Review of Ammonia Emission Modeling Techniques for Natural Landscapes and Fertilized Soils

EPA Contract No. 68-D-02-064 Work Assignment No. 2-09 EC/R Project No. PRD-209

Prepared by:

William Battye Robin Barrows

Prepared for

Thomas Pierce, Work Assignment Manager U.S. Environmental Protection Agency Research Triangle Park, North Carolina 27711

May 2004

Disclaimer

Although the research described in this document has been funded wholly by the United States Environmental Protection Agency contract 68-D-98-006 to EC/R Incorporated, it has not been subject to the Agency's review and does not necessarily reflect the views of the Agency, and no official endorsement should be inferred.

Contents

Page
Abstract
Executive Summary
Natural Landscapes
Background
Recommended Emission and Temporal Allocation Factors for Natural Landscapes S-2
Recommended Model for Natural Landscapes
Fertilized Soils
Background
Recommended Emission and Temporal Allocation Factors for Fertilized Soils S-6
References for Executive Summary S-9
Introduction
Natural Landscapes
Emissions Data
Treatment of Natural Landscapes in Existing Emissions Inventories
Available Emission and Deposition Models
Recommended Model for Estimating Emissions
Sensitivity Analysis
Default Emission and Temporal Allocation Factors
Fertilized Soils
Emissions Data
Direct Emissions from Fertilizer Application
Emissions from Maturing Crops
Emissions from Fallow Soil
Treatment of Fertilized Soils in Existing Emissions Inventories
Direct Emissions from Fertilizer Application
Emissions from Maturing Crops and Fallow Soils
Available Emission Models
Recommended Approach for Estimating Emissions
Conclusions and Recommendations
References

Contents

(Continued)

Appendices

- A. Bibliography of Sources Related to Ammonia Emissions from Natural Landscapes
- B. Bibliography of Sources Related to Ammonia Emissions from Fertilizer

Draft

<u>Page</u>

Figures

Figure S1. Model-predicted diurnal variations in emission flux components for a typical summer day.
Figure S2. Diurnal allocation factors for fertilizer application
Figure 1. Diurnal pattern in spring forest emissions for a day with an apparent net emission flux 5
Figure 2. Model-predicted diurnal variations in emission flux components for a typical summer day. 14
Figure 3. Estimated seasonal variability for a pine forest
Figure 4. Sensitivity of net emissions to tree-specific inputs for stomatal resistance
Figure 5. Sensitivity of estimate net emissions to apoplastic NH_4^+ to H^+ ratio
Figure 6. Sensitivity of estimated net emissions to humidity response coefficient
Figure 7. Sensitivity of estimated net emissions to minimum cuticular resistance
Figure 8. Comparison of proposed diurnal allocation factors with measured and modeled
diurnal values
Figure 9. Day-to-day variation in NH ₃ emissions after fertilizer application
Figure 10. Cumulative NH ₃ emissions after fertilizer application
Figure 11. Hourly NH ₃ Emissions from Urea Fertilizers
Figure 12. Diurnal allocation factors for NH ₃ from fertilizer, crops, and fallow soil, compared with the
profile for nitric oxide from soil

Tables

Page

Table S1. Default Emission Factors for Natural Landscapes S-2
Table S2. Proposed Temporal Allocation factors for Natural Landscapes S-3
Table S3. Recommended Emission Factors for Direct NH ₃ Emissions from Fertilizer S-7
Table S4. Recommended Hourly Temporal Allocation Factors for Fertilized Soils
Table 1. Summary of Emissions Measurements for Natural Landscapes 4
Table 2. Example Values for the Apoplastic Ratio of NH_4^+ to H^+
Table 3. Stomatal Resistance Parameters for Natural Vegetation 11
Table 4. Default Emission Factors for Natural Landscapes 17
Table 5. Proposed Temporal Allocation factors for Natural Landscapes 17
Table 6. Summary of Emission Factors for Ammonia from Fertilizers 20
Table 8. Classification System for Emission Factors 25
Table 8. Overview of Available Models for Fertilizer Emissions 28
Table 9. Recommended Emission Factors for Direct NH ₃ Emissions from Fertilizer
Table 10. Factors for Calculating Daily NH ₃ Emissions when the Date of Fertilizer Application is
Known
Table 11. Recommended Hourly Temporal Allocation Factors for Fertilized Soils 33

Abstract

The U.S. EPA and the Emissions Inventory Improvement Program (EIIP) have funded an effort to identify procedures for estimating short-term emissions from fertilized soils and natural landscapes. This effort is building upon the Carnegie-Mellon University methodology and enables improvements to hourly ammonia emissions estimates for regional air quality modeling assessments. Simulating fine-particulate (PM_{2.5}) concentrations in regional air quality models requires a representation of the emissions of ammonia. Air quality simulation modeling efforts are being hampered by uncertainties in the temporal and spatial patterns of ammonia emissions. These uncertainties are particularly large for natural landscapes and fertilized soils. A model is proposed to reflect the bi-directional movement of NH₃ into and out of natural landscapes. This model provides an improved characterization of diurnal variations in NH₃ flux, including the tendency of landscapes to emit NH₃ during warm conditions and absorb the gas at night. Improved emission factors and diurnal allocation factors are given for direct NH₃ emissions following the application of fertilizer. Monthly fertilizer application estimates developed by Carnegie-Mellon University should be used in determining monthly variations in fertilizer emissions.

Executive Summary

Ammonia (NH₃) is emitted to the atmosphere from a variety of natural processes and human activities. NH₃ reacts with other pollutants in the atmosphere to produce secondary particulate species, including ammonium sulfates (NH₄HSO₄ and [NH₄]₂SO₄) and ammonium nitrate (NH₄NO₃). These compounds are important constituents of ambient particulate matter (PM_{2.5}), and contribute to exceedences of the PM_{2.5} National Ambient Air Quality Standards (NAAQS) as well as to visibility impairment at many locations in the U.S.

The U.S. Environmental Protection Agency (EPA) has developed atmospheric simulation models to analyze the formation and transport of $PM_{2.5}$, and to assist in the evaluation of potential air pollution control strategies. However, efforts to assess the formation of sulfate and nitrate particulate matter have been hampered by variations and uncertainties in the temporal and spatial patterns of NH_3 emissions. These variations and uncertainties are particularly large for NH_3 emissions from fertilized soils and natural landscapes.

The EPA and the Emissions Inventory Improvement Program (EIIP) have funded an effort to identify procedures for estimating short-term NH_3 emissions from fertilized soils and natural landscapes, the results of which are reported in this document. This research is aimed at improving hourly NH_3 emissions estimates for regional air quality modeling assessments. This report is organized in two main sections, the first addressing NH_3 emissions from natural landscapes, and the second addressing NH_3 emissions from fertilized soils.

Natural Landscapes

Background

Plants will either absorb or give off NH_3 , depending on the concentration of NH_4^+ ion in the plant, and the concentration of NH_3 gas in the surrounding air. The equilibrium air concentration has been termed the "compensation point." When the atmospheric concentration of NH_3 is above the compensation point, the plant will absorb NH_3 . Below the compensation point, the plant will give off NH_3 . The compensation point depends on the temperature, plant species, and the level of nitrogen nutrient in the plant.

Short term NH_3 fluxes from natural landscapes range from large deposition values to large emission values. The magnitude and direction of NH_3 flux depends on the NH_3 concentration in the air, levels of ammonium in leaves and in the soil, other conditions of vegetation, and meteorological and climactic conditions. Measured NH_3 fluxes over short time spans (typically less than one day) range from – 1300 to 700 nanograms per square meter per second (ng m⁻² s⁻¹), where negative values denote deposition. Longer term average NH_3 fluxes are much lower than short term peaks, but still

vary over a wide range. Estimates of annual average emissions from forested landscapes range from -9.1 to 38 ng m⁻² s⁻¹.

Emissions estimates from natural landscapes account for the largest differences among current NH₃ emissions inventories. EPA's National Emissions Inventory (NEI) does not include emissions estimates for natural landscapes, because of the variability of flux rates, and because they can act as either net sources or net sinks of NH₃.¹ A number of European inventories also exclude NH₃ emissions from natural landscapes. However, NH₃ emissions from landscapes are included in the the Central States Regional Air Planning Association (CENRAP) emissions inventory,² as well as in a number of state emissions NH₃ inventories. A recent national emissions inventory by Carnegie Mellon University (CMU) also includes NH₃ natural landscapes, although these emissions estimates are characterized as highly uncertain.³

Recommended Emission and Temporal Allocation Factors for Natural Landscapes

Table S1 lists recommended annual NH_3 emission factors for natural landscapes. These recommendations are based on a compilation of measured long-term average flux rates, as well as theoretical values estimated by Bouwman *et al.* (1997) based on nitrogen compound mineralization rates for natural soils.⁴ Table S1 also estimates total annual NH_3 emission rates that would be obtained by applying these emission factors to natural landscapes in the continental U.S.

Table S2 gives recommended temporal allocation factors for natural landscapes. The diurnal factors are based on modeling of natural landscape emissions (discussed below), and some limited diurnal emission measurements. The seasonal allocation factors in Table S2 are based on limited seasonal emission measurements.

Natural Landscapes				
	Emission factor	Estimated total emissions in the continental U.S.		
Type of vegetation	$(ng m^{-2} s^{-1})$	(Gg/yr)		
Forests	1.2	58		
Grasslands	0.9	32		
Shrub Lands	1.3	46		
Deserts	0.3	0.4		
Total		137		

Table S1. Default Emission Factors for
Natural Landscapes

	Fraction of
Time period	emissions
Seasonal	
Spring	0.143
Summer	0.714
Autumn	0.143
Winter	0.000
Diurnal (hour)	
1	0.000
2	0.000
3	0.000
4	0.000
5	0.000
6	0.013
7	0.023
8	0.034
9	0.052
10	0.071
11	0.086
12	0.097
13	0.109
14	0.120
15	0.120
16	0.108
17	0.086
18	0.056
19	0.022
20	0.000
21	0.000
22	0.000
23	0.000
24	0.000

Table S2. Proposed Temporal Allocationfactors for Natural Landscapes

Recommended Model for Natural Landscapes

A approach for estimating NH_3 from natural landscapes is proposed based on a model developed by Sutton *et al.* (1995).⁵ The overall flux from landscapes can be divided into two terms: (1) an emission flux that is dependent on the stomatal compensation point and independent of ambient NH_3 concentration, and (2) a deposition flux that is dependent on the ambient concentration and independent of stomatal compensation point:

$$F = F_{emis} - F_{depos}$$
(S1)

where F_{emis} is the gross potential emission flux if the ambient NH₃ concentration equals zero; and, F_{depos} is the the amount that the potential flux is reduced by in the presence of ambient NH₃. F_{emis} could be calculated to provide input to the atmospheric simulation model, while F_{depos} could be calculated within the atmospheric simulation model, and would replace the deposition rate for natural landscapes. When the Sutton model is rearranged, F_{emis} and F_{depos} can be computed as follows:

$$F_{emis} = \frac{C_s}{R_s + (R_a + R_b)(R_s / R_w + 1)}$$
(82)

$$F_{depos} = \frac{C_a (R_s + R_w)}{R_w R_s + (R_a + R_b)(R_s + R_w)}$$
(83)

where C_c is the canopy average compensation point (µg m⁻³), C_s is the stomatal compensation point (µg m⁻³), R_w is the cuticular resistance (s m⁻¹), and R_s is the stomatal resistance (s m⁻¹). The stomatal compensation point concentration C_s is determined by the apoplastic concentrations of NH₄⁺ and H⁺ in the leaf, the dissociation constant for NH₄⁺, and the Henry's Law constant for NH₃. The cuticular resistance R_w is a function of relative humidity, and is also specific to the type of vegetation. This model reproduces bi-directional fluxes using a relatively simple parameterization of leaf uptake using resistance terms.

Figure 2 graphs the results of the recommended model for a midlatitude conifer forest on a summer day (high temperature = 30° C, relative humidity = 50%). The graph shows the diurnal pattern of the estimated net emission flux, and also breaks the net flux down into the components given by equations (S2) and (S3).

Fertilized Soils

Background

This report addresses NH_3 emissions from synthetic nitrogen fertilizers. Animal wastes are also widely used to meet the nitrogen requirements of crops, and are also a source of NH_3 emissions. However, these emissions are included in the animal husbandry category of the NEI. The NEI estimates NH_3 emissions from synthetic fertilizers at about 630 Gg/year, or 21% of total emissions from all sources.¹

The magnitude of NH_3 emissions from fertilizer application varies widely depending on the type of fertilizer used, the crop upon which the fertilizer is applied, the timing of application with respect to crop needs, the amount of fertilizer, application techniques, soil moisture content, other soil conditions, and meteorological conditions. The majority of NH_3 emissions occur within a few days of fertilizer application. However, NH_3 emissions have also been measured from maturing crops and from fallow fields after crop harvest.

 NH_3 emissions inventories for synthetic fertilizer application are calculated by applying emission factors to activity data derived from fertilizer sales statistics. In the EPA NEI, fertilizer activity data are based on annual sales of different fertilizer compounds at the state level.¹ These annual sales are

allocated to seasons using national seasonal allocation factors, and state level sales data are allocated to counties based on the acreage devoted to agriculture in each county. The CMU NH₃ emissions inventory provides extensive refinements in the spatial and seasonal allocation of fertilizer application.³ The CMU inventory uses semiannual sales data for 1995 from the Association of American Plant Food Control Officials (AAPFCO), which are available at the county-level. Additionally, the CMU model includes data from the US Geological Survey (USGS) for fertilizer sales to farmers by county for 1987 through 1991. This information was combined with information from National Agricultural Statistics Service (NASS) crop calendars to estimate monthly fertilizer application rates for each county. The CENRAP inventory used an approach similar to CMU but combined the semiannual sales data before carrying out the monthly allocation based on crop calendars.² The CENRAP inventory also used updated 2002 AAPFCO sales data.

