu% Temperature (deg, R); Tank Paint Solar Absorptance (Sheil); Tank Paint Solar Absorptance (Roof); Daily Total Solar Insulation	10.731 520.1642 0.8900 0.8900
Factor (Blu/sqfl day); Vapor Space Expansion Factor	1,785.3167
Vapor Space Expansion Factor: Daity Vapor Temperature Range (deg. R): Daity Vapor Pressure Range (osia): Breather Vent Press, Setting Range (osia): Vapor Brosture of Daity Amage (osia):	0.3652 64.0977 2.1612 0.0600
Vapor Pressure at Dasy Arenage Eulou Surface Temperature (psia); Vapor Pressure at Dasy Minimum Liquid	3.5558
Sunace Temperature (psia): Vapor Pressure at Dažy Maximum Liquid Sunface Temperature (psia):	4.7659
Daily Avg. Liquid Surface Temp. (deg R); Daily Min. Liquid Surface Temp. (deg R); Daily Max. Liquid Surface Temp. (deg R); Daily Ambient Temp. Range (deg. R);	530.6685 514.6421 546.6909 27.9250
Vented Vapor Saturation Factor Vented Vapor Saturation Factor:	0.5255
Vapor Pressure at Daty Average Equic: Surface Temperature (osla): Vapor Space Outage (fi):	3.5556 4.7925
Werking Losses (R): Vapor Molecular Weight (Ib/Ib-mola): Vapor Pressure at Da≇y Average Liquid	63.1169 50.0000
Surfaca Temperature (psfa): Annual Net Throughput (gaVyr.); Annual Turnovers: Turnover Factor:	3,5556 19,881,6961 10,0000 1,0000
Maximum Liquid Volume (gai): Maximum Liquid Height (ii): Tank Diameter (ii): Working Loss Product Factor:	1,988,1698 9,4000 6,0000 0,7500

Total Losses (ib):

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Redonda Compressor Station - Vertical Fixed Roof Tank

359.4507

	Losses(ibs)									
Components	Working Loss	Breathing Loss	Total Emissions							
Crude oil (RVP 5)	63.12	296.33	359.45							
Hexane (-n)	0.74	3.49	4.23							
Benzene	0.69	3.25	3.95							
Isooctane	0.00	0.00	0.00							
Toluene	0.34	1.59	1.93							
Ethylbenzene	0.05	0.22	0.28							
Xylene (-m)	0.14	0.64	0.77							
Isopropyi benzene	0.01	0.02	0.03							
1,2,4-Trimethylbenzene	0.01	0.04	0.04							
Cyclohexane	0.83	3.91	4.75							
Unidentified Components	60.31	283.17	343.49							

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification	
User Identification:	Redonda Compressor Station1
City:	
State:	
Company:	
Type of Tank:	Vertical Fixed Roof Tank
Description:	Ethylene Glycol
Tank Dimensions	
Shell Height (ft):	20.85
Diameter (ft):	7.00
Liquid Height (ft) :	20.00
Avg. Liquid Height (ft):	10.42
Volume (gailons):	5,757.70
Turnovers:	10.00
Net Throughput(gal/yr):	57,577.02
Is Tank Heated (y/n):	N
Paint Characteristics	
Shell Color/Shade;	Red/Primer
Shell Condition	Good
Roof Color/Shade:	Red/Primer
Roof Condition:	Good
Roof Characteristics	
Туре:	Cone
Height (ft)	· 0.00
Slope (ft/ft) (Cone Roof)	0.06
Breather Vent Settings	
Vacuum Settings (psig):	-0.03
Pressure Settings (psig)	0.03

Meterological Data used in Emissions Calculations: Albuquerque, New Mexico (Avg Almospheric Pressure = 12.15 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Redonda Compressor Station1 - Vertical Fixed Roof Tank

Mbdure/Component	Month	Dai) Temp Avg.	y Liquid Su erature (dec Min.	rf. g F) Max.	Liquid Bu% Temp (deg F)	Vapor Avg.	Pressure (Min.	(psia) Max	Vapor MoL Weight	Liquid Mass Fract.	Vapor Mass Fract.	Mol. Weight	Basis for Vapor Pressure Catculations
Ethylene Glycol	AI	71.00	54.97	87.02	60,49	0.0019	0.0009	0.0039	62.0700			62.07	Option 2: A=8.7945, B=2615.4, C=244.91

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Redonda Compressor Station1 - Vertical Fixed Roof Tank

Standing Losses (ib):	0.3471
Vapor Space Volume (cu ft):	404.1996
Vacor Density (Ib'cu ft):	0,0000
Vapor Space Expansion Factor:	0.1161
Vented Vapor Saturation Factor.	0.9990
Tank Vapor Space Volume:	
Vapor Space Volume (cu fi):	404.1996
Tank Diameter (ft);	7,0000
Vapor Space Outage (fl):	10.5029
Tank Sheë Height (ft):	20.8500
Average Liquid Height (ft):	10.4200
Roof Oulage (ft):	0.0729