A number of emission models have been developed to evaluate the impacts of different fertilizer application conditions on evaporative losses of NH₃. These models offer some insight into the factors affecting NH₃, but present versions are not adaptable to the calculation of emission rates or temporal emission variations. In general, the NH₃ models require inputs for a wide array of parameters, including fertilizer application rate, time since application, soil type, pH, soil temperature, soil moisture content, air temperature, and wind speed. These parameters, especially the time since application, are not available on geographical scales above an individual farm. In addition, most of the NH₃ models were developed for fertilizers derived from animal wastes, and may not be transferable to chemical fertilizers.

Recommended Emission and Temporal Allocation Factors for Fertilized Soils

Table S3 gives recommended NH_3 emission factors for fertilizer application. These factors are based on estimates made by the European Environment Agency 2001 (EEA), which vary with soil type (pH) and climate.⁶ These EEA emission factors have also been used in the CENRAP and CMU NH_3 inventories.

As noted earlier, Carnegie Mellon University has developed monthly estimates of fertilizer usage at the county level, based on crop calendars and fertilizer sales. Since most of the direct emissions from fertilizer occur within a few days of application, emissions in a given month can be estimated based on the fertilizer application for that month. This method gives greater accuracy than applying temporal allocation factors to an annual estimate. Therefore, we recommend using the CMU monthly fertilizer application data, and implementing equation (12) separately for each county and each month. The current NEI Input Format (NIF) gives the flexibility to store activity data (in this case fertilizer usage) in other time frames, including by month. This current report also outlines an approach for taking into account daily variations in NH₃ emissions when the date of fertilizer application is known.

	Emission factors based on fertilizer application (kg-NH ₃ / Mg-N)			Emission factors based on fertilizer application (lb-NH ₃ / ton-N)		
Fertilizer	Group I soils	Group II soils	Group III soils	Group I soils	Group II soils	Group III soils
Anhydrous ammonia	48	48	48	97	97	97
Nitrogen solutions (urea & AN)	97	97	97	194	194	194
Urea	242	182	182	484	363	363
Diammonium phosphate	61	61	61	121	121	121
Ammonium nitrate (AN)	36	24	12	73	48	24
Liquid ammonium polyphosphate	61	61	61	121	121	121
Aqueous ammonia	97	97	97	194	194	194
Ammonium thiosulfate	30	30	30	61	61	61
Calcium ammonium nitrate	36	24	12	73	48	24
Potassium nitrate	12	12	12	24	24	24
Monoammonium phosphate	61	61	61	121	121	121
Ammonium sulfate	182	121	61	363	242	121
Miscellaneous	97	73	48	194	145	97
Mix	36	24	12	73	48	24

Table S3. Recommended Emission Factors for Direct NH₃ Emissions from Fertilizer

Group I: Warm, temperate areas with a large proportion of calcareous soils

Group II: Temperate and warm-temperate areas with some calcareous soils (or managed with soil pH>7), but with large areas of acidic soils

Group III: Temperate and cool-temperate areas with largely acidic soils

The factors in Table S3 cover NH₃ emissions following fertilizer application. Crops have been shown to continue emitting NH₃ during the growing season. Emissions have also been measured from fallow soil following the harvest a crop. Combined, these emissions could represent an increase of about 10-20% above the emissions directly following fertilizer application. Because these emission rates were measured well after fertilizer application, they do not appear to be already included in the direct fertilizer emission factors. In many cases, however, emissions from maturing crops and fallow soils emissions may result from nitrogen-rich soil conditions produced by periodic applications of animal wastes to fields. As a result, it is believed that these emissions are generally already counted in emissions estimates for the animal husbandry category of the NEI.

Table S4 gives recommended diurnal allocation factors for direct emissions from fertilizer, emissions from crops, and emissions from fallow soil. Figure S2 compares the fertilizer factors those recently used in the CENRAP inventory (which were based on nitrogen oxide emissions from soil).

	Hourly allocation factor (fraction of daily emissions)			
	Fertilizer and			
Hour	fallow soil	Crops		
1	0.014	0.000		
2	0.013	0.000		
3	0.013	0.000		
4	0.015	0.000		
5	0.019	0.002		
6	0.022	0.015		
7	0.028	0.026		
8	0.038	0.039		
9	0.046	0.052		
10	0.051	0.066		
11	0.061	0.081		
12	0.069	0.094		
13	0.071	0.104		
14	0.074	0.110		
15	0.077	0.110		
16	0.072	0.103		
17	0.065	0.089		
18	0.059	0.069		
19	0.052	0.039		
20	0.039	0.000		
21	0.028	0.000		
22	0.027	0.000		
23	0.024	0.000		
24	0.022	0.000		

Table S4. Recommended Hourly TemporalAllocation Factors for Fertilized Soils

Figure S2. Diurnal allocation factors for fertilizer application.

References for Executive Summary

- 1. EPA (2003). *1999 National Emissions Inventory Draft Version 3*. U.S. Environmental Protection Agency, RTP, NC. <u>http://www.epa.gov/ttn/chief/net/1999 inventory.html</u>
- 2. Coe, Dana L. and Stephen B. Reid (2003). *Research and Development of Ammonia Emission Inventories for the Central States Regional Air Planning Association*, STI-902501-2241-FR. Sonoma Technologies Inc., Petaluma, CA.
- 3. Davidson, Cliff, et al. (2003). CMU Ammonia Emission Inventory for the Continental United States. Carnegie Mellon University. <u>http://www.cmu.edu/ammonia/</u>
- Bouwman, A.F., D.S. Lee, W.A.H. Asman, F.J. Dentener, K.W. Van Der Hoek, and J.G.F. Olivier (1997). "A global high-resolution emission inventory for ammonia." *Global Biogeochemical Cycles.* 11: 561-587.
- 5. Sutton, M.A., J.K. Schjorring, and G.P. Wyers (1995). "Plant-atmosphere exchange of ammonia." *Philosophical Transactions of the Royal Society of London*. **351**: 261-278.
- 6. EEA (2002). *Atmospheric Emission Inventory Guidebook 3rd Edition*. European Environment Agency.

Introduction

Ambient concentrations of fine particulate matter ($PM_{2.5}$) have moved to the forefront of environmental and health issues in the United States over the last 10 years. $PM_{2.5}$ is one of the six criteria pollutants defined in the Clean Air Act (CAA), and can lead to regional haze and reduced visibility. The U.S. Environmental Protection Agency (EPA) is evaluating emission reduction strategies for implementing the 1997 National Ambient Air Quality Standards (NAAQS) for $PM_{2.5}$. EPA has also established Regional Haze Regulations to reduce emissions from air pollutants that cause visibility impairment. Ambient $PM_{2.5}$ is comprised both of particles that are directly emitted to the air, and of secondary particulates, formed from reactions of gaseous pollutants in the atmosphere.

Ammonia (NH₃) reacts with other pollutants in the atmosphere to produce secondary particulate species, including ammonium sulfates (NH₄HSO₄ and [NH₄]₂SO₄) and ammonium nitrate (NH₄NO₃). These pollutants account for up to 50% of the total mass of PM_{2.5} in many areas of the U.S. The development of cost-effective control strategies for PM_{2.5} will hinge on a thorough understanding of the relative abundance and distribution not only of primary PM_{2.5} emissions, but also of secondary PM_{2.5} precursor emissions.

The U.S. EPA has developed atmospheric simulation models to analyze the formation of secondary $PM_{2.5}$, and the atmospheric transport of $PM_{2.5}$ and its precursors. These models rely on detailed emissions inventories for primary $PM_{2.5}$ and secondary $PM_{2.5}$ precursors. Efforts to simulate the formation of secondary $PM_{2.5}$ have been hampered by variations and uncertainties in the temporal and spatial patterns of NH_3 emissions. These variations and uncertainties are particularly large for fertilized soils and natural landscapes.

Natural landscapes have not been included to date in EPA National Emissions Inventories (NEI) for NH₃ because of large uncertainties in their emission rates.¹ In fact, forests and other natural systems can alternate between emitting and absorbing NH₃. A recent national emissions inventory by Carnegie Mellon University (CMU) estimates that annual NH₃ from natural landscapes may be as high as 1.3 Tg yr⁻¹ (1.4 million tons/yr), or about 16% of the total emissions in the continental U.S. (Davidson *et al.*, 2003).² Short term emission fluxes from natural landscapes can be orders of magnitude higher than long term fluxes. In addition, studies have shown an equilibrium between ammonia in the air and ammonium compounds in plant leaves. As a result, trees, crops and other plants might release more ammonia if emissions from other sources are reduced.

The 1999 NEI estimates that about 630 Gg/year (690,000 tons/year) of NH₃ emissions emanate from the application of synthetic nitrogen fertilizers to soil and crops. This is about 21% of total NH₃ from all anthropogenic sources. A more recent estimate of NH₃ emissions from fertilizers is available in the CMU inventory. The CMU inventory estimates direct NH₃ emissions following the application of fertilizer at 890 Gg yr⁻¹ (970,000 tons/yr) or about 16% of total annual NH₃ emissions.² Emissions from fertilizer usage are concentrated in a short period of time (1 to 2 weeks) after the application of fertilizer.

The EPA and the Emissions Inventory Improvement Program (EIIP) have funded an effort to identify procedures for estimating short-term NH_3 emissions from fertilized soils and natural landscapes, the results of which are reported in this document. This research is aimed at improving hourly ammonia emissions estimates for regional air quality modeling assessments. This report is organized in two main sections, the first addressing NH_3 emissions from natural landscapes, and the second addressing NH_3 emissions from fertilized soils.

Draft

Natural Landscapes

Natural landscapes can alternate between emitting ammonia (NH_3) and absorbing the gas from the atmosphere, depending on the NH_3 concentrations in the air, in the soil, and in plant tissues. Microbial reactions in soils convert organic nitrogen compounds to ammonium (NH_4^+) compounds in a process termed mineralization. These NH_4^+ compounds can, in turn, produce NH_3 emissions if the soil is alkaline. However, soils can absorb NH_3 from the air if the concentration in the air is high, and NH_3 is also deposited to soils in rainfall.

Plants also will either absorb or give off NH_3 , depending on the concentration of NH_4^+ ion in the plant, and the concentration of NH_3 gas in the surrounding air. The equilibrium air concentration has been termed the "compensation point" (Farquhar *et al*, 1980).³ When the atmospheric concentration of NH_3 is above the compensation point, the plant will absorb NH_3 . Conversely, when the atmospheric concentration of NH_3 is below the compensation point, the plant will give off NH_3 . The compensation point depends on the temperature, plant species, and the level of nitrogen nutrient in the plant.

Emissions Data

Table 1 summarizes available information on NH_3 emission and deposition fluxes in natural landscapes. Short term NH_3 fluxes can range from large deposition values to large emission values. As Table 1 shows, measured fluxes over short time spans (typically less than one day) range from -1300 to 700 nanograms per square meter per second (ng m⁻² s⁻¹), where negative values denote deposition. For instance, Wyers and Erisman (1998) detected fluxes from -1000 to 700 ng m⁻² s⁻¹ in measurements over a 2– year period in a Douglas fir forest in the Netherlands.⁴ As Table 1 shows, other researchers have also detected NH_3 fluxes over this broad range. Wyers and Erisman (1998) found that NH_3 emissions occurred mainly during the day and in warmer weather. They found that nighttime NH_3 fluxes were dominated by deposition, and deposition was also dominant during wet conditions. Pryor *et al.* (2001) found that the average flux in the spring tended toward deposition for a Southern Indiana deciduous forest. However, emission fluxes as high as 55 ng m⁻² s⁻¹ were also detected.⁵ Figure 1 shows the diurnal pattern of emissions on a day when there was an apparant net emission flux from this study.

Longer term average NH_3 fluxes are much lower than short term peaks, but still vary over a wide range. For instance, in a pine forest on the eastern slope of the Rocky Mountains, Langford and Fehsenfeld (1992) measured a deposition flux averaging about 10 ng m⁻² s⁻¹ when the forest was exposed to NH_3 -rich air, contrasted with an emission flux averaging about 1.2 ng m⁻² s⁻¹ when the forest was exposed to clean air from the mountains.⁶ Wyers and Erisman (1998) also found that long-term average fluxes varied from year to year in the same forest.⁴

	Range of NH ₃ flux (ng-NH ₃ m ⁻² s ⁻¹) ^a	
Landscape	Long term ^b	Short term ^c
Temperate forests		
Anderson, S. <i>et al.</i> $(2003)^7$	0.03 to 0.05 $^{\rm d}$	
Pryor <i>et al.</i> $(2001)^5$	-0.23	up to +55
Wyers and Erisman (1998) ⁴	0.16 to 0.44	-1000 to +700
Andersen, H.V. <i>et al.</i> $(1999)^8$	-9.1	
Langford and Fehsenfeld (1992) ⁶	-10 to +1.2 °	
Bouwman et al. (1997) ⁹ - review of previous tests	$0.06^{\rm f} - 3^{\rm g}$	
- calculated from mineralization rates	0.3	
Schlesinger and Hartley (1992) - based on a review of 6 earlier studies ¹⁰	3.8 - 38	
Andersen, H.V. et al. (1993) ^{11, h}		-300 to +50
Duyzer <i>et al.</i> (1994) ^{12, h}		-1300 to +300
Sutton <i>et al.</i> $(1995)^{13, h}$		-950 to +630
Kim <i>et al.</i> $(1973)^{14}$		570
Unfertilized grassland		
Sutton <i>et al.</i> (1993) ^{15, h}		-31 to -0.19
Schlesinger and Hartley (1992) - based on a review of 10 earlier studies ^{10}	0.38 – 38	
Bouwman et al. (1997) ⁹ - review of previous tests	< 0.3 - 6	
- calculated from mineralization rates	0.9	
Shrub land		
Bouwman et al. $(1997)^9$ - review of previous tests	< 0.16	
- calculated from mineralization rates	1.3	
Deserts		
Bouwman <i>et al.</i> $(1997)^9$ - review of previous tests	0.16 - 1.6	
- calculated from mineralization rates	0.3	
^a Positive values denote emissions, negative values denote deposit	ion.	

 Table 1. Summary of Emissions Measurements for Natural Landscapes

^b Annual unless otherwise noted.

^c Typically less than one day.

^d Isolation chamber measurements for forest soil.

^e Deposition occurred when the forest was exposed to NH₃-rich air from emission source regions,

and emissions occurred when the forest was exposed to clean air.

^fAutumn and winter.