TANKS 4.0 Report

Roof Outage (ft):	0.0729
Roof Height (ft):	0.0000
Roof Slope (fl/ft):	0.0625
Shell Radius (fl):	3.5000
Vapor Dens3v	
Vapor Density (Ib/cu ft):	0.0000
Vapor Molecular Weight (ib/ib-mole):	62.0700
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psla):	0.0019
Daily Avg. Liquid Surface Temp. (deg. R):	530.6685
Daily Average Amblent Temp. (deg. F):	58,1542
Ideal Gas Constant R	
(psia cuft / (R-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	520.1842
Tank Paint Solar Absorptance (Shell):	0.8900
Tank Paint Solar Absorptance (Roof):	0,8900
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,765.3167
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.1161
Daily Vapor Temperature Range (deg. R):	64.0977
Daily Vapor Pressure Range (osia):	0.0030
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0019
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia):	0.0009
Vapor Pressure at Dary Maximum Liquid	0.0020
Surface Temperature (psia):	0.0039
Daiky Avg. Equid Sunace Temp. (deg R):	534.6421
Daily Mar, Lloyd Surface Temp, (deg R):	545 5000
Daily Mate Equil Sufface Temp, (deg K).	27 9250
Daily Milliona, Tellip, Kange (deg. 17.	LIJORGO
Vented Vaper Saturation Factor	0.0000
Venteo vapor Saturation Factor:	0.8990
Vapor Pressure at Dary Average Equid:	0.0210
Sunace Temperature (psia):	10.0019
vapor space Outege (n):	10.5029
Working Losses (ib):	0.1584
Vapor Molecular Weight (ib/ib-mole):	62.0700
Vapor Pressure at Daily Average Liquid	
Surface Temperatura (psia):	0.0019
Annual Net Throughput (galyr.):	5/,5//,0150
Annual Turnovers:	10.0000
Turnover Factor:	1.0000
Maximum Liquid Voluma (gal):	5,157,1016
Nexusion Liquid Height (R); Xeek Diameter (A):	20,0000
Vertica Loss Stocket Eaclor	1.0000
Moning Loss Fround Factor:	1,0000
T-4-11 855	0.5054
I OLAI LOSSES (ID):	0,5054

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Redonda Compressor Station1 - Vertical Fixed Roof Tank

	Losses(lbs)								
Components	Working Loss	Breathing Loss	Total Emissions						
Ethylene Glyco!	0.16	0.35	0.51						

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company:	Redonda
Type of Tank:	Vertical Fixed Roof Tenk
Description,	Office 1- Used Office Tank
Tank Dimensions	
Shell Height (ft);	5.00
Diameter (ft):	10.00
Liquid Height (ft) :	4.75
Avg. Liquid Height (ft):	2.50
Volume (gallons):	2,643.84
Turnovers:	10.00
Net Throughput(gal/yr):	26,438.43
Is Tank Heated (y/n):	N
Paint Characteristics	
Shell Color/Shade:	Red/Primer
Shell Condition	Good
Roof Color/Shade:	Red/Primer
Roof Condition:	Good
Roof Characteristics	
Type:	Cone
Height (ft)	0.00
Slope (fl/ft) (Cone Roof)	0.06
Breather Vent Settings	
Vacuum Settings (psig):	-0.03
Pressure Setlings (psig)	0.03

Meterological Data used in Emissions Calculations: Albuquerque, New Mexico (Avg Atmospheric Pressure # 12.15 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Redonda - Vertical Fixed Roof Tank

		Da Tem	ily Llquid S perature (d	ચત. eg F)	Liquid Butk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component Mo	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Мах	Weight.	FracL	FracL	Weight	Calculations
Crude oli (RVP 5)	All	71.00	54,97	87,02	60.49	3.5556	2.6047	4.7859	50.0000			207.00	Option 4: RVP=5
1,2,4-Trimethylbenzene						0.0314	0.0167	0.0584	120.1900	0.0033	0.0001	120.19	Option 2: A=7.04383, B=1573.267, C=208.58
Benzene						1.5722	1.0142	2.3627	78.1100	0,0060	0.0110	78,11	Option 2: A=6.005, B=1211.033, C=220.79
Cyclohexane						1.6197	1.0555	2.4117	84.1600	0,0070	0.0132	84.16	Option 2: A=6.841, B=1201.53, C=222.65
Ethybenzene						0.1576	0.0909	0.2624	106.1700	0.0040	0.0007	106.17	Option 2: A=8.975, B=1424.255, C=213.21
Hexane (-n)						2.5292	1.6762	3.7031	88.1700	0.0040	0.0118	88.17	Option 2: A=8.876, B=1171.17, C=224.41
Isooclane									114.2200	0.0010	0.0000	114.22	
isopropyi benzene						0.0718	0.0398	0.1242	126.2000	0.0010	0.0001	120.20	Option 2: A=6.93668, B=1460.793, C=207.78
Tokiene						0.4609	0.2818	0.7281	92.1300	0.0100	0.0054	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Unidentified Components						3.8888	3.8156	3.8360	49.0578	0.8497	0.9556	220.76	
Xylenə (-m)						0.1317	0.0758	0.2205	106.1700	0.0140	0,0021	106.17	Option 2: A=7.009, B=1482.268, C=215.11

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Redonda - Vertical Fixed Roof Tank

Annual Emission Calcaulations	
Standing Losses (ib):	571.0160
Vapor Space Volume (cu fi);	204.5308
Vapor Density (la/cu ft):	0.0312

TANKS 4.0 Report

Vapor Space Expansion Factor: Vented Vapor Saturation Factor:	0.3652 0.6708
Tank Vapor Space Volume: Vapor Space Volume (cu fi):	204.5309
Tank Diameter (fl):	10.0000
Vapor Space Outege (ft):	2.6042
Tank Shell Height (fl):	5.0000
Average Liquid Height (fi):	2.5000
Roof Outage (ft):	0.1042
Roof Oulage (Cone Rool)	
Roof Outage (R):	0.1042
Reat Reight (iii):	0.0000
Roor Slope (IVII):	0.0825
Sneil Raows (n);	5.000
Vapor Density	0.0312
Vapor Molecular Melohi (ih/ih-mole):	50 0000
Vapor Pressure et Daily Average Liquid	00.0000
Surface Temperature (rela):	3 5556
Daily Ava Liquid Surface Terra (deg. R):	530 6665
Daily Average Amblent Temp. (deg. 11).	58 1542
Maal Gas Constant B	00.1042
(otia cuft / //b mol dog R));	10 731
Liquid Bulk Temperature (deg. R):	520 1842
Tank Baint Solar Absorriance (Shell):	0.8900
Tank Paint Solar Absorptance (Boof):	0.8900
Daily Total Solar Insulation	0.0000
Factor (Btu/sqft day):	1,765.3167
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.3852
Daily Vapor Temperature Range (deg. R):	64.0977
Daily Vapor Pressure Range (psla):	2.1612
Breather Vent Press, Setting Range(psla):	0.0600
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	3,5558
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psla):	2.6047
Vapor Pressure at Daily Maximum Uquid	
Surface Temperature (psla);	4.7659
Daily Avg. Liquid Surface Temp. (deg R):	530,6565
Daily Min. Liquid Surface Temp. (deg R):	514.6421
Daily Max. Liquid Surface Temp. (deg R):	545.6909
Daity Ambient Temp, Range (deg. R);	27.9250
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.6708
Vapor Pressure at Daily Average Liquid:	0.000
Sunace Temperature (psia):	3.3356
vapor space Outage (n):	2.0042
Working Losses (b):	83.9321
Vapor Molecular Weight (ib/ib-mole):	50.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (osla):	3.5556
Annual Net Throughput (gal/yr.):	28,438.4257
Annual Tumovers:	10.0000
Turnover Factor.	1,0000
Maximum Liquid Volume (gal):	2,843.8426
Maximum Liquid Height (R):	4.7500
Tank Diameter (fi):	10.0000
Working Loss Product Factor:	0.7500