^g Summer.

^h As cited by Asman, *et al.* (1998).¹⁶

Figure 1. Diurnal pattern in spring forest emissions for a day with an apparent net emission flux (Pryor et al, 2001)

Schlesinger and Hartley (1992) estimated annual average average emissions based on a review of previous test data.¹⁰ NH₃ emissions were estimated at 4 to 38 ng m⁻² s⁻¹ for forests (based on 6 studies); and 0.04–0.38 ng m⁻² s⁻¹ from grasslands (based on 10 studies). Bouwman *et al.* (1997) have also estimated annual average emission rates for natural landscapes, based on a review of measurement data and on order-of-magnitude estimates of nitrogen mineralization rates in different ecosystems.⁹ Long-term average NH₃ emissions were estimated at 0.3 ng m⁻² s⁻¹ from forests, 0.95 ng m⁻² s⁻¹ from unfertilized grassland, 1.3 ng m⁻² s⁻¹ from shrubland, and 0.3 ng m⁻² s⁻¹ from deserts. However, some researchers have also found net deposition fluxes on a long-term basis. H.V. Andersen *et al.* (1999) also measured an average deposition flux of 9.1 ng m⁻² s⁻¹ over all four seasons in a spruce forest in Denmark.⁸ Also, As noted earlier, Pryor *et al.* (2001) found that the flux in the spring was primarily directed toward deposition for a southern Indiana deciduous forest.⁵

Treatment of Natural Landscapes in Existing Emissions Inventories

Emissions estimates from natural landscapes account for the largest differences among current NH_3 emissions inventories. Some inventories include emissions estimates for natural landscapes. Others exclude natural landscapes because of the variability of flux rates, and because they can act as either net sources or net sinks of NH_3 .

The EPA emission factor report for NH₃ gives a range of potential emission rates for natural landscapes but does not recommend emission rates for developing an emissions inventory.¹⁷ EPA's National Emissions Inventory (NEI) does not include emissions estimates for natural landscapes.¹ A

number of European inventories also exclude NH₃ emissions from natural ecosystems, including estimates by Hov and Hjollo (1994) for Europe as a whole,¹⁸ Hutchings *et al.* (2001) for Denmark,¹⁹ and Sutton *et al.* (1995, 2000) for England.^{20,21} Sutton (2000) indicates that any emissions from natural ecosystems are minor and temporary, and are outweighed by dry deposition.

In an initial estimate for the state of Texas, Corsi *et al.* (2000) estimated NH₃ emissions from natural landscapes at about 52% of the statewide annual emissions inventory.²² However, this initial estimate used a relatively high emission factor based on short-term measurements by Kim *et al.* (see Table 1). Recent soil tests carried out in Texas have reduced the estimated contribution of natural landscapes to about 3% of statewide emissions (Anderson *et al.* 2003).⁷

 NH_3 emissions from natural landscapes are included as part of a soils and vegetation category in an inventory for the San Joaquin Valley (SJV) region of California (Coe *et al.*, 1998).²³ The SJV inventory used NH_3 emission factors of 12 ng m⁻² s⁻¹ for forests and 17 ng m⁻² s⁻¹ for grasslands. With the above emission factors, forests and unfertilized grasslands accounted for roughly 20% of the overall SJV ammonia inventory. The same emission factors were used in a separate inventory for the South Coast Air Quality Management District (SCAQMD).²⁴

In a later case study inventory for the SJV region, Battye *et al.* (2003) used lower emission factors for natural landscapes, and estimated their contribution to overall regional NH₃ emissions at 5%. This estimate was derived using NH₃ emission factors of 3.8 ng m⁻² s⁻¹ for forests, 0.95 ng m⁻² s⁻¹ for grasslands, and 1.3 ng m⁻² s⁻¹ for scrub brush,²⁵ based on the recommendations of Bouwman *et al.*⁹ and Schlesinger and Hartley.¹⁰ This set of factors was also used in an invenotry for the Central U.S. which estimated the contribution of natural emissions at about 7% of overall regional NH₃ emissions (Coe and Reid, 2003).²⁶

The current Carnegie Mellon University (CMU) NH₃ emissions inventory estimates emissions from natural landscapes at about 1.3 Tg yr⁻¹ (1.4 million tons/yr), or about 16% of the total emissions in the continental U.S. (Davidson *et al.*, 2003).² This estimate is based on emission factors of 4.4 ng m⁻² s⁻¹ for forests, 12 ng m⁻² s⁻¹ for grassland and shrubland, and 1.9 ng m⁻² s⁻¹ for barren land.

The emission inventories for the SJV and the Central U.S. are spatially and temporally resolved to meet the needs of air quality simulation models. Emissions in each grid were calculated based on the land use characteristics within that grid. However, emissions were not calculated for specific time periods. Rather, the inventories began with estimates of annual average NH_3 emissions based on estimated long-term average NH_3 emission factors. Temporal allocation factors were applied to the annual estimates to produce appropriate seasonal and diurnal patterns in NH_3 emissions.

Available Emission and Deposition Models

Dry deposition of atmospheric pollutants is frequently characterized using a resistance model. Both the EPA Regional Acid Deposition Model (RADM)^{27, 28} and the Community Multiscale Air Quality (CMAQ) chemical transport model²⁹ use this approach, with NH_3 deposition flux calculated from the modeled ambient NH_3 concentration and a series of resistances to bulk diffusion:

$$F = \frac{-C_a}{(R_a + R_b + R_c)} \tag{1}$$

where *F* is the mass flux of NH₃ (μ g m⁻³) (negative values represent deposition), *C_a* is the ambient concentration (μ g m⁻² s⁻¹), *R_a* is the atmospheric resistance (s m⁻¹), *R_b* is the quasi-laminar boundary layer resistance (s m⁻¹), and *R_c* is the canopy resistance (s m⁻¹). Hicks (1987) related the canopy resistance to the resistance of leaf stomata to NH₃ transport, which is a function of temperature and light intensity.³⁰

Researchers have also used resistance models to characterize the bi-directional (emission and deposition) flux of NH₃ from landscapes. Sutton *et al.* (1995) found in croplands that bi-directional transport can occur not only through leaf stomata, but also in parallel onto and off of the leaf cuticle.³¹ Wyers and Erisman (1998) and Milford *et al.* (2001) extended this observation to forests and moorlands, respectively.^{4, 32} Sutton *et al.* (1995 and 1998³³) and Milford *et al.* (2001) propose a multistage resistance model to characterize overall transport to or from the canopy, and define a canopy average compensation point which is determined by the interplay of various flux rates:

$$F = (C_c - C_a / (R_a + R_b))$$

$$C_c = \frac{C_a / (R_a + R_b) + C_s / R_s}{1 / (R_a + R_b) + 1 / R_w + 1 / R_s}$$
(2)
(3)

where C_c is the canopy average compensation point ($\mu g m^{-3}$), C_s is the stomatal compensation point ($\mu g m^{-3}$), R_w is the cuticular resistance (s m⁻¹), and R_s is the stomatal resistance (s m⁻¹). The stomatal compensation point C_s concentration is determined by the apoplastic concentrations of NH₄⁺ and H⁺ in the leaf, the dissociation constant for NH₄⁺, and the Henry's Law constant for NH₃. The cuticular resistance R_w is a function of relative humidity, and is also specific to the type of vegetation. This model reproduces bi-directional fluxes using a relatively simple parameterization of leaf uptake using resistance terms. Sutton *et al.* (1998) also developed an approach for treating cuticular uptake as a capacitance, which can account for the impacts of previous fluxes.

The resistance model matched the magnitude and structure of the fluxes measured above the moorland for the majority of the time. However, the model underestimated the magnitude of deposition during some daytime periods.

Recommended Model for Estimating Emissions

We are recommending an algorithm for calculating bi-directional NH_3 flux in natural landscapes based largely on the model developed by Sutton *et al.* (1995).³¹ Measurement studies have shown a

great deal of variability in NH_3 emission rates and deposition rates in natural landscapes (see Table 1). Short term flux rates can be 2 to 3 orders of magnitude larger than long term average flux rates, both in the emission direction and in the deposition direction. The direction of flux is believed to be determined by the local ambient NH_3 concentration and NH_4^+ concentrations in foliage and soil. Short term emission and deposition rates have been shown to depend on temperature, sunlight intensity, relative humidity, and other meteorological parameters that affect the rate of atmospheric transport (atmospheric resistance and quasi-boundary layer resistance).

Given the influences of meteorological parameters on emissions from natural landscapes, it is impossible to characterize the variations in these emissions using a simple emission factor methodology. Models developed by Sutton *et al.*(1995),¹³ Milford *et al.*(2001),³² and Hicks *et al.*(1987)³⁰ make it possible to calculate NH₃ emissions for specific ecosystem types and for the meteorological conditions observed in specific episodes. These models require a number of inputs, many of which need to be estimated. However, sufficient information is available to reproduce the emission patterns that have been observed in measurements.

As noted above, the model we are proposing is based on that developed by Sutton *et al.* (1995),³¹ and shown in equations (2) and (3). This model estimates net NH₃ flux as a function of the NH₃ compensation point, the NH₃ in ambient air, and various resistance terms. However, as a practical matter, the air concentration, C_a , is not known when emissions are computed. To simplify the emission calculation, we can define two flux terms: (1) an emission flux dependent on the stomatal compensation point and independent of ambient NH₃ concentration, and (2) a deposition flux dependent on the ambient concentration and independent of stomatal compensation point. First, equations (2) and (3) can be combined, substituting for the canopy average compensation point C_c :

$$F = \frac{C_a / (R_a + R_b) + C_s / R_s}{[1/(R_a + R_b) + 1/R_w + 1/R_s](R_a + R_b)} - \frac{C_a}{(R_a + R_b)}$$
(4)

This equation can then be simplified and rearranged, as follows:

$$F = \frac{\left[C_a / (R_a + R_b) + C_s / R_s\right] - C_a \left[1 / (R_a + R_b) + 1 / R_w + 1 / R_s\right]}{\left[1 / (R_a + R_b) + 1 / R_w + 1 / R_s\right](R_a + R_b)}$$
(5)

$$F = \frac{(C_s / R_s) - C_a (1 / R_w + 1 / R_s)}{1 + (R_a + R_b)(1 / R_w + 1 / R_s)}$$
(6)

$$F = \frac{(C_s / R_s)}{1 + (R_a + R_b)(1 / R_w + 1 / R_s)} - \frac{C_a (1 / R_w + 1 / R_s)}{1 + (R_a + R_b)(1 / R_w + 1 / R_s)}$$
(7)

$$F = \frac{C_s}{R_s + (R_a + R_b)(R_s / R_w + 1)} - \frac{C_a (R_s + R_w)}{R_w R_s + (R_a + R_b)(R_s + R_w)}$$
(8)

Finally, the two terms of equation (8) can be separated into two equations, as follows:

$$F = F_{emis} - F_{depos} \tag{9}$$

$$F_{emis} = \frac{C_s}{R_s + (R_a + R_b)(R_s / R_w + 1)}$$
(10)

$$F_{depos} = \frac{C_a (R_s + R_w)}{R_w R_s + (R_a + R_b)(R_s + R_w)}$$
(11)

Where F_{emis} is the gross potential emission flux if the ambient NH₃ concentration were equal to 0; and F_{depos} is the the amount that the potential flux is reduced by the presence of NH₃ in the atmosphere. F_{emis} would be calculated to provide input to the atmospheric simulation model, while F_{depos} would be calculated within the atmospheric simulation model, and would replace the deposition rate for natural landscapes.

The atmospheric resistance, R_a , and the quasi-laminar boundary layer resistance, R_b , are already calculated for the deposition calculations performed in RADM, CMAQ, and other atmospheric simulation models.^{28,29} Milford *et al.* (2001) give the following algorithm for stomatal compensation point, C_s .³²

$$C_s = \Gamma\left[\frac{161,500}{T}\right] \times \exp\left(\frac{10,380}{T}\right)$$
(12)

$$\Gamma = \frac{\left[NH_4^+\right]}{\left[H^+\right]} \tag{13}$$

where *T* is temperature (K), and Γ is the ratio of NH₄⁺ to H⁺ concentration in the apoplastic leaf tissue. Little data are available on the apoplastic ratio; however values have been calculated for some ecosystems based on micrometeorological measurements. These data are summarized in Table 2.³²

	Apoplastic Ratio of
Type of vegetation	NH_4 to H
Upland moorland, Scotland	50
Lowland moorland, Scotland	132
Mixed pine, spruce, and aspen, Colorado	155
Wheat, England (in anthesis)	630
Grazing land, England	>3000
Source: Milford <i>et al.</i> $(2001)^{32}$	

Table 2.	Example Values for the Apoplastic
	Ratio of \mathbf{NH}_{4}^{+} to $\mathbf{H}^{+}(\Gamma)$

The stomatal resistance can be calculated as follows, based on Hicks et al.³⁰

$$R_{s} = R_{s, \min} \times (1 - \boldsymbol{b}/I) \times f_{T}$$

$$f_{T} = \frac{(T - T_{c})}{(T_{0} - T_{c})} \times \left[\frac{T_{H} - T}{T_{H} - T_{0}}\right]^{\left[\frac{T_{H} - T_{0}}{T_{0} - T_{c}}\right]}$$
(14)
(15)

where $R_{s,min}$ is the minimum stomatal resistance, β is the light response coefficient (W m⁻²), *I* is sunlight intensity (W m⁻²), f_T is a temperature correction factor that accounts for the closing of stomata outside of a given temperature range, *T* is the ambient temperature (K), T_C is the minimum temperature for stomatal opening (K), T_H is the maximum temperature (K), and T_0 is the optimum temperature (K). EPA has estimated stomatal resistance parameters for a variety of vegetation types as part of the deposition calculations for the Clean Air Status and Trends Network (CASTNET).³⁴ These are summarized in Table 3.

Milford *et al.* (2001) give the following relationship for the cuticular resistance, R_w .³²

$$R_{w} = R_{w,\min} \exp\left(\frac{100 - RH}{a}\right) \tag{16}$$

where $R_{w,min}$ is the minimum cuticular resistance (s m⁻¹), *RH* is the relative humidity (%), and *a* is the humidity response factor (%). $R_{w,min}$ was measured at 0.5 s m⁻¹ and *a* was measured at 12% for moorland.³² R_s and R_w could also be obtained from the Meteorology-Chemistry Interface Processor (MCIP) subsystem of the EPA Community Multiscale Air Quality (CMAQ) model.³⁵

	Minimum	Light			
	stomatal	response	Optimal	Maximum	Minimum
	resistance	coefficient	tempera-	tempera-	tempera-
Species	$(s m^{-1})$	$(W m^{-2})$	ture (°C)	ture (°C)	ture (°C)
Spruce	225	40	9	35	-5
Ponderosa, lodgepole pine	500	40	25	40	5
Loblolly pine	200	55	25	40	5
White oak	100	50	25	45	5
Chestnut, red oak	100	40	25	45	5
Maple	100	50	25	45	5
White birch	300	40	25	40	5
Grass	50	20	25	45	5
Blue grass	150	50	30	40	5
Sugar maple	100	50	25	45	5
Beech	100	50	25	40	5
Yellow birch	300	40	25	40	5
White ash	100	40	25	40	5
Hemlock	225	10	25	35	-5
Yellow poplar	150	40	25	40	5
Gum	150	40	25	40	5
Apple, peach, pear	150	40	25	40	5
Black locust	150	40	25	40	5
Virginia pine	200	55	25	40	5
Red pine	200	55	25	40	5
Southern red oak	100	40	25	40	5
Southern yellow pine	200	55	25	40	5
White pine	225	40	25	35	-5
Subalpine fir	225	25	9	35	-5
Sagebrush	100	20	25	45	5
Juniper	225	25	9	35	-5
Velvet ash	100	40	25	40	5
Emory oak	100	25	25	45	5
Arizona cypress	225	25	25	45	5
Pinon pine	225	25	9	35	-5
Aspen	200	30	25	35	5
Desert shrub	200	55	25	45	5

 Table 3. Stomatal Resistance Parameters for Natural Vegetation

The above-described model is a relatively simple parameterization of bi-directional NH_3 flux between a natural landscape and the atmosphere. The model focuses on the leaf canopy and expresses leaf uptake using only resistance terms. As noted earlier, Sutton *et al.* (1998) have developed an approach for treating cuticular uptake as a capacitance, which can account for the impacts of previous fluxes. Loubet *et al.* (2001) have also assessed an approach for estimating the impact of advection effects from nearby sources.³⁶ However, both of these refinements would require information on atmospheric NH_3 concentrations, which is not available when emissions are calculated.

Sensitivity Analysis

Figure 2 graphs the results of the recommended model for a midlatitude conifer forest on a summer day (high temperature = 30° C, relative humidity = 50%). The graph shows the diurnal pattern of the estimated net emission flux, and also breaks the net flux down into the components given by equations (5) and (6). The ambient NH₃ concentration was assumed to be 1 µg m⁻³ for these calculations. Figure 3 shows predicted seasonal variations for net emission flux for a pine forest. Figure 4 shows predicted emission fluxes for different tree species based on stomatal resistance values from Table 3.

The most uncertain inputs to the model are the apoplastic ratio of NH_4^+ to H^+ and the cuticular resistance parameters from equation (11). Figures 5 through 7 show the impact of changes in these parameters. Of these parameters, the estimated emission flux appears to be most sensitive to the apoplastic ratio. However, uncertainties in cuticular resistance parameters also have significant impacts, especially on the estimates of offsetting deposition at night.

Default Emission and Temporal Allocation Factors

Modeling emissions from natural landscapes will require detailed information on meteorology and land cover, as well as inputs for numerous parameter values. This data-intensive effort will not be practical for all emissions inventory developers. Therefore, we have also evaluated emissions data to identify a set of default emission factors for different landscapes. The data in Table 1 suggest a best estimate emission factor of about 1.2 ng m⁻² s⁻¹ for forests on an annual basis. This value is equal to the average emission flux measured by Langford and Fehsenfeld (1992) for a Rocky Mountain pine forest during periods of downslope winds.⁶ It is higher than the flux estimated by Bouwman *et al.* (1997) based on nitrogen compound mineralization rates for forest soils;⁹ and it is also higher than the results of some recent measurements. But it is within the possible range identified by Bouwman *et al.* (1997). The mineralization rate calculations by Bouwman are recommended for grasslands, shrub lands, and deserts, because of the limited availability of measurements for these landscapes.

Table 4 summarizes the recommended default emission factors for natural landscapes. The table also estimates total annual NH_3 emission rates that would be obtained by applying these emission factors to natural landscapes in the continental U.S. These estimates are based on land cover information from EPA's Biogenic Emissions Land Cover Database (BELD).³⁷

Table 5 gives recommended default temporal allocation factors for natural landscapes. The diurnal factors are based on the proposed model discussed above, as well as diurnal values reported by Pryor *et al* (2001) for a spring day on which there was an apparent net emission flux. Figure 8 compares the recommended diurnal profile with hourly emissions predicted by the model and hourly emissions measured by Pryor *et al.*⁵

The seasonal allocation factors for spring, summer, and fall in Table 5 are based on the estimated average fluxes given by Bouwman *et al* (1997), based on their summary of available measurements.⁹ The winter allocation factor is based on results given by the model described above, which predicts net deposition at low temperatures.

Draft

Figure 2. Model-predicted diurnal variations in emission flux components for a typical summer day.

Figure 3. Estimated seasonal variability for a pine forest.

Figure 4. Sensitivity of net emissions to tree-specific inputs for stomatal resistance. (Resistance parameters are taken from Table 3. Apoplastic ratio is assumed to be 155.)

Figure 5. Sensitivity of estimate net emissions to apoplastic NH_4^+ to H^+ ratio.

Figure 6. Sensitivity of estimated net emissions to humidity response coefficient.

Figure 7. Sensitivity of estimated net emissions to minimum cuticular resistance.

Type of vegetation	Emission factor (ng $m^{-2} s^{-1}$)	Estimated total emissions in the continental U.S. (Gg/yr)
Forests	1.2	58
Grasslands	0.9	32
Shrub Lands	1.3	46
Deserts	0.3	0.4
Total		137

 Table 4. Default Emission Factors for Natural Landscapes

Table	Proposed Temporal Allocation
fa	ors for Natural Landscapes

=

	Fraction of
Time period	emissions
Seasonal	
Spring	0.143
Summer	0.714
Autumn	0.143
Winter	0.000
Diurnal (hour) 1 2	0.000 0.000
3	0.000
4	0.000
5	0.000
6	0.013
7	0.023
8	0.034
9	0.052
10	0.071
11	0.086
12	0.097
13	0.109
14	0.120
15	0.120
16	0.108
17	0.086
18	0.056
19	0.022
20	0.000
21	0.000
22	0.000
23	0.000
24	0.000

Figure 8. Comparison of proposed diurnal allocation factors with measured and modeled diurnal values.

Fertilized Soils

In the U.S., fertilized soils are estimated the second largest source of ammonia (NH₃) emissions, with animal husbandry being the first. The 1999 NEI estimates NH₃ emissions from fertilizer application at 630 Gg/year (690,000 tons/year), of approximately 21% of total NH₃ emissions from all sources. Other estimates range from 7% (Roe and Strait, 1998)³⁸ to 16% (Davidson *et al*, 2003, Goebes *et al*, 2003).^{2,39} This report addresses NH₃ emissions from synthetic nitrogen fertilizers. Animal wastes are also widely used to meet the nitrogen requirements of crops, and are also a source of NH₃ emissions. However, these emissions are included in the animal husbandry category of the NEI.

The most widely used synthetic nitrogen fertilizer is anhydrous NH_3 , which is injected into the soil in gaseous form. Ammonia can also be applied in the form of an aqueous solution (aqua ammonia). Other nitrogen fertilizers include synthetic urea, ammonium (NH_4^+) compounds, and nitrate (NO_3^-) compounds, all of which can be used in solid form or in solutions. Emissions from anhydrous NH_3 or aqua ammonia result from the evaporation of NH_3 following application and from the subsequent release of NH_3 that is initially adsorbed in the soil. Ammonium fertilizers can also break down and release NH_3 after they are applied to soils or crops. In the case of urea fertilizer, microbial reactions in soil convert the compound to ammonium carbonate, generally within a few days of application. NH_3 can be released to the air following these reactions. Nitrate fertilizers also can result in NH_3 emissions, but at a much lower rate than ammonia fertilizers, ammonium fertilizers, or urea fertilizers. In this case, nitrate must first be converted to ammonium by the fertilized plant.

Nitrogen fertilizers can be applied at a number of times during the growing season. Fertilizer can be added to the soil prior to crop planting, at the time of crop planting, or after crop emergence as a side dressing. Fertilizer can also be applied to fallow fields after crop harvest.

Emissions Data

This section divides NH_3 emissions from fertilized soil into three phases. The first phase covers emissions occurring within the first few weeks after fertilizer application, up to about one month. The second phase reflects emissions during crop growth and well after the application of any side-dressing fertilizers. The third phase covers emissions from bare soil after crop harvest, and long after the application of any fertilizers to the bare soil.

Direct Emissions from Fertilizer Application

Direct ammonia emissions from fertilizer have been evaluated for a number of previous emissions inventories. Table 6 provides a summary of emission factors that have been used for different fertilizers in more recent ammonia emissions inventories. These will be discussed in more detail in a subsequent section on the treatment of fertilizer emissions in current emissions inventories.
	EPA emission factor report	CENRAP Inventory	Dämmgen and Grünhage	CMU Inventory	Estimated Tota in U.S. 1	al Emissions 1999 °
Source Category	(1994) ¹⁷	2003 ^a	2002 ⁴⁰	1998 ^b	Mg	Tons
Anhydrous ammonia	12 (24)	49 (98)		12 (24)	39,483	43,522
Nitrogen solutions	30 (60)	97 (194)	97 (194)	97 (194)	77,888	85,855
Urea	182 (364)	194 (388)	182 (364)	182 (364)	346,648	382,108
Diammonium phosphate	49 (98)	61 (122)	61 (122)	49 (98)		
Ammonium nitrate	26 (52)	24 (48)		24 (48)	14,027	15,462
Liquid ammonium polyphosphate	49 (98)	61 (122)		49 (98)		
Aqueous ammonia	12 (24)	97 (194)		12 (24)	821	905
Ammonium thiosulfate	30 (60)	30 (60)		30 (60)	1,238	1,365
Calcium ammonium nitrate		24 (48)	24 (48)	24 (48)		
Potassium nitrate		12 (24)		24 (48)		
Monoammonium phosphate ^d	49 (98)	61 (122)	61 (122)	49 (98)	39,526	43,569
Ammonium sulfate	97 (194)	121 (242)		97 (194)	19,215	21,181
Mix				49 (98)	58,151	64,099
Miscellaneous		85 (170)	24 (48)	182 (364)	60,024	66,164

Table 6. Summary of Emission Factors for Ammonia from Fertilizers

^a From the Central Central States Regional Air Planning Association (CENRAP) emissions inventory, compiled by Sonoma Technology, Inc. (STI).²⁶

^bCarnegie Mellon University (CMU) NH₃ emissions inventory.³⁹

^c From the 1999 EPA National Emissions Inventory (NEI).⁴¹ (The 1999 estimates for fertilizer were also retained in the 2002 NEI.⁴²) ^d NEI estimate includes all ammonium phosphates. Despite the similarities among emissions inventory estimates for fertilizer usage, the ammonia emission rates from nitrogen fertilizers are still subject to considerable uncertainty. The range of ammonia emission factors for different fertilizer types (more than two orders of magnitude between anhydrous ammonia and urea) gives an indication of the variability of processes governing ammonia losses. Emissions for a particular type of fertilizer depend on a number of factors, including:

- type of crop on which the fertilizer is applied
- timing of application with respect to the nitrogen demand of the crop
- amount of fertilizer and other sources of nitrogen (for instance animal waste) applied per unit area
- application technique
- irrigation or soil moisture
- soil characteristics (pH, soil type)
- temperature and wind speed

The majority of ammonia emissions occur after fertilizer application but prior to plant emergence. Figure 9 shows day-to-day variations in NH₃ emissions from urea and urea solution fertilizers following application, and Figure 10 shows cumulative emissions over time. Each figure shows eight different scenarios representing urea and urea solutions used in combination with different crops and/or application techniques. Clay *et al* $(1990)^{43}$ measured emissions from urea spread on one field at a rate of 160 kg N/ha on bare soil and soil covered with crop residue in Minnesota. The figures indicate considerable variation in emissions. However, most of the trend lines show a peak in ammonia emissions emitted soon after application followed by a gradual decline. Their results show that ammonia emissions peak at day three with rapid decline thereafter. Watson et al (1992)⁴⁴ show dayspecific ammonia emission measurements from urea and urea solutions applied to one field. These emissions peak between one and three days, and decline to about 10 days. Although they had three sampling times, the most significant results are shown for July only. Additionally, there does not appear to be a difference between the emissions from urea and urea solution fertilizers, the only difference is that the ammonia emissions from urea solution appears to peak sooner, on day 1, and declines less rapidly than the urea fertilizer. When urea and ammonium nitrate solution (UAN) fertilizer is used, on two separate fields of corn, similar emission patterns are observed, with the highest emissions resulting when UAN is not tilled into the soil (Al-Kanani and MacKenzie, 1991).⁴⁵ These results indicate that the application technique is very important regarding reduced emissions. To reduce emissions from UAN, it should be tilled into the soil, and to reduce emissions from urea, it should be applied when the field is not bare. Application rate does not appear to affect ammonia emissions from urea fertilizers. When urea is applied at a rate of 120 kg N/ha on bare soil, the emissions also follow a similar pattern, as found by McInnes *et al.* (1986).⁴⁶ In one case however, emissions do not seem to abate after 16 days. This anomaly occurred due to insufficient rainfall during the sampling period.

Figure 9. Day-to-day variation in NH₃ emissions after fertilizer application.

Figure 10. Cumulative NH₃ emissions after fertilizer application.