Total Losses (H):

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Redonda - Vertical Fixed Roof Tank

		Losses(ibs)	
Components	Working Loss	Breathing Loss	Total Emissions
Xylene (-m)	0.18	1.23	1.41
Isopropyl benzene	0.01	0.05	0.05
1,2,4-Trimethylbenzene	0.01	0.07	0.08
Cyclohexane	1.11	7.54	8.65
Unidentified Components	80.20	545.66	625,86
Crude oll (RVP 5)	83.93	571.02	654.95
Hexane (-n)	0.99	6.73	7.71
Benzene	0.92	6.27	7.19
Isooctane	0.00	0.00	0,00
Toluene	0.45	3.06	3.52
Ethylbenzene	0.06	0.42	0.48

654.9501

New Mexico Gas	CompanyRed	onda Compr	essor	Station				
Unit 3 - Baldor/GM 2	2.0 Electric Generato						· · · ·	
EMISSION CALCULA	TION FOR CO and I	VOX			n 1		· · · · · · · · · · · · · · · · · · ·	. 11.
Rate (lb/hr)	=	Multiply EF (g/	KW-hr)	by Rating (kw	$^{\prime}$) and c	livide by 453.	6 to convert g to	010
<u>1 lb</u>			453.60	gm		· · · · · · · · · · · · · · · · · · ·	States The sectors	Ilad See
Rating (kW)	Emission Factor	or (EF) Sea Lev	/el	Emission F (lb/hr)	tate		Emissions 5	500 hr
	NOX + THC (g/kw-ł	CO (g/kW-hr)		NOx (lb/hr)		CO (lb/hr)	NOx (ton/yr C	0 (ton/yr
37.90	7.22		29.47		0.60	2.46	0.15	0.62
The manufacturer sp Altitude at Redonda	pecifies deration rate is ~5370 ft and a der	of 3% every 10 ation of 12% is	00' abo appliec	ve sea level. I				
Derated Rating (kW)	Emissi	on Factor		Derated Emi	ission 1	Rate (lb/hr)	Derate Uncontro	d lled
	NOX + THC (g/kw-ł	CO (g/kW-hr)		NOx (lb/hr)		CO (lb/hr)	NOx (ton/yr C	0 (ton/yr
33.35	7,22		29.47		0.53	2.17	0.13	0.54
Calculations Basis: M	lanufacturer's data u	sed for CO and	NOx em	ission factors ((see pa	ge 13 of 27 in	manufacturer's	s data)
Note: SO2, VOC and V	/OC rates from EPA A	P42 - Table 3.2	-3.					
Uncontrolled Emissi	on Factors for 4-Stro	ke Rich-Burn Ei	ngines					
Pollutant	EF (lb/MMBTU)	Emission Rate	flb/hr	Emission Rat	te (tpy)			
50.	0.000588	0	.00002	0.	00001			
voc	0.0296	0	.00103	0.	00026			
PM	0.00991	0	.00035	0.	00009			
PM = TSP; for this fa	cility and this unit, e	missions of PM :	= PM10	≈ PM2.5				
1 MMBtu	=	1020.0		MMScf		(per AP-42)		
emission rate (lb/hr	- =	(EF lb/MMBtu	* 1020	MMBtu/MMSc	f * 0.3 I	MMScf/ year)	/8760 hr/year	
Fuel consumption	_	. ,	0.30	MMScf/yr				
Fuel Type	Pipeline quality nat	ural gas		70				
Stack Velocity Calc	ulation							
Flow Rate	250	cf/m						
Flow Rate	4.17	cf/s						
diameter	0.21	ft						
Area	0.03	ft ²						
Velocity	122.23	ft/s						
	120,00	, -						

Configurator Submittal Package - Quote Number: 156436982-10 - Custom Generator

POWER SOLUTIONS, INC. 655 Wheat Lone -- Wood Dale, IL 60191 630,350,9400 (M) - 630,350,9900 (F) www.pslengines.com - info@pslengines.com