Rainfall is important for governing NH_3 emission release from fertilizers. If no rain occurs after application, emissions will remain high because of elevated urease activity, provided the soil is suitably moist. If too much rain occurs, emissions decline substantially because of a reduction in urease activity and leaching of the fertilizer. Fenn and Hossner (1985)⁴⁷ noted that when there was less than 10 mm of rainfall 3 days after urea application the emissions were less than 10%, however if only 6 mm of rain fell between five and nine days then the emissions could be as high as 30%. Most interestingly, if there was no rain after six days, then the emissions would be 30% or greater. In most instances, fertilizer requires a small amount of rain after application to help it remain in the soil, for plant uptake. Urea, specifically, is governed by enzymatic reactions, which makes rainfall very important for proper uptake. When there is little or no rainfall then the urease activity is high, when there is significant rainfall, there is no urease activity. Of course, the more rain that falls, the more ammonia will be leached out of the soil, which makes it unavailable to enzymatic activity and volatilization. A daily pattern is clear for NH_3 emissions from urea, where the majority of the emissions occur within the first week after application given there is some soil moisture. While most farmers would only apply fertilizers when the soil conditions are at an optimum, planting schedules, timing, and farm size often dictate the fertilizer application schedule.

Figure 11 shows that hourly NH₃ emission rates vary with temperature usually showing a peak in the middle of the day when temperature peaks. Previous and current research promotes the use of diurnal nitric oxide flux (Coe *et al* 2003, Geobes *et al* 2003),^{26,39} however, there is research regarding urea fertilizers which supports NH₃ diurnal flux (Clay *et al* 1990,⁴³ Hatch *et al* 1990,⁴⁸ Yamulki *et al*

Figure 11. Hourly NH₃ Emissions from Urea Fertilizers

1996⁴⁹). Figure 11 shows NH_3 emissions occurring over the course of one day as determined by these studies.

Emissions from Maturing Crops

Yamulki *et al* (1996) found that a wheat field generally emitted NH₃ during warm and dry conditions, regardless of time since fertilization.⁴⁹ The average NH₃ emission flux was about 35 ng m⁻² s⁻¹. Dabney and Bouldin (1990) also found net NH₃ emissions from an alfalfa field in New York state.⁵⁰ The emission flux was not calculated, but the NH₃ compensation point for the alfalfa crop was estimated at about 1.3 μ g m⁻³. Sutton *et al* (2000) made extensive measurements of NH₃ flux over an oilseed rape crop. The flux was found to be bidirectional, with the largest emissions occurring during the day, and both emissions and deposition occurring at night. During the period leading up to harvest, NH₃ fluxes ranged from – 150 to +180 ng m⁻² s⁻¹, with an average of 25 ng m⁻² s⁻¹ during the day, 3.4 ng m⁻² s⁻¹ at night, and 17 ng m⁻² s⁻¹ overall.⁵¹

Emissions from Fallow Soil

Emissions from fallow soils are sometimes included in emission inventories under a biogenic soils category. Emissions from this category are highly uncertain. There are some scientists who believe that soil serves as a sink for NH_3 and therefore there will be no emissions. Others believe that there are some emissions from soil, based upon studies and research. Of interest was a study conducted by Roelle and Aneja (2002), in which a corn crop was sprayed with hog slurry.⁵² NH₃ emissions were measured after the corn was harvested, and the soil was covered with shredded corn stalks. The measured NH₃ flux over a six day period in December ranged from 4.1 to 32 ng N m⁻² s⁻¹, with a mean value of 14 ng $m^{-2} s^{-1}$ and a standard deviation of 17 ng $m^{-2} s^{-1}$. In comparison to Clay *et* al (1990),⁴³ where a urea fertilizer was applied directly to bare soil and measured (9800 ng m⁻² s⁻¹), these measurements are several orders of magnitude smaller. The flux observed by Roelle and Aneja should not be discounted however, as these measurements were made in December when soil microbe activity level and temperature are low. Low temperatures inhibit NH₃ volatilization, therefore it is possible that with warmer temperatures in the spring more NH₃ could be volatilized prior to fertilization or planting. Lastly, the NH₃ emissions measured in this study more closely resemble an actual fertilized crop, where the crop is fertilized before planting and during growth, is harvested and then the soil is not fertilized again until the following spring when planting begins anew.

Treatment of Fertilized Soils in Existing Emissions Inventories

Direct Emissions from Fertilizer Application

Emission factors

NH₃ emissions inventories for synthetic fertilizer application are calculated by applying emission factors to activity data derived from fertilizer sales statistics. The emission factors are specific to

different nitrogen fertilizer compounds and are expressed in terms of emissions per mass of nitrogen nutrient in the applied fertilizer (see Table 6). The current EPA National Emissions Inventory (NEI) estimate for fertilizer is based on emission factors compiled in 1994. Carnegie Mellon University (CMU) has recently developed NH₃ inventory for fertilizer which uses updated emission factors from the European Environment Agency 2001 (EEA).^{39, 53} The EEA factors depend on on fertilizer type, soil type (per pH) and climate, as shown in Table 7. In the CMU fertilizer inventory, climate and soil differences are reflected at the state level. Another recent inventory for the Central States Regional Air Planning Association (CENRAP) uses data from the NRSC State Soil Geographic database (STATSGO) to provide a county-level resolution of predominant soil type (Coe *et al* 2003).²⁶ The CENRAP inventory also uses emission factors from the EEA.

Table 8. Classification System for Emission Factors

Group I	Warm, temperate areas with a large proportion of calcareous soils
Group II	Temperate and warm-temperate areas with some calcareous soils (or managed with soil pH>7), but with large areas of acidic soils
Group III	Temperate and cool-temperate areas with largely acidic soils

Activity data on fertilizer application

In the EPA NEI, fertilizer activity data are based on annual sales of different fertilizer compounds at the state level.⁴¹ These annual sales are allocated to seasons using national seasonal allocation factors, and state level sales data are allocated to counties based on the acreage devoted to agriculture in each county.

The CMU NH₃ emissions inventory provides extensive refinements in the spatial and seasonal allocation of fertilizer application.³⁹ The CMU inventory uses semiannual sales data from the 1995 Association of American Plant Food Control Officials (AAPFCO), which are available at the county-level. Additionally, the CMU model includes data from the US Geological Survey (USGS) for fertilizer sales to farmers by county for 1987--1991. This information was combined with information from National Agricultural Statistics Service (NASS) crop calendars to estimate monthly fertilizer application rates for each county.

In preparing the CENRAP inventory, Coe *et al* (2003) used an approach similar to CMU but combined the semiannual sales data before carrying out the monthly allocation based on crop calendars. This adjustment was made because farmers often return the unused portions of fertilizer in the autumn, which can result in an underestimation of fertilizer use in that season.²⁶ In addition the CENRAP inventory used updated 2002 AAPFCO sales data.

Emissions from Maturing Crops and Fallow Soils

The EPA NEI does not provide separate emissions estimates for maturing crops or fallow soils.⁴¹ EPA's 1994 NH₃ emission factor report compiled data on emissions from soils and vegetation, however these emissions were believed to be already included in the emissions factors for fertilizer application.¹⁷

The CMU and CENRAP emissions inventories both include emissions estimates for fertilized soils, which are separate from direct emissions from fertilizer application. These soil emission estimates include both emissions from fallow soil and emissions from maturing crops. The CMU NH₃ inventory estimates gives an estimate of 3.0 Tg yr⁻¹ (3.3 million tons/yr) for agricultural soils, based on emission factors of 38 ng m⁻² s⁻¹ for croplands and 41 ng m⁻² s⁻¹ for pasture land. However, these estimates are characterized as very uncertain (Davidson *et al.*, 2003).² The CENRAP inventory uses an emission factor of 0.95 ng m⁻² s⁻¹ for croplands and pasture land.²⁶

Two previous California NH_3 emissions inventories also included estimates for a soils and vegetation category, which was separate from fertilizer application. These inventories – for the the San Joaquin Valley (SJV) region and the South Coast Air Quality Management District (SCAQMD) – used emission factors of 41 ng m⁻² s⁻¹ for agricultural land, and 17 ng m⁻² s⁻¹ for grazing lands.^{23, 24}

roft

Available Emission Models

A number of emission models have been developed to evaluate the impacts of different fertilizer application conditions on evaporative losses of NH₃. In general, the goal of these models is to help optimize the management of nitrogen nutrients by improving the understanding of the uptake of nitrogen by plants, the assimilation of nitrogen into soils, losses through NH₃ evaporation, and losses through leaching. Some of these are empirical regression models, and others are mechanistic resistance models which attempt to simulate the physical processes involved in NH₃ evaporation from fields. Table 8 gives a list of available models, showing the fertilizer that is covered by each model, the parameters that are included, and the type of model.

As Table 8 illustrates, the models for fertilizer emissions require inputs for a wide array of parameters, including fertilizer application rate, time since application, soil type, pH, soil temperature, soil moisture content, air temperature, and wind speed. Some of these parameters are not easily determined on a national scale, specifically time since application. Many of the models were developed from laboratory studies, which are valuable for model development, however often hold environmental conditions constant, which decreases their ability to predict emissions accurately in field conditions. Additionally, a majority of the models were developed for use with animal wastes, and may not be transferable to chemical fertilizers.

Reference	Fertilizer	Parameters	Model Type
Fenn and Hossner, 1985 ⁴⁷	Urea, nitrogen solutions	Time, temperature, application rate	Regression
Al-Kanani and MacKenzie, 1991 ⁴⁵	Urea, UAN	Temperature, thermodynamic force, wind velocity, soil surface roughness, adsorption and desorption rate constants	Mechanistic
Ismail <i>et al</i> ., 1991 ⁵⁴	Urea solution	Soil temperature, application rate, initial soil moisture content, soil pH, application depth	Regression
Kirk and Nye, 1991 ⁵⁵	Urea	Time, soil moisture content, diffusion factor in soil, verticle distance, water flux, diffusion of solute in soil	Mechanistic
Misselbrook and Hansen, 2001 ⁵⁶	Urea, Slurry, Manure	Equilibrium concentration of NH_3 at and above the emitting surface, mass transfer coefficient	Mechanistic
Plochl, 2001 ⁵⁷	Manure	Time, maxium emission value, application rate, climate	Mechanistic
Riedo <i>et al.</i> , 2002 ⁵⁸	NH ₄ NO ₃	Atmospheric deposition, NH_4^+ contributions from fertilizer, manure, urine excreted by grazing animals, soil surface exchange of NH_3 , convection, diffusion	Mechanistic
Roelle and Aneja, 2002 ⁵²	Hog slurry	Soil temperature	Regression
Sogaard <i>et al.</i> , 2002 ⁵⁹	Cattle and pig slurry	Soil water content, air temp, wind speed, slurry type, dry matter content of slurry, TAN content of slurry, application method, application rate	Mechanistic
Huijsmans, <i>et</i> <i>al.</i> , 2003 ⁶⁰	Slurry	Air temperature, application rate, application method, content of N in slurry, wind speed	Mechanistic

Table 8. Overview of Available Models for Fertilizer Emissions

Recommended Approach for Estimating Ammonia Emissions from Fertilizer

The current National Emissions Inventory (NEI), as well as other existing inventories, relate fertilizer NH3 emissions to the total nitrogen content of fertilizer used in a given geographical area:⁶¹

$$E = \sum_{i} A_{i} \times EF_{i}$$
(17)

where *E* is total NH₃ emissions from fertilizer application in a given time period (kg), A_i is the amount of nitrogen that has been applied in the form of fertilizer *i* (Mg-N), and *EF*_{*i*} is the emission factor for fertilizer *i* (kg-NH3/Mg-N).

Historically, this calculation has been performed with annual fertilizer application data. However, the current NEI Input Format (NIF) gives the flexibility to store activity data (in this case fertilizer usage) in other timeframes, including by month. As noted earlier, Carnegie Mellon University has developed monthly estimates of fertilizer usage at the county level, based on crop calendars and fertilizer sales. Since most of the direct emissions from fertilizer occur within a few weeks of application, emissions in a given month can be estimated based on the fertilizer application for that month. This method gives greater accuracy than applying temporal allocation factors to an annual estimate. Therefore, we recommend using the CMU monthly fertilizer application data, and implementing equation (12) separately for each county and each month.

This approach does not take into account day-to-day variations over the course of a month. As shown in Figure 9, the emission rate from a given field declines gradually after application as the fertilizer is taken up by plants or incorporated into the soil. Therefore, day-specific emissions from a particular farm or field can be a factor of 2 to 3 higher than the monthly average. These variations could be taken into account by relating emissions to the nitrogen fertilizer level in the field, rather than the application rate. The nitrogen level can in turn be estimated from the application rate and the time that has elapsed since application:

$$E_{k} = \sum_{i,j} N_{i,j,k} \times EFN_{i}$$
 (day-specific approach) (18)

$$N_{i,i,k} = A_{i,j} \times (1 - t_{k}/t)$$
 (alternative day-specific approach) (19)

where E_k is total NH₃ emissions on day k for all fields j in a given region (kg/day), $N_{i,j}$ is the level of unassimilated nitrogen from fertilizer i in field j, and on day k (Mg), EFN_i is the emission factor for fertilizer i based on the field nitrogen fertilizer level (kg-NH3/Mg-day), $A_{i,j}$ is the amount of fertilizer ithat was applied to field j (Mg), t_k is the time since application of fertilizer i on field j for day k (days), and τ is a time constant for fertilizer assimilation (estimated at 7 days). The NIF structure provides the needed flexibility to use a different activity parameter (N) for some emission records. Tables 9 provides recommended emission factors for computing total emissions following fertilizer application. Table 10 gives factors for computing daily emissions when the date of fertilizer application is known. Both sets of factors are based on the estimates made by the EEA (see Table 8), which have also been recently adopted in the CENRAP emissions inventory and in the CMU inventory.

Crops have been shown to continue emitting NH_3 during the growing season, regardless of the time since fertilization.^{49,50,51} The emission factor for maturing crops is estimated at 17 ng m⁻² s⁻¹ based on measurements by Sutton *et al* (2000).⁵¹ Roelle and Aneja (2002) estimated emissions of 14.5 ng m⁻² s⁻¹ for fallow soil following the harvest of a corn crop.⁵² However, it must be noted that this measurement is very uncertain, with a standard deviation of 17 ng m⁻² s⁻¹. These estimated emission factors are lower than the factors used for agricultural soils in the CMU inventory or the California SJV or SCAQMD inventories, but higher than the factor used for agricultural soils in the CENRAP inventory. As noted earlier, the EPA NEI does not separate agricultural soil and crop emissions from direct fertilizer emissions.

Combined, the emissions estimates of 17 ng m⁻² s⁻¹ for maturing crops and 14.5 ng m⁻² s⁻¹ for fallow soil would add about 10–20% to the emission estimate for direct emissions from fertilizer application. Because these emission rates were measured well after fertilizer application, they do not appear to be already included in the direct fertilizer emission factors. In many cases, however, these emissions may result from previous application of animal wastes to fields. Thus, it is believed that emissions are generally already counted in emissions estimates for the animal husbandry in the NEI.

Table 11 gives recommended diurnal allocation factors for direct emissions from fertilizer, emissions from crops, and emissions from fallow soil. The allocation factors for fertilizer and soil are based on measurements by Clay *et al* (1990).⁶² Allocation factors for crop emissions are based on measurements by Sutton *et al* (2000).⁵¹ These factors are recommended for diurnal emissions as the algorithms reviewed did not adequately address the main components of diurnal emissions, treating temperature as a minor component and disregarding the time since application component. Although these studies include diurnal estimations, those emissions were not the main focus of the study, and did not fully explain the physical processes involved. Figure 12 compares these factors to those recently used in the CENRAP inventory (which were based on nitrogen oxide emissions from soil).

	Emissic appli	Emission factors based on fertilizer application (kg-NH ₃ / Mg-N)		Emissic appli	Emission factors based on fertilizer application (kg-NH ₃ / Mg-N)	
Fertilizer	Group I soils	Group II soils	Group III soils	Group I soils	Group II soils	Group III soils
Anhydrous ammonia	48	48	48	97	97	97
Nitrogen solutions (urea & AN)	97	97	97	194	194	194
Urea	242	182	182	484	363	363
Diammonium phosphate	61	61	61	121	121	121
Ammonium nitrate (AN)	36	24	12	73	48	24
Liquid ammonium polyphosphate	61	61	61	121	121	121
Aqueous ammonia	97	97	97	194	194	194
Ammonium thiosulfate	30	30	30	61	61	61
Calcium ammonium nitrate	36	24	12	73	48	24
Potassium nitrate	12	12	12	24	24	24
Monoammonium phosphate	61	61	61	121	121	121
Ammonium sulfate	182	121	61	363	242	121
Miscellaneous	97	73	48	194	145	97
Mix	36	24	12	73	48	24

Group I: Warm, temperate areas with a large proportion of calcareous soils

Group II: Temperate and warm-temperate areas with some calcareous soils (or managed with soil pH>7), but with large areas of acidic soils

Group III: Temperate and cool-temperate areas with largely acidic soils

_	Emission factors based on unassimilated fertilizer in soil (kg-NH ₃ / Mg-N / day) (see equations 18 and 19)		Emission factors based on unassimilated fertilizer in soil (lb-NH ₃ / ton-N / day) (see equations 18 and 19)		nassimilated N / day) (see 19)	
Fertilizer	Group I soils	Group II soils	Group III soils	Group I soils	Group II soils	Group III soils
Anhydrous ammonia	12.1	12.1	12.1	24	24	24
Nitrogen solutions (urea & AN)	24.2	24.2	24.2	48	48	48
Urea	60.5	45.4	45.4	121	91	91
Diammonium phosphate	15.1	15.1	15.1	30	30	30
Ammonium nitrate (AN)	9.1	6.1	3.0	18	12	6
Liquid ammonium polyphosphate	15.1	15.1	15.1	30	30	30
Aqueous ammonia	24.2	24.2	24.2	48	48	48
Ammonium thiosulfate	7.6	7.6	7.6	15	15	15
Calcium ammonium nitrate	9.1	6.1	3.0	18	12	6
Potassium nitrate	3.0	3.0	3.0	6	6	6
Monoammonium phosphate	15.1	15.1	15.1	30	30	30
Ammonium sulfate	45.4	30.3	15.1	91	61	30
Miscellaneous	24.2	18.2	12.1	48	36	24
Mix	9.1	6.1	3.0	18	12	6

Table 10. Factors for Calculating Daily NH₃ Emissions when the Date of Fertilizer Application is Known

Group I: Warm, temperate areas with a large proportion of calcareous soils

Group II: Temperate and warm-temperate areas with some calcareous soils (or managed with soil pH>7), but with large areas of acidic soils

Group III: Temperate and cool-temperate areas with largely acidic soils

	Hourly allocation factor (fraction of				
	daily emissions)				
	Fertilizer and				
Hour	fallow soil	Crops			
1	0.014	0.000			
2	0.013	0.000			
3	0.013	0.000			
4	0.015	0.000			
5	0.019	0.002			
6	0.022	0.015			
7	0.028	0.026			
8	0.038	0.039			
9	0.046	0.052			
10	0.051	0.066			
11	0.061	0.081			
12	0.069	0.094			
13	0.071	0.104			
14	0.074	0.110			
15	0.077	0.110			
16	0.072	0.103			
17	0.065	0.089			
18	0.059	0.069			
19	0.052	0.039			
20	0.039	0.000			
21	0.028	0.000			
22	0.027	0.000			
23	0.024	0.000			
24	0.022	0.000			

Table 11. Recommended Hourly TemporalAllocation Factors for Fertilized Soils

Figure 12. Diurnal allocation factors for NH₃ from fertilizer, crops, and fallow soil, compared with the profile for nitric oxide from soil.

Conclusions and Recommendations

A model is proposed to reflect the bi-directional movement of NH_3 into and out of natural landscapes. This model provides an improved characterization of diurnal variations in NH_3 flux, including the tendency of landscapes to emit NH_3 during warm conditions and absorb the gas at night. A sensitivity analysis of this model is presented for forest emissions, focusing on the most uncertain input parameters. In addition, default emission factors, and seasonal and diurnal allocation factors are given for calculating net NH_3 emission fluxes from forests, unfertilized grasslands, shrub lands, and deserts.

Considerable uncertainties remain in the calculation of NH_3 emissions from natural landscapes. Natural landscapes alternate between being sources of and sinks for NH_3 , and short term emission and deposition fluxes can be orders of magnitude higher than long term net fluxes. As a result, any model of NH_3 emissions and deposition in natural landscapes will be very sensitive to input data. Limited data are available on the apoplastic ratio NH_4^+ to H^+ . This ratio is used to compute the NH_3 compensation point, which determines whether NH_3 is emitted or absorbed by plant canopies. Additional data are needed to better characterize NH_3 compensation points for different crops and under different ambient conditions. Data are also needed on cuticular resistance. These are the key issues for future research projects.

Improved emission factors and diurnal allocation factors are given for direct NH_3 emissions following the application of fertilizer. Monthly fertilizer application estimates developed by CMU should be used in determining monthly variations in fertilizer emissions. However, the emission rate from a given field declines gradually after application as the fertilizer is taken up by plants or incorporated into the soil. Therefore, day-specific fertilized emissions from a particular farm or field can be a factor of 2 to 3 higher than the monthly average. The current study provides a method of incorporating this variability when fertilizer application dates are available.

Emission flux estimates are also provided for crops after the initial decline in emissions from fertilizer, and from fallow soil. However, in using these factors, care must be taken to avoid double counting emissions from the application of additional fertilizer or animal wastes to crops and fallow soil.

Monthly fertilizer application estimates developed by CMU provide a good indication of monthly variations in fertilizer emissions. These monthly estimates were developed at the county level based on semiannual fertilizer sales data and state-specific crop calendars. However, the national scale of the CMU analysis results in uncertainties at the local level, particularly in determining the schedules for fertilizer application to specific crops. To suggest a process-based bi-directional NH₃ model, more highly resolved spatial (sub-county) data on soils, crops, and vegetation will be required to adequately resolve the variability and bi-directionality of NH₃ emissions, which is an area for future research. Where local variations in NH₃ from fertilizer are important, the crop schedules should be reviewed by local agricultural experts, if possible.

References

- 1. EPA (2003). *1999 National Emissions Inventory Draft Version 3*. U.S. Environmental Protection Agency, RTP, NC. <u>http://www.epa.gov/ttn/chief/net/1999 inventory.html</u>
- 2. Davidson, Cliff, *et al.* (2003). *CMU Ammonia Emission Inventory for the Continental United States*. Carnegie Mellon University. <u>http://www.cmu.edu/ammonia/</u>
- Farquhar, G.D. *et al.* (1980). "On the gaseous exchange of ammonia between leaves and the environment: Determination of the ammonia compensation point." *Plant Physiology*. 66: 710–714.
- 4. Wyers, G.P. and J.W. Erisman (1998). "Ammonia exchange over coniferous forest." *Atmospheric Environment*. **32A**: 441–451.
- 5. Pryor, S.C., R.J. Barthelmie, L.L. Sorensen, B. Jensen (2001). "Ammonia concentrations and fluxes over a forest in the midwestern USA." *Atmospheric Environment*. **35**: 5645–5656.
- 6. Langford, A.O. and F.C. Fehsenfeld (1992). "Natural vegetation as a source or sink for atmospheric ammonia: a case study." *Science*. **255**: 581–583.
- Anderson, Stephen P., et al. (2003). "Non-Point Source Ammonia Emissions in Texas: Estimation Methods, Pitfalls, Corrections, and Comparisons." 11th International Emission Inventory Conference: "Emission Inventories - Partnering for the Future," Atlanta, GA, April 15-18, 2002
- Andersen, Helle Vibeke, Mads F. Hovmand, Poul Hummelshoj, Niels Otto Jensen (1999).
 "Measurements of ammonia concentrations, fluxes and dry deposition velocities to a spruce forest 1991-1995." *Atmospheric Environment*. 33: 1367-1383.
- Bouwman, A.F., D.S. Lee, W.A.H. Asman, F.J. Dentener, K.W. Van Der Hoek, and J.G.F. Olivier (1997). "A global high-resolution emission inventory for ammonia." *Global Biogeochemical Cycles.* 11: 561-587.
- 10. Schlesinger, William H. and Anne E. Hartley (1992). "A global budget for atmospheric NH₃." *Biogeo-chemistry.* **15**: 191–211.
- Andersen, H.V., M.F. Hovmand, P. Hummelshoj, and N.O. Jensen (1993). "Measurements of the ammonia flux to a spruce stand in Denmark." *Atmospheric Environment*. 27A: 189–210.

- Duyzer, J.H., H.L.M Verhagen, J.H. Westrate, F. Bosveld, and A.W.M. Vermetten (1994).
 "The dry deposition of ammonia onto a douglas fir forest in the Netherlands." *Atmospheric Environment*. 28: 1241-1253.
- 13. Sutton, M.A., J.K. Schjorring, and G.P. Wyers (1995). "Plant-atmosphere exchange of ammonia." *Philosophical Transactions of the Royal Society of London*. **351**: 261-278.
- 14. Kim, C.M. (1973). "Influence of vegetation types on the intensity of ammonia and nitrogen dioxide liberation from soil." *Soil Biology and Biochemistry.* **5**: 163-166.
- Sutton, M.A., D. Fowler, and J.B. Moncrieff (1993). "The exchange of atmospheric ammonia with vegetated surfaces, I. Unfertilized vegetation." *Quarterly Journal of the Royal Meteorology Society.* 119: 1023-1045.
- 16. Asman, Willem A.H., Mark A. Sutton, and Jan K. Schjorring (1998). "Ammonia: emission, atmospheric transport and deposition." *New Phytology.* **139**: 24–48.
- 17. Battye, R., W. Battye, C. Overcash and S. Fudge (1994). *Development and Selection of Ammonia Factors*, EPA/600/R-94/190, U.S. Environmental Protection Agency, RTP, NC.
- 18. Hov, Oystein, and Bjorn Aage Hjollo. 1994. "Transport distance of ammonia and ammonium in Northern Europe." *Journal of Geophysical Research*. **99**(D9): 18,735–18,748.
- 19. Hutchings, N.J., S.G. Sommer, J.M. Andersen, W.A.H. Asman. 2001. "A detailed ammonia emission inventory for Denmark." *Atmospheric Environment*. **35**: 1959–1968.
- Sutton, M.A., C.J. Place, M. Eager, D. Fowler, and R.I. Smith. 1995. "Assessment of the magnitude of ammonia emissions in the United Kingdom." *Atmospheric Environment*. 29: 1393–1411.
- 21. Sutton, M.A., U. Dragosits, Y.S. Tang, D. Fowler. 2000. "Ammonia emissions from non-agricultural sources in the UK." *Atmospheric Environment*. **34**: 855–869
- 22. Corsi, R.L., Torres, V.M., Carter, G., Dombowski, K., Dondelle, M., Fredenberg, S., Takahama, S., and Taylor, T. (2000). *Nonpoint source ammonia emissions in Texas: a first estimate*. Report to the Texas Natural Resource Conservation Commission.
- 23. Coe, Dana, et al. (1998). Technical Support Study 15: Evaluation and Improvement of Methods for Determining Ammonia Emissions in the San Joaquin Valley. Prepared by Sonoma Technology, Inc., Santa Rosa, California for the California Air Resources Board, Sacramento, California.
- 24. Botsford, Charles, *et al.* (2000). *1997 Gridded Ammonia Emission Inventory Update for the South Coast Air Basin.* 52.16156.5204. Prepared by Systems Applications International for the South Coast Air Quality Management District.