1			p	SI 2009 S	tationa	nr 60 H	7 Fn	1010	ency "S	tanr	l-hv	^{te} Certi	ifled Po	wer Generation I	Rating D	ata		
Englas	Sneed	Fred	Firel	Daly Cycla	Flywhee	L nower ^{2,3}	Fan	1059	General	orio	<u> 1</u>	Electrica	al Rating ⁴	Certification Spec	THC+NOx	co	bsfc ^s	Catalyst
Cugina	RPM	Hz	TUCI	Duly Ofcie	HP	kW	HP	kW	Efficiency	HP	Î KW	HP	kW		(g/KW-hr)	(g/kW-hr)	(g/xW-hr)	
1.61	1800	60	LP	Emeroency	27.5	20.5	2	1.5	87%	3.6	2.7	22.0	16.4	40 CFR Part 60 / 90	8.2	39.16	256.2	No
1.6L	1800	60	NG	Emergency	25.0	18.6	2	1.5	87%	3.3	2.4	19.8	14.7	40 CFR Part 60 / 90	6.89	33.7	243.6	No
1.6L	3600	60	L۶	Emergency	56,5	42.1	3	2.2	87%	7.3	5.5	46.1	34.4	40 CFR Part 60 / 90	9,14	44.84	266.1	No
1.6L	3600	60	NG	Emergency	52.5	39.1	3	2.2	87%	6.8	5.1	42.7	31.8	40 CFR Part 60 / 90	6.6	37.44	250.8	No
3.0L	1800	60	L۵	Emergency	51.5	38.4	3	22	87%	6.7	6.0	41.8	31.2	40 CFR Part 60 / 90	9.93	32.66	265.0	No
3.0L	1800	60	NG	Emergency	60.8	37.9	3	2.2	87%	6.6	4.9	41.2	38.7	40 CFR Part 60 / 90	7.22	29.47	255.9	Na
4.3L	1800	60	LP	Emergency	71.4	53.2	4.5	3.4	90%	7.1	5.3	59.8	44.6	40 CFR Part 50 / 90	8.17	32.02	234.1	No
4.3L	1800	60	NG	Emergency	66.5	49.6	4.6	3.4	90%	6.7	5.0	55.4	41.3	40 CFR Part 60 / 90	7.03	21.96	225.7	No
5.0L	1800	60	LP	Emergency	88.3	65.8	4.5	3.4	90%	8.8	6.6	74.9	55.9	40 CFR Part 60 / 90	8.68	39.68	246.2	No No
5.0	1800	60	NG	Emergency	83.4	62.2	4.5	3.4	90%	8.3	6.2	70.6	52.6	40 CFR Part 60 / 90	7.72	31.57	238.6	No
5.7L	1800	60	ĽP	Emergency	113.2	84.4	4.5	3.4	90%	11.3	8.4	97.3	72.6	40 CFR Part 60 / 90	9.66	29.61	232.1	No
5.7L	1800	60	NG.	Emergency	104.7	78,1	4.5	3.4	90%	10.5	7.8	89.7	66.9	40 CFR Part 60 / 90	7.72	26.73	229.4	No
8.1L	1800	60	ŁΡ	Emergency	164.4	122.6	8.5	6.3	92%	13.2	9,8	142.8	106.5	40 CFR Part 60 & 1048	0.1	0.69	224.0	Yes
8.11	1800	60	NG	Emergency	155.2	115.7	8.5	6.3	92%	12.4	9.3	134.2	100.1	40 CFR Part 60 & 1048	0.17	0.23	222.8	Yes
8.1L T	1800	60	LP	Emergency	178.9	133.4	11.5	8.6	92%	14.3	10.7	153.1	114.2	40 CFR Part 60 & 1048	0.343	0.175	-	Yes
8.1L T	1800	60	NG	Emergency	202.0	150.6	11.5	8.6	92%	16.2	12.1	174.3	130.0	40 CFR Part 60 & 1048	0.166	0.417	-	Yes
8.1L CAC	1800	60	LP	Emergency	199.0	148,4	14	10.4	92%	15.9	11.9	169.1	126.1	40 CFR Part 60 & 1048	0.343	0.175	243.8	Yes
8.1L CAC	1600	60	NG	Emergency	238.0	177.5	14	10.4	92%	19.0	14.2	205.0	152.8	40 CFR Part 60 & 1048	0.166	0.417	221.5	Yes
10					010 000			anda	+ IFO 9509									

¹Standby and overload ratings based on ISO3046. Continuous ratings based on ISO 8528. ² All ratings are gross flywheel horsepower corrected to 77°F at an altitude of 328/eet with no cooling fan or alternator losses using heating value for NG of 1015 BTU/SCF. ³ Production tolerances in engines and installed components can account for power variations of +/- 5%. Altitude, temperature and excessive exhaust and intake restrictions should be applied to

Prover cacuations,
 Electrical ratings are an estimated based on assumed fan and generator losses and may vary depending on actual equipment losses.
 ⁵ Bsfo Is based on 100% gross flywheel power rating and does not include fan or generator losses.

.

Power Solutions, Inc. 655 Wheat Lane -- Wood Dale, IL 60191 630.350.9400 (M) -- 630.350.9900 (F) www.psiengines.com - info@psiengines.com

Page 13 of 27

Subpart C - General Stationary Fuel Combustion - Tier 1 Calculation Methodology Using Equations C-1 and C-8 OPTIONAL SPREADSHEET FOR FACILITY RECORDICEPING PURPOSES Version e-GGRT RY2011.R.01 Today's date 3/26/2013

Use one spreadsheet for each fuel. Make additional copies as needed.

This spreadsheet is protected and contains locked cells to ensure that you do not inadvertently alter any of the included formulas and/or calculations. To remove this protection and after this spreadsheet, right-click the "worksheet" tab near the bottom of the screen and select "Unprotect Sheet." When prompted for the password, type "GHG" and click "OK." Please note that making changes to an unprotected sheet could result in incorrect calculations and that you are responsible to the the screen select." for the accuracy of the data you report to EPA. For additional help, visit the Microsoft Excel Support website (http://office.microsoft.com/en-us/axcel-help).

 $CO_2 = 1 \times 10^{-3} * Fuel * HHV * EF$ Equation C-1: $CH_4 \text{ or } N_2O = 1 \times 10^{-3} * Fuel * HHV * EF$ Equation C-8: Redonda Compressor Station Facility Name: New Mexico Gas Company Reporter Name. Unit or Group Name/ ID: Configuration Type: Fuel/Fuel Type: Natural Gas Reporting Period: Comments Unit Type: General Stationary Fuel Combustion Fuel Input Data

(Fuel) = Mass or volume of fuel	
combusted per year, from company	. 25. 1993 (1993) (1993) 1993 (1993) (1993) (1993) 1993 (1993) (1993) (1993) (1993) (1993) (1993) (1993) (1993)
records as defined in §98.6 (express	221,829,885.584
mass in short lons for solid fuel, volume	
in standard cubic feet for gaseous fuel,	
and volume in gallons for liquid fuel)	
[HHV] = Default High heat value of the	
fuel, from Table C-1 (mmBtu/mass or	0.00103
mmBtu/volume)	