- 25. Battye, William, Viney P. Aneja, and Paul A. Roelle (2003). "Evaluation and improvement of ammonia emissions inventories." *Atmospheric Environment*. **37**: 3873–3883.
- 26. Coe, Dana L. and Stephen B. Reid (2003). *Research and Development of Ammonia Emission Inventories for the Central States Regional Air Planning Association*, STI-902501-2241-FR. Sonoma Technologies Inc., Petaluma, CA.
- Chang, J. S., R. A. Brost, I. S. A. Isaksen, S. Madronich, P. Middleton, W. R. Stockwell, and C. J. Walcek (1987). "A three-dimensional Eulerian acid deposition model: Physical concepts and formulation." *Journal of Geophysical Research*. 92: 14681–14700.
- 28. Mathur, Rohit, and Robin L. Dennis (2003). "Seasonal and annual modeling of reduced nitrogen compounds over the eastern United States: Emissions, ambient levels, and deposition amounts." *Journal of Geophysical Research*. **108**(D15): 22-1 thru 22-19.
- 29. Byun, Daewon W., Jeffrey Young, Jonathan Pleim, M. Talat Odman, and Kiran Alapaty (1999). *Numerical Transport Algorithms for the Community Multiscale Air Quality* (*CMAQ*) Chemical Transport Model in Generalized Coordinates. EPA/600/R-99/030, U.S. Environmental Protection Agency, RTP, NC.
- 30. Hicks, B.B., D.D. Baldocchi, T.P. Meyers, R.P. Hosker, Jr., and D.R. Matt. 1987. "A preliminary multiple resistance routine for deriving dry deposition velocities from measured quantities." *Water, Air, and Soil Pollution.* **36**: 311–330.
- 31. Sutton, M.A., J.K. Schjorring, and G.P. Wyers (1995). "Plant-atmosphere exchange of ammonia." *Philosophical Transactions: Physical Sciences and Engineering*. **351**(1696): 261–276.
- Milford, Celia, Ken J. Hargreaves, Mark A. Sutton, Benjamin Loubet, and Pierre Cellier (2001). "Fluxes of NH₃ and CO₂ over upland moorland in the vicinity of agricultural land." *Journal of Geophysical Research*. **106**(D20): 24,169–24,181.
- Sutton, M.A., J.K. Burkhardt, D. Guerin, E. Nemitz, and D. Fowler (1998). "Development of resistance models to describe measurements of bi-directional ammonia surface atmosphere exchange." *Atmospheric Environment*. 32: 473–480.
- 34. Email from Donna Schwede, U.S. Environmental Protection Agency, RTP, NC. January 2004.
- Byun, Daewon W., Jonathan Pleim, Ruen Tai Tang, Al Bourgeois (1999). Models-3 Science Documentation – Chapter 12: Meteorology-Chemistry Interface processor (MCIP) for Models-3 Community Multiscale Air Quality (CMAQ) Modeling System. EPA-600/R-99-030, U.S. Environmental Protection Agency, RTP, NC.

- 36. Loubet, Benjamin, Celia Milford, Mark Sutton, and Pierre Cellier (2001). "Investigation of the interaction between sources and sinks of atmospheric ammonia in an upland landscape using a simplified dispersion-exchange model." *Journal of Geophysical Research*. **106**(D20): 24183–24195..
- 37. Kinnee, Ellen, Chris Geron, and Thomas Pierce (1997). "U.S. Land Use Inventory for Estimating Biogenic Ozone Precursor Emissions." *Ecological Applications*. **7**: 46-58.
- 38. Roe, S.M. and R.P. Strait (1998). "Methods for improving national ammonia emission estimates." Presented at the Air and Waste Management Association Emission Inventory Conference, New Orleans, LA.
- 39. Goebes, Marian Diaz, Ross Strader, Cliff Davidson (2003). "An ammonia emission inventory for fertilizer application in the United States." *Atmospheric Environment*. **37**: 2539-2550.
- 40. Dämmgen, Ulrich and Ludger Grünhage (2002). "Trace gas emissions from German agriculture as obtained from the application of simpler or default methodologies." *Environmental Pollution*. **117**: 23-34.
- 41. EPA (1999). Documentation for the Draft 1999 National Emissions Inventory (Version 3.0) For Criteria Pollutants and Ammonia, Area Sources. U.S. Environmental Protection Agency. RTP, NC. <u>ftp://ftp.epa.gov/EmisInventory/finalnei99ver3/criteria/documentation/xtra_sources/</u>
- 42. EPA (2002). Documentation for the 2002 Nonpoint Source National Emission Inventory for Criteria and Hazardous Air Pollutants (January 2004 Version). U.S. Environmental Protection Agency. RTP, NC.
- 43. Clay, D.E., G.L. Malzer, and J.L. Anderson (1990). "Ammonia volatilization from urea as influenced by soil temperature, soil water content, and nitrification and hydrolysis inhibitors." *Soil Science Society of America Journal*. **54**(1): 263–266.
- 44. Watson, C.J., R.J. Stevens, R.J. Laughlin, and P. Poland (1992). "Volatilization of ammonia from solid and liquid urea surface-applied to perennial ryegrass." *Journal of Agricultural Science, Cambridge*. **119**: 223–226.
- 45. Al-Kanani, T. and A.F. MacKenzie (1991). "Effect of tillage practices and hay straw on ammonia volatilization from nitrogen fertilizer solutions." *Canadian Journal of Soil Science*. **72**(2): 145–157.
- 46. McInnes, K.J., R.B. Ferguson, D.E. Kissel, and E.T. Kanemasu (1986). "Field measurements of ammonia loss from surface applications of urea solution to bare soil." *Agronomy Journal*. **78**(1): 192–196.

- 47. Fenn, L.B. and L.R. Hossner (1985). "Ammonia volatilization from ammonium or ammoniumforming nitrogen fertilizers" in *Advances in Soil Science, Volume 1*. B.A. Stewart, ed. Springer-Verlag, New York.
- 48. Hatch, D.S., S.C. Jarvis, and G.J. Dollard (1990). "Measurements of ammonia emission from grazed grassland." *Environmental Pollution*. **65**: 333-346.
- 49. Yamulki, Sirwan, Roy M. Harrison, and K.W.T. Goulding. 1995. "Ammonia surface–exchange above an agricultural field in southeast England." *Atmospheric Environment*. **30**: 109–115.
- 50. Dabney, Seth M., and David R Bouldin (1990). "Apparent deposition velocity and compensation point of ammonia inferred fromgradient measurements above and through alfalfa." *Atmospheric Environment*. **24A**(10): 2655-2666.
- Sutton, M.A., E. Nemitz, D. Fowler, G.P. Wyers, R.P. Otjes, J.K. Schjoerring, S. Husted, K.H. Nielsen, R. San Jose, J. Moreno, M.W. Gallagher, A. Gut (2000). "Fluxes of ammonia over oilseed rape Overview of the EXAMINE experiment." *Agricultural and Forest Meteorology.* 105: 327–349.
- 52. Roelle, Paul A., and Viney P. Aneja. 2002. "Characterization of ammonia emissions from soils in the upper coastal plain, North Carolina." *Atmospheric Environment*. **36**: 1087–1097.
- 53. EEA (2002). *Atmospheric Emission Inventory Guidebook 3rd Edition*. European Environment Agency.
- 54. Ismail, K.M., F.W. Wheaton, L.W. Douglass, and W. Potts. 1991. "Modeling ammonia volatilization from loamy sand soil treated with liquid urea." *Transactions of the American Society of Agricultural Engineers (ASAE), General Edition.* **34**(3): 756–763.
- 55. Kirk, G.J.D. and P.H. Nye. 1991. "A model of ammonia volatilization from applied urea. V. The effects of steady-state drainage and evaporation." *Journal of Soil Science*. **42**: 103–113.
- 56. Misselbrook. T.H., and M.N. Hansen. 2001. "Field evaluation of the equilibrium concentration technique (JTI method) for measuring ammonia emission from land spread manure or fertiliser." *Atmospheric Environment*. **35**: 3761–3768.
- 57. Plochl, Matthias. 2001. "Neural network approach for modelling ammonia emission after manure application on the field." *Atmospheric Environment*. **35**: 5833–5841.
- Riedo, Marcel, Celia Milford, Martin Schmid, Mark A. Sutton. 2002. "Coupling soil–plant–atmosphere exchange of ammonia with ecosystem functioning in grasslands." *Ecological Modelling*. 158: 83–110

- Søgaard,, H.T., S.G. Sommer, N.J. Hutchings, J.F.M. Huijsmans, D.W. Bussink, F. Nicholson. 2002. "Ammonia volatilization from field-applied animal slurry – the ALFAM model." *Atmospheric Environment*. 36: 3309–3319.
- 60. Huijsmans, J.F.M, J.M.G. Hol, G.D. Vermeulen (2003). "Effect of application method, manuer characteristics, weather and field conditions on ammonia volatilization from manure applied to arable land." *Atmospheric Environment*. **37**(26): 3669-3680.
- 61. E.H. Pechan and Associates (2004). *Documentation for the Final 1999 National Emissions Inventory (Version 3.0) for Criteria Air Pollutants and Ammonia – Area Sources.* U.S. Environmental Protection Agency, RTP, NC. <u>http://www.epa.gov/ttn/</u> <u>chief/net/1999inventory.html#final3crit</u>
- 62. Clay, D.E., G.L. malzer, and J.L. Anderson. 1990. "Ammonia volatilization from urea as influenced by soil temperature, soil water content, and nitrification and hydrolysis inhibitors." *Soil Science Society of America Journal*. **54**(1): 263–266.

Draft

Appendix A:

Bibliography of Sources Related to Ammonia Emissions from Natural Landscapes

Source	Landscape	Results	Comment
Anderson H.V. et al, 1999 ¹	Spruce forest in Western Denmark, surrounded by agriculture	Seven, one-week period evaluations in all seasons from 1991 to 1995. Average deposition velocity was 2.7 cm/s and average deposition flux was 9.1 ng-NH ₃ /m ⁻² -s. Relatively high net deposition velocities are observed during conditions with relative humidity above 80% or at ammonia levels moderately higher than the compensation point. The following relationships were plotted for deposition flux, F (ng/m ² -s), versus air concentration, C (μ g/m ³) and compensation point, CP (μ g/m ³): $F = -10 + 128 \times (C - CP)$ where C-CP < 0.4 $F = -95.5 + 75.1 \times (C - CP)$ where C-CP > 0.4	Dry conditions produced outlier data points, where emissions occurred even at high air concentrations. This may have resulted from an emission from saturated surfaces or from mineralization of soil nitrogen.
Anderson, N. et al, 2003^2	Soil, general	Carnegie Mellon Ammonia Model. For landscapes refers to Cass et al 1982.	Review article.
Anderson, S. et al, 2002 ³	Pine and oak forests, East Texas, summer	NH_3 emissions were 0.09 kg/km ² -mo from detritus on a pine forest floor, and 0.13 kg/km ² -mo from detritus on an oak forest floor.	Soils were acidic, and measurements did not take into account reabsorption by the forest canopy.

Source	Landscape	Results	Comment
Asman, 2001 ⁴	Mature forest, deposition from urine patches	A model is applied to examine the fraction of the NH ₃ emission (Fr) from a point source that is deposited within different distances from the source in relation to factors affecting dispersion and deposition. The results show that Fr at 2000m distance from the source may be as large as 60% for a 3m high source when ammonia deposits to mature forest at rates limited only by atmospheric transfer.	The DEPOI-model is a steady-state K-model.
Bouwman et al, 1997 ⁵		Review available measurement data, and also give order-of- magnitude estimates of long-term emissions based on the rates of nitrogen mineralization in different ecosystems. Estimated NH ₃ emissions at 0.1 kg/ha-yr from forests, 0.3 from unfertilized grassland, 0.4 from shrubland, and 0.1 from deserts.	
Burns, 2003 ⁶	Rocky Mountains	Rockies ecosystems therefore sequester much less N than those in the east because they are snow-covered for 7–9 months a year. For example, only 1–2% of N storage in alpine tundra at Niwot Ridge is in the form of living biomass, and the majority of this biomass is stored in roots (Fisk et al., 1998 ⁷), whereas in a hardwood forest at Hubbard Brook, New Hampshire about 30% of N is stored in living biomass that is at least 5 times greater than in the alpine tundra at Niwot Ridge, and the majority of this living biomass is stored above ground (Likens and Bormann, 1995 ⁸).	

Source	Landscape	Results	Comment
Bytnerowicz et al, 2002 ⁹	Sequoia National Park	NH ₃ declines with distance from polluted areas. Seasonal average (May-November) at most-polluted site is 4.5 μ g/m ³ (sd = 2.4, range: 1.0–8.0 [daily concentrations]). Least polluted site concentration is 1.6 μ g/m ³ (sd = 0.9, range: 0.4–3.2)	NH ₃ is being absorbed on almost all days, but the concentration pattern is reversed (showing possible release of NH ₃) when the mid-altitude NH ₃ concentration falls below ~ $0.3 \mu g/m^3$.
Bytnerowicz and Fenn, 1996 ¹⁰	California	Compiles ambient measurements for NH_3 and other pollutants in various forests in California and similar ecosystems. NH_3 concentrations rang from 0.04–5.47 µg/m ³ . Concentrations were higher in the daytime than at night, and higher in summer than in spring or fall.	
Dabney and Bouldin, 1990 ¹¹	Alfalfa, New York	Measured flux of NH_3 , NH_4^+ , and ammonium nitrate in alfalfa in NY. Compensation point = 2 ppb	
Denmead et al 1974, as cited in Schlesinger	Grazed Pasture in Australia	Ammonia losses per day of 0.26 kg ha ⁻¹ day ⁻¹ .	
Denmead <i>et</i> <i>al</i> , 1976 ¹²	Grazed Pasture	Grazed grass-clover pasture. When the canopy of clover was reduced from grazing the NH_3 emissions increased. Grazed = 13 g N ha ⁻¹ hr ⁻¹ vs. Ungrazed = 2 g N ha ⁻¹ hr ⁻¹ .	

Source	Landscape	Results	Comment
Denmead <i>et</i> <i>al</i> , 1978 ¹³		Emissions over a corn field. Observed a net loss of NH ₃ between 1400 & 2100 hrs = 70 g N ha ⁻¹ . $F = -(\tau/\rho) dc/du$ F = new vertical transfer NH ₃ τ = momentum flux ρ = density of air c = gradients or difference in atmospheric NH ₃ concentration	
		u = horizontal wind speed	
Denmead 1990	Grazed Pasture in Australia	Ammonia losses per day of 0.25 kg ha ⁻¹ day ⁻¹ . About 30 g N ha ⁻¹ day ⁻¹ for six months over 164 million hectares of forest and uncultivated country in the humid, sub-humid and monsoonal zones delineated in the Atlas of Australian Resources (1980) and at negligible rates in drier zones. This corresponds to Dawson's (1977) average soil emission of 3 kg N ha ⁻¹ per year plus a net emission from the vegetation of 2.4 kg N ha ⁻¹ per year.	
Dentener and Crutzen, 1994 ¹⁴	Global	Develops a global model of the nitrogen cycle. The natural ecosystem algorithms use a mean canopy resistance of 1 cm/s, which is scaled by the amount of vegetation (3 cm/s in the tropics and 0 in desert areas). Compensation points are 1 ppb for trees (2.5 at 25 C and 0.2 at 5 C), 3–5 ppb for herbaceous plants, and >10 ppb for wheat.	