Constants

	to metric tons (constant)
--	---------------------------

Annual CO₂ Mass Emissions For the Specific Fuel Type (metric tons) from Equation C-1

Subpart C - General Stationary Fuel Combustion - Tier 1 Calculation Methodology Using Equations C-1 and C-8 OPTIONAL SPREADSHEET FOR FACILITY RECORD/KEEPING PURPOSES Version e-GGRT RY2011.R01 Today's date 3/26/2013

F] = Fuel-Specific Default CO2 mission Factor, from Table C-1 (kg D-formBhi)	53.02
CO2] = Annual CO2 emissions from ombustion of the specified fuel (metric ons)	12090.7403086

Annual CH4 Mass Emissions For the Specific Fuel Type (metric tons) from Equation C-8

[EF] = Fuel-Specific Default Emission Factor for CH2, from Table C-2 (kg CH2/mmBtu)	0.001	Note: If you are reporting CH4 emissions from a pulp mill lime kiln located at a kraft or soda facility under subpart AA, you are required to use the emission factors in Table AA-2 per 98.273(c)(2).
[CH ₄] = Annual CH ₄ emissions from combustion of the specified fuel (metric tons)	0.2280411	
	Enter this value i	- n e-GGRT

Annual N2O Mass Emissions For the Specific Fuel Type (metric tons) from Equation C-8

(EF) = Fuel-Specific Default Emission Factor for N ₂ O, from Table C-2 (kg N ₂ O/mmBtu)	0.0001	Note: If you are reporting N ₂ O emissions from a pulp mill lime kiln located at a kraft or soda facility under subpart AA, you are required to use the emission factors in Table AA-2 per 98.273(c)(2).
[N ₂ O] = Annual N ₂ O emissions from combustion of the specified fuel (metric tons)	0.0228041	

Enter this value in e-GGRT

Subpart C - General Stationary Fuel Combustion - Tier 1 Calculation Methodology Using Equations C-1 and C-8 OPTIONAL SPREADSHEET FOR FACILITY RECORD/KEEPING PURPOSES Version e-GGRT RY2011.R.01 Today's date 3/26/2013

ς.

INFORMATION ONLY: Annual CH4 Mass Emissions For the Specific Fuel Type Converted to Carbon Dioxide Equivalent (metric tons CO2e)

*****											-					••	20	-	-																												
*****	***		**	•••		••		•••		•••		•-		••											1.1													•					••	 			
																																										 	••	 			
					1.0			1 w (17	 			
												- 64	× .	-			47											х.																			
	-=			=		- 77						- 22				_				= .		-=			= 7																	 	27	 		e 12	
	-					•							-	-							•	••	••	•••		•••																					
						••																			-																						
*****							•••					••		••	••	-,					••		••					•••		••				•••	••			•	 				••	 			
						••			••		••				••											• •							•••		••	••			 	 		 	••	 			
		_														••									••					•••			•••		••			•	 •••		•••	 	••	 		٠.	
																																						161	 	 		 	- 6	 			
******								• •										۰.									÷								**				 	 	67.	 	15	 		44	
															22																									 							
											::				::		::					: :	::	: :		= =													 	 				 			
*****	***										••																												 								
			• •											٠.						٠.														• • •					 								
										•••	•.		••	••	••	••		•••	•			••	••		••	•••													 			 	••				
									••														••																 					 			
						-			- 11		- 4	••	- 1	67			1 B					- 6	••	84	**						н.			646	**		64.		 			 		 	16 B	"	
																													-		_								 	 		 	••	 			
					- 1			- 63								Ξ.																							 								
							-																	• •													B 243	-	 					 			
						• 2	: =	- 22		22	-2				. . .	=:	22	- 5			г.z.	- 77	• z	т.г	5.0		7.4									- 21		-	 10 M	 	17.	 -	-7	 		σ.	
						- 22		125			172												- 2			-																	••				
	_							_				_				•••					_				••	••	_								••				 	 		 -	-	 			
* *	***					••		•••					•••									••	••	• •	•••							•••	•••		••	•••			 				••	 			
*****														• •																			•••					••					**	 			
	A 14 14																														_								 	 		 	••	 			
																			60						2.2																			 			
	7 7 T		- 22		= C	: .	- 2		- 2	- 2		: 2	:2		- 7	- 7	22		- 23	- 2		: 2		- 2		- 5	23		- 22		403		- 21	e 1 (12			- 22	 	 		 £4.		 		17	
										• •			•			•																		273			273		 17.3		273		27.			77	
															•																								н					 			

INFORMATION ONLY: Annual N₂O Mass Emissions For the Specific Fuel Type Converted to Carbon Dioxide Equivalent (metric tons CO₂e)

		*******	******			******			 ******	******	*****	*****	********
	********		*******	******	******	******			 ******	******	******	*****	********
********	*****							******		******	******	******	********
				B\$74					 ******	******	*****	******	********
	Bab ere I		ADD DO	PECAPT		0-404P	HEADING THE	+ Bd	 ******	******		*****	*******

	*****								 *****	******		*****	

CARDING INC									 	******			
	********				*****				 	******	******	******	********
			,	*****		******	******		 	******			

*********			******			******			 ******	******	*****	*****	********

Fuel Type	Default High	Default CO ₂ Emission
	Heat Value	Factor
Coal and Coke	mmBtu/short ton	kg CO ₂ /mmBtu
Anthracite	25.09	103,54
Bituminous	24,93	93.40
Subbituminous	17.25	97.02
Lignite	14.21	96.36
Coke	24.80	102.04
Mixed (Commercial sector)	21.39	95.26
Mixed (Industrial coking)	26.28	93.65
Mixed (Industrial sector)	22.35	93.91
Mixed (Electric Power sector)	19.73	94.38
Natural Gas	mmBtu/scf	(kg) (CO ₂) (/mmBtu)
(Weighted U.S. Average)	1.028E-03	53.02
Petroleum Products	mmBtu/gallon	kg CO ₂ /mmBtu
Distillate Fuel Oil No, 1	0.139	73.25
Distillate Fuel Oil No. 2	0.138	73.96
Distillate Fuel Oil No. 4	0.146	75.04
Residual Fuel Oil No. 5	0.140	72.93
Residual Fuel Oil No. 6	0.150	75.10
Used Oil	0.135	74.00
Kerosene	0.135	75.20
Liquefied petroleum gases (LPG)	0.092	62.98
Propane	0.091	61.46
Propylene	0.091	65.95
Ethane	0.069	62.64
Ethanol	0.084	68.44
Ethylene	0.100	67.43
Isobutane	0.097	64.91
Isobutylene	0.103	67.74
Butane	0.101	65.15
Butylene	0.103	67.73
Naphtha (<401 deg F)	0.125	68.02
Natural Gasoline	0.110	66.83
Other Oil (>401 deg F)	0.139	76.22
Pentanes Plus	0.110	70.02
Petrochemical Feedstocks	0.129	70.97
Petroleum Coke	0.143	102.41
Special Naphtha	0.125	72.34
Unfinished Oils	0.139	74,49
Heavy Gas Oils	0.148	74.92
Lubricants	0.144	74.27
Motor Gasoline	0.125	70.22
Aviation Gasoline	0.120	69.25
Kerosene-Type Jet Fuel	0.135	72.22

Table C-1 to Subpart C - Default CO₂ Emission Factors and High Heat Values for Various Types of Fuel

Fuel Type	Default High	Default CO ₂ Emission
	Heat Value	Factor
Asphalt and Road Oil	0.158	75.36
Crude Oil	0.138	74.49
Other Fuels (Solid)	mmBtu/short ton	kg CO ₂ /mmBtu
Municipal Solid Waste ¹	9,95	90.70
Tires	26.87	85.97
Plastics	38.00	75.00
Petroleum Coke	30.00	102.41
Other Fuels (Gaseous)	mmBtu/scf	kg CO ₂ /mmBtu
Blast Furnace Gas	9.20E-05	274.32
Coke Oven Gas	5.99E-04	46.85
Propane Gas	2.52E-03	61.46
Fuel Gas ²	1.39E-03	59.00
Biomass Fuels - Solid	mmBtu/short ton	kg CO ₂ /mmBtu
Wood and Wood Residuals	15.38	93.80
Agricultural Byproducts	8.25	118.17
Peat	8.00	111.84
Solid Byproducts	25.83	105.51
Biomass Fuels - Gaseous	mmBtu/sof	kg CO ₂ /mmBtu
Biogas (Captured methane)	8.41E-04	52.07
Biomass Fuels - Liquid	mmBtu/gallon	kg CO ₂ /mmBtu
Ethanol	0.084	68.44
Biodiesel	0.128	73.84
Rendered Animal Fat	0.125	. 71.06
Vegetable Oil	0.120	81.55

Table C-1 to Subpart C - Default CO₂ Emission Factors and High Heat Values for Various Types of Fuel

¹ Use of this default HHV is allowed only for: (a) units that combust MSW, do not generate steam, and are allowed to use Tier 1; (b) units that derive no more than 10 percent of their annual heat input from MSW and/or tires; and (c) small batch incinerators that combust no more than 1,000 tons of MSW per year.

² Reporters subject to subpart X of this part that are complying with §98.243(d) or subpart Y of this part may only use the default HHV and the default CO_2 emission factor for fuel gas combustion under the conditions prescribed in §98.243(d)(2)(i) and (d)(2)(ii) and §98.252(a)(1) and (a)(2), respectively. Otherwise, reporters subject to subpart X or subpart Y shall use either Tier 3 (Equation C-5) or Tier 4.

Fuel Type	Default CH ₄ Emission Factor (kg CH ₄ /mmBtu)	Default N ₂ O Emission Factor (kg N ₂ O/mmBtu)
Coal and Coke (All fuel types in Table C-1)	1.1E-02	1.6E-03
Natural Gas	(1.0E-03)	(1.0E-04)
Petroleum (All fuel types in Table C-1)	3.0E-03	6.0E-04
Municipal Solid Waste	3.2E-02	4.2E-03
Tires	3.2E-02	4.2E-03
Blast Furnace Gas	2.2E-05	1.0E-04
Coke Oven Gas	4.8E-04	1.0E-04
Biomass Fuels - Solid (All fuel types in Table C-1)	3.2E-02	4.2E-03
Biogas	3.2E-03	6.3E-04
Biomass Fuels - Liquid (All fuel types in Table C-1)	1.1E-03	1.1E-04

Table C-2 to Subpart C - Default CH₄ and N₂O Emission Factors for Various Types of Fuel

Note: Those employing this table are assumed to fall under the IPCC definitions of the "Energy Industry" or "Manufacturing Industries and Construction". In all fuels except for coal the values for these two categories are identical. For coal combustion, those who fall within the IPCC "Energy Industry" category may employ a value of 1 g of CH4/mmBtu.

<u>GRI-HAPCalc ® 3.01</u> Engines Report

Facility ID:NMGCOperation Type:COMPREFacility Name:NMGCUser Name:Units of Measure:Units of Measure:U.S. STA	ESSOR STATION	Notes:	
te: Emissions less than 5.00E-09 tons (These emissions are indicated on th Emissions between 5.00E-09 and 5.0	or tonnes) per year are considered insi e report with a "0". 10E-05 tons (or tonnes) per year are rej	gnificant and are treated as zero. presented on the report with "0.0	000".
	<u></u>	1999 - Marine Marine 1999 - Marine M	
Unit Name: BALDOR/GM			
Hours of Operation:	8,760 Yearly		
Rate Power:	51 hp		
Fuel Type	NATURAL GAS		
Ensine Tuner	4-Stroke Rich Burn		
Engine Type.		:	
Emission Factor Set			
Additional EF Set:	-NONE-		
	Calculated Emiss	ions (ton/yr)	
<u>Chemical Name</u> HARs	Emissions	Emission Factor	Emission Factor S
Eormaldebyde	0.0489	0 09942890 a/bbp-br	GRI Field
Methanol	0.0098	0.02000000 g/bhp-hr	GRI Field
Acetaidehyde	0.0045	0.00920800 g/bhp-hr	EPA
1,3-Butadiene	0.0011	0.00218810 g/bhp-hr	EPA
Acrolein	0.0043	0.00867990 g/bhp-hr	EPA
Benzene	0.0026	0.00521450 g/bhp-hr	EPA
Toluene	0.0009	0.00184160 g/bhp-hr	EPA
Ethylbenzene	0.0000	0.00008180 g/bhp-hr	EPA
Xylenes(m,p,o)	0.0003	0.00064360 g/bhp-hr	EPA
Styrene	0.0000	0.00003930 g/bhp-hr	EPA
Naphthalene	0.0002	0.00032050 g/bhp-hr	EPA
Ethylene Dibromide	0.0000	0.00007030 g/bhp-hr	EPA
Vinyl Chloride	0.0000	0.00002370 g/bhp-hr	EPA
Methylene Chloride	0.0001	0.00013600 g/pnp-nr	EPA
1,1-Dichloroethane	0.0000	0.00003730_g/pnp-nr	EPA
Chlorobenzono	0.0000	0.00004190_g/bhp-hi 0.00004260_g/bhp-hr	FPA
Chloroform	0.0000	0.00004520 g/bhp-hr	EPA
1.1.2-Trichloroethane	0.0000	0.00005050 a/bho-hr	EPA
1,1,2,2-Tetrachioroethane	0.0000	0.00008350 g/bhp-hr	EPA
Carbon Tetrachloride	0.0000	0.00005840 g/bhp-hr	EPA
Tetel	 Π Ω727	· ·	

Criteria Pollutants

	РМ	0.0315	0.06405970 g/bh	np-hr	EPA
	со	7.1344	14.50000000 g/bh	np-hr	GRI Field
	NMEHC	0.0481	0.09769010 g/bh	np-hr	EPA
	NOx ·	9.0041	18.30000000 g/bh	ıp-hr	GRI Field
	SO2	0.0010	0.00194060 g/bh	ıp-hr	EPA
<u>Ot</u>	<u>her Pollutants</u>				
	Butryaldehyde	0.0001	0.00016040 g/bh	ıp-h r	EPA
	Methane	0.3735	0.75907880 g/bh	np-hr	EPA
	Ethane	0.1143	0.23234410 g/bh	np-hr	EPA
	1,2-Dichloroethane	0.0000	0.00003730 g/bh	np-hr	EPA
	1,2-Dichloropropane	0.0000	0.00004290 g/bh	np-hr	EPA
	CO2	178.6241	363.03769350 g/bh	ıp-hr	EPA

•

Unit Name: L 7044 GSI

Hours of Operation:	8,760	Yearly
Rate Power:	1,680	hp
Fuel Type:	NATURAL GA	4S
Engine Type:	4-Stroke, Rich	n Burn
Emission Factor Set:	FIELD > EPA	> LITERATURE
Additional EF Set:	-NONE-	

Calculated Emissions (ton/yr)

	<u>Chemical Name</u>	Emissions	Emission Factor	Emission Factor Set
<u>н</u>	APs			
	Formaldehyde	1.6115	0.09942890 g/bhp-hr	GRI Field
	Methanol	0.3242	0.02000000 g/bhp-hr	GRI Field
	Acetaldehyde	0.1492	0.00920800 g/bhp-hr	EPA
	1,3-Butadiene	0.0355	0.00218810 g/bhp-hr	EPA
	Acrolein	0.1407	0.00867990 g/bhp-hr	EPA
	Benzene	0.0845	0.00521450 g/bhp-hr	EPA
	Toluene	0.0298	0.00184160 g/bhp-hr	EPA
	Ethylbenzene	0.0013	0.00008180 g/bhp-hr	EPA
	Xylenes(m,p,o)	0.0104	0.00064360 g/bhp-hr	EPA
	Styrene	0.0006	0.00003930 g/bhp-hr	EPA
	Naphthalene	0.0052	0.00032050 g/bhp-hr	EPA
	Ethylene Dibromide	0.0011	0.00007030 g/bhp-hr	EPA
	Vinyl Chloride	0.0004	0.00002370 g/bhp-hr	EPA
	Methylene Chloride	0.0022	0.00013600 g/bhp-hr	EPA
	1,1-Dichloroethane	0.0006	0.00003730 g/bhp-hr	EPA
	1,3-Dichloropropene	0.0007	0.00004190 g/bhp-hr	EPA
	Chlorobenzene	0.0007	0.00004260 g/bhp-hr	EPA
	Chloroform	0.0007	0.00004520 g/bhp-hr	EPA
	1,1,2-Trichloroethane	0.0008	0.00005050 g/bhp-hr	EPA
	1,1,2,2-Tetrachloroethane	0.0014	0.00008350 g/bhp-hr	EPA
	Carbon Tetrachloride	0.0009	0.00005840 g/bhp-hr	EPA
То	tal	2.4024		
<u>c</u>	riteria Pollutants			
	PM	1.0383	0.06405970 g/bhp-hr	EPA
	со	235.0150	14.50000000 g/bhp-hr	GRI Field
	NMEHC	1.5834	0.09769010 g/bhp-hr	EPA
03/25/2013	12:03:12	GRI-HAPCalc	3.01	Page 2 of 4

	NOx	296.6051	18.30000000 g/bhp	o-hr GRI Field
	SO2	0.0315	0.00194060 g/bhp	o-hr EPA
<u>Otl</u>	<u>ner Pollutants</u>			
	Butryaldehyde	0.0026	0.00016040 g/bhp	o-hr EPA
	Methane	12.3031	0.75907880 g/bhp	p-hr EPA
	Ethane	3.7658	0.23234410 g/bhp	o-hr EPA
	1,2-Dichloroethane	0,0006	0.00003730 g/bhp	o-hr EPA
	1,2-Dichloropropane	0,0007	0.00004290 g/bhp	o-hr EPA
	CO2	5,884.0893	363.03769350 g/bhp	o-hr EPA

Unit Name: L7042GL

Hours of Operation:	8,760 Yearly
Rate Power:	1,478 hp
Fuel Type:	NATURAL GAS
Engine Type:	4-Stroke, Lean Burn
Emission Factor Set:	EPA > FIELD > LITERATURE
Additional EF Set:	-NONE-

Calculated Emissions (ton/yr)

Chemical Name	_Emissions_	Emission Factor	Emission Factor Set
HAPs			
Tetrachloroethane	0.0001	0.00000820 g/bhp-hr	EPA
Formaldehyde	2.4848	0.17425810 g/bhp-hr	EPA
Methanol	0.1177	0.00825090 g/bhp-hr	EPA
Acetaldehyde	0.3934	0.02759090 g/bhp-hr	EPA
1,3-Butadiene	0.0126	0.00088120 g/bhp-hr	EPA
Acrolein	0.2419	0.01696380 g/bhp-hr	EPA
Benzene	0.0207	0.00145220 g/bhp-hr	EPA
Toluene	0.0192	0.00134650 g/bhp-hr	EPA
Ethylbenzene	0.0019	0.00013100 g/bhp-hr	EPA
Xylenes(m,p,o)	0.0087	0.00060730 g/bhp-hr	EPA
2,2,4-Trimethylpentane	0.0118	0.00082510 g/bhp-hr	EPA
n-Hexane	0.0522	0.00366340 g/bhp-hr	EPA
Phenol	0.0011	0.00007920 g/bhp-hr	EPA
Styrene	0.0011	0.00007790 g/bhp-hr	EPA
Naphthalene	0.0035	0.00024550 g/bhp-hr	EPA
2-Methylnaphthalene	0.0016	0.00010960 g/bhp-hr	EPA
Acenaphthylene	0.0003	0.00001830 g/bhp-hr	EPA
Biphenyl	0.0100	0.00069970 g/bhp-hr	EPA
Acenaphthene	0.0001	0.00000410 g/bhp-hr	EPA
Fluorene	0.0003	0.00001870 g/bhp-hr	EPA
Phenanthrene	0.0005	0.00003430 g/bhp-hr	EPA
Ethylene Dibromide	0.0021	0.00014620 g/bhp-hr	EPA
Fluoranthene	0.0001	0.00000370 g/bhp-hr	EPA
Pyrene	0.0001	0.00000450 g/bhp-hr	EPA
Chrysene	0.0000	0.00000230 g/bhp-hr	EPA
Benzo(b)fluoranthene	0.0000	0.0000050 g/bhp-hr	EPA
Benzo(e)pyrene	0.0000	0.00000140 g/bhp-hr	EPA
Benzo(g,h,i)perylene	0.0000	0.00000140 g/bhp-hr	EPA
Vinyl Chloride	0.0007	0.00004920 g/bhp-hr	EPA
Methylene Chloride	0.0009	0.00006600 g/bhp-hr	EPA
1,1-Dichloroethane	0.0011	0.00007790 g/bhp-hr	EPA

1,3-Dichloropropene	0.0012	0.00008710 g/bhp-hr	EPA
Chlorobenzene	0.0014	0.00010030 g/bhp-hr	EPA
Chloroform	0.0013	0.00009410 g/bhp-hr	EPA
1,1,2-Trichloroethane	0.0015	0.00010500 g/bhp-hr	EPA
1,1,2,2-Tetrachloroethane	0.0019	0.00013200 g/bhp-hr	EPA
Carbon Tetrachloride	0.0017	0.00012110 g/bhp-hr	EPA
Total	3.3975		
<u>Criteria Pollutants</u>			
РМ	0.4700	0.03296090 g/bhp-hr	EPA
со	14.9180	1.04620860 g/bhp-hr	EPA
NMEHC	5.5531	0.38944040 g/bhp-hr	EPA
NOx	192.0047	13.46539810 g/bhp-hr	EPA
SO2	0.0277	0.00194060 g/bhp-hr	EPA
Other Pollutants			
Butryaldehyde	0.0048	0.00033330 g/bhp-hr	EPA
Chloroethane	0.0001	0.00000620 g/bhp-hr	EPA
Methane	58.8250	4.12542830 g/bhp-hr	EPA
Ethane	4.9413	0.34653600 g/bhp-hr	EPA
Propane	1.9718	0.13828440 g/bhp-hr	EPA
Butane	0.0255	0.00178550 g/bhp-hr	EPA
Cyclopentane	0.0107	0.00074920 g/bhp-hr	EPA
n-Pentane	0.1224	0.00858090 g/bhp-hr	EPA
Methylcyclohexane	0.0579	0.00405940 g/bhp-hr	EPA
1,2-Dichloroethane	0.0011	0.00007790 g/bhp-hr	EPA
1,2-Dichloropropane	0.0013	0.00008880 g/bhp-hr	EPA
n-Octane	0.0165	0.00115840 g/bhp-hr	EPA
1,2,3-Trimethylbenzene	0.0011	0.00007590 g/bhp-hr	EPA
1,2,4-Trimethylbenzene	0.0007	0.00004720 g/bhp-hr	EPA
1,3,5-Trimethylbenzene	0.0016	0.00011160 g/bhp-hr	EPA
n-Nonane	0.0052	0.00036300 g/bhp-hr	EPA
CO2	5,176.5977	363.03769350 g/bhp-hr	EPA

Certification of Truth, Accuracy and Completeness

Company Name: New Mexico Gas Company

Certification of Truth, Accuracy and Completeness

Company Name: New Mexico Gas Company

_____, hereby certify, based on information and belief formed after reasonable inquiry, Peter For I, _

the statements and information are true, accurate, and complete.

Signed this 29 day of March , 2013, upon my oath or affirmation.

Jeh Sod ature Poter Ford Signature

<u>3/29/2013</u> Dave Eng Mgr.