Source	Landscape	Results	Comment
Dragosits et al, 2002	3000 ha region of Britain	A fine resolution model for ammonia emission, transport, and deposition. NH ₃ deposition is based on a series resistance model which includes aerodynamic resistance, laminar boundary layer resistance, and canopy resistance. Specific canopy resistances are used for different land use categories: 1000 s/m for arable land, 20 s/m for forest, 600 s/m for grassland, 20 s/m for moorland, and 240 s/m for unban areas.	See also Fournier et al, 2002
Elliot <i>et al</i> , 1971 ¹⁵	Grazed pasture	Measured losses from grazed pasture land. Distillable nitrogen averaged 15 kg ha ⁻¹ yr ⁻¹	
Eugster et al, 1998 ¹⁶	Switzerland	Model of emissions, transport, and deposition of NH_3 . Canopy resistance is assumed to be 20% of that for SO_2 .	
Fournier et al, 2002 ¹⁷	Great Britain	The Fine Resolution Ammonia Exchange (FRAME) model was applied to Great Britain. NH ₃ deposition is based on a series resistance model which includes aerodynamic resistance, laminar boundary layer resistance, and canopy resistance. Specific canopy resistances are used for different land use categories: 1000 s/m for arable land, 20 s/m for forest, 600 s/m for grassland, 20 s/m for moorland, and 240 s/m for unban areas.	See also Dragosits et al, 2002

Source	Landscape	Results	Comment
Fowler et al, 1998a ¹⁸	Europe	There is not enough information on apoplastic NH ₄ ⁺ and H ⁺ to estimate compensation points for NH ₃ in semi-natural vegetation. Further, emissions are believed to be offset by deposition most of the time. Therefore, emissions were neglected in estimating regional mass budgets for NH ₃ . Deposition was es were estimated using a resistance model.	
Fowler et al, 1998b ¹⁹	Great Britain	Canopy resistance <i>increases</i> with NH_3 concentration, as a result of a decreased uptake efficiency of foliar surfaces.	
Gilliland et al, 2003 ²⁰	Eastern U.S.	Scaling factors for the NH ₃ emissions inventory were computed by inverse modeling using CMAQ and wet deposition and atmospheric concentrations of NH ₄ ⁺ . Calculated scaling factors, based on the 1990 NEI, with uniform seasonal allocation, were: -68 to -73% for January, -58to $-46%$ for March, -38 to $-33%$ for April, -23 to $-24%for May, +6\% for June, -10\% for July, -24\% for August, and-75%$ for October.	
Hesterberg et al., 1996 ²¹	Extensively managed grassland surrounded by agricultural land, Switzerland	The total dry deposition was between 15 and 25 kg N ha ⁻¹ y ⁻¹ . Deposition velocity of NH ₃ was between 0.13 and 1.4 cm s ⁻¹ , and a compensation point between 3 and 6 ppbV NH ₃ was found. The arithmetic average NH ₃ flux varied only between 8.2 and 8.9 kg N ha ⁻¹ y ⁻¹ .	Between 60 and 70% of dry deposition originated from NH ₃ emitted by farms in the neighborhood. N deposition is highly correlated to local NH ₃ emissions.

Source	Landscape	Results	Comment
Hicks, 1987 ²²	General	Outlines calculation methods for aerodynamic, boundary layer, and canopy resistances. Stomatal resistance is expressed as: $r = r + x (1 + b/I) \times f f f f f$	
		$r_s = r_{s,min} \times (1 + b/1) \times I_e I_w I_T I_s$ where: I is light intensity (W/m ²); b is an illumination factor estimated at 22 W/m ² for oak and 25 W/m ² for spruce; $r_{s,min}$ is the minimum stomatal resistance, estimated at 145 s/m for oak and 232 s/m for spruce; and f's are correction factors for humidity, water stress, temperature, and diffusivity. Temperature effects can be reflected as follows: $f_T = [(T-T_e)/(T_0-T_e)] \times [(T_h-T)/(T_h-T_0)]^{[(Th-T0)/(T0-Te)]}$ where: T_e is the lower temperature extreme at which stomata close, estimated at -5 C for spruce and 10 C for oak; T_h is the upper temperature extreme, 35 C for spruce and 45 C for oak; and T_0 is the temperature at which stomatal transport is	
		A method is also suggested for extending this surface resistance to the entire canopy, and taking into account the impact of shading on the lower canopy: $L_{s} = [1 - \exp(K \times LAI)]/K$ $1/R_{s} = L_{s}/r_{s} (KI_{sun}) + (LAI - L_{s})/r_{s} (0.5 I_{shade})$ where: LAI is the leaf area index, L _s is the sunlit portion of the LAI, K is the extinction coefficient (0.5/cos[zenith angle])	

Source	Landscape	Results	Comment
Hov et al, 1994 ²³	Northern Europe	Documents Lagrangian modeling of Europe. For NH ₃ , local dry deposition of emissions is taken as 19% (within the same grid cell). Compensation point is assumed to be 0. The 1 m deposition velocity over land is calculated as follows:	
		$V_D = V_D^0 (\delta \sin^2 D + r/(R \cos^2 D))$ where V_D^0 for NH ₃ is 1.0 cm/s, δ is 1.0 in the daytime and 0.25 at night, D is a day-of-the-year term with a maximum sin function on August 1 and a minimum on February 1, r is the distance from the North Pole and R is the distance from the equator.	
Husted et al., 2000 ²⁴	Oilseed Rape Plant	Compensation points for gaseous exchange of ammonia (NH_3) between stomata and the atmosphere were determined in an oilseed rape (<i>Brassica napus</i>) canopy by analysing the concentrations of NH_4^+ and H^+ in leaf apoplastic solution. This bioassay approach allowed an intercomparison with compensation points derived from micrometeorological measurements.	
Hutchings et al, 2001 ²⁵	Denmark	Produces a detailed emissions inventory for Denmark. Emissions from natural ecosystems are not explicitly included.	

Source	Landscape	Results	Comment
Kiefer and Fenn, 1997 ²⁶	Southern California	Fertilizer was applied (500 kg N ha ⁻¹) in spring. Areas with high N deposition showed that N is not growth limiting, and that N is in excess of biotic demand. Chronic deposition > 25 kg ha ⁻¹ yr ⁻¹ indicates N saturation, and N deposition of 6-11 kg N ha ⁻¹ yr ⁻¹ indicates that the system is not saturated. When the system is saturated more NO ₃ ⁻ exists in the soil.	San Gabriel Mountains and San Bernardino Mountain sites, with Ponderosa pine and Jeffery pine.
de Kluizenaar, 2000 ²⁷	Ireland	Integrated assessment of NH ₃ concentrations and deposition in Ireland. Dry deposition velocities from various sources were reviewed, and the following values were selected: 3.0 cm/s for coniferous forests (see Wyers and Erisman, 1998), 2.5 cm/s for mixed forests, 2.0 cm/s for broadleaf forests (Zapletal, 1998), 1.5 cm/s for moors and heathland (Fowler et al, 1998), 0.5 cm/s for urban areas (Zapletal, 1998), and 1.0 for agricultural land (Zapletal).	
Langford and Fehsenfeld, 1992 ²⁸	Pine forest, Colorado	Measured ammonia emissions and deposition in a pine forest (Lodgepole, Ponderosa Pine, spruce, and aspen) on the eastern slope of the Rocky Mountains. A bidirectional flux was observed with a canopy average compensation point of 0.8 ppb. Emissions of about 1.2 ng-NH ₃ /m ² -s were measured during downslope wind conditions, when the forest was exposed to NH ₃ -poor air. Deposition of about 10 ng-NH ₃ /m ² -s were observed during upslope winds, when the forest was exposed to NH ₃ -rich air.	

Source	Landscape	Results	Comment
Lawrence et al, 2000 ²⁹	Mississippi River Basin, (1998-1999)	Atmospheric transport eastward across the basin boundary is greater for NO_3^- than NH_4^+ , but a significant amount of NH_4^+ is likely to be transported out of the basin through the formation of $(NH_4)_2SO_4$ and NH_4NO_3 particles – a process that greatly increases the atmospheric residence time of NH_4^+ . This process is also a likely factor in the atmospheric transport of nitrogen from the Midwest to upland forest regions in the NE, where NH_4^+ constitutes 38% of the total wet deposition of N.	
Losleben et al, 2000 ³⁰	Rocky Mountains, Colorado	In the Rocky Mountain Front Range study, high pH precipitation (>6 pH) was associated with wind from the Northwest.	
Mansell and Koisumi, 2002	Southern California	Developed an updated 1997 emissions inventory for Southern California. However, emission factors from non-agricultural soils were not altered from the earlier Radian inventory.	

Source	Landscape	Results	Comment
Mathur and Dennis, 2003 ³¹	Eastern U.S.	 Documents RADM modeling of NH₃ transport, deposition and ambient concentrations. The authors cite a range of NH₃ deposition rates measured or estimated in previous studies: 0.5–5 cm/s for a variety of natural ecosystems by Sutton et al, 1994; 1.9 cm/s over heathland in the daytime by Duyzer, 1994; 1.2 cm/s for low vegetation landscapes and 2.5 cm/s for forests by Asman, 2001; and 3.2–3.6 cm/s for forests by Wyers et al, 1992, and Duyzer et al, 1992. Dry deposition in RADM is estimated using a resistance analog with three resistance terms: aerodynamic resistance, laminar sub-layer resistance, and canopy resistance (R_C). R_C was estimated based on measurements for SO₂, reduced by 1/3. This produced deposition rates of 1–1.25 cm/s (still somewhat lower than European measurements and estimates). 	
Mendoza- Dominguez and Russell, 2001 ³²	Eastern U.S.	Scaling factors for the NH_3 emissions inventory were computed by inverse modeling using four-dimensional data assimilation with the CIT airshed model. Calculated factors, based on the seasonally allocated 1995 NEI, were 0.59 for May and 0.52 for July.	

Source	Landscape	Results	Comment
Milford et al, 2001^{33}	Moorland, England	Parameterizes NH ₃ exchange based on long term micrometeorological measurements:	
		$F_{x} = [X_{c} - X_{a}]/[R_{a} + R_{b}]$	
		$X_{c} = \{X_{s}/R_{s} + X_{a}/[R_{a} + R_{b}]\} / \{1/[R_{a} + R_{b}] + 1/R_{w} + 1/R_{s}\}$	
		where: F_x = emissions (or deposition); X_c = canopy level compensation point; X_s = stomatal compensation point; X_a = air concentration; R_b = atmospheric resistance; R_a = quasi- laminar sublayer resistance; R_w = resistance to cuticular deposition; R_s = stomatal resistance $R_s = (D_{H2O}/D_{NH3}) R_{s,min} (1 + \beta/S)$ where: D = diffusivity, $R_{s,min} = 150$ s/m (for moorland); $\beta =$ 25 W/m ² (for moorland); S = solar radiation	
		$R_{\rm w} = R_{\rm w,min} \exp[(100 - RH)/a]$	
		where: $R_{w,min} = 0.5$ s/m; a = 12 (for moorland); RH = relative humidity	
		$X_s = (1.615 \times 10^5 / T) \exp(1.038 \times 10^4 / T) \times [NH_4^+]/[H^+]$	
		where: $T = \text{temperature (K), [NH_4^+]/[H^+]}$ is the ratio of intercellular concentrations (estimated at 50 for moorland)	

Source	Landscape	Results	Comment
Mugasha and Pluth, 1995 ³⁴	Alberta, Canada	Measured NH_3 losses following application of urea fertilizer to drained and undrained forested peatlands. Mean losses from the undrained site were 3% for urea applied at a rate of 200 kg-N//ha and 4% for 400 kg-N/ha. Mean losses from the drained site were 0.7% and 7%. Most volatilization occurred within 9 days. Losses abated after precipitation on day 9.	
Neftel <i>et al</i> , 1998 ³⁵	Pore space in soil	Determined NH ₃ concentrations in the soil from the open pore space. Proposed a soil compensation point method. Concentrations = $<0.1 \ \mu g^{-3}$. $\chi_{soil} = C_{NH4+} \times 10^9 / K_H (1 + 10^{-pH} / K_a)$ χ_{soil} = ammonia concentration in pore space (ppb) C_{NH4+} = ammonia concentration in soil liquid (mol/L) K_H = Henry coefficient (mol/L atm) K_a = equilibrium constant between NH ₄ ⁺ and NH ₃ in aqueous solution	

Source	Landscape	Results	Comment
Nemitz et al., 2000a ³⁶	Oilseed rape, Scotland	Two and three layer models were used for the bi-directional ammonia surface/atmosphere exchange, taking both canopy concentrations and litter emissions. The measurements show the diurnal cycle typical for agricultural canopies with emission of up to 150 ng m ⁻² s ⁻¹ during the day. The application of an inverse Lagrangian technique estimated an average leaf litter emission of 32 ng m ⁻² s ⁻¹ , with peaks of 150 ng m ⁻² s ⁻¹ . Using the foliage-litter model, a stomatal compensation point of 0.58 μ g m ⁻³ .	This is the beginning of the series of the studies with oilseed rape. The equation above was used to calculate the compensation point See also Nemitz et al, 2000b and Sutton et al, 2000.
Nemitz et al., 2000b ³⁷	Oilseed rape, Scotland	The largest concentrations at the ground caused by NH3 release from decomposing litter leaves on the ground surface with values of up to 150 ng m ⁻² s ⁻¹ (typical emission were 10-50). Despite the large estimated ground emission (26 g NH ₃ -N ha ⁻¹ per day), all NH3 is recaptured by the lowest 0.7m of the 1.38m tall canopy (and the bi-directional net exchange with the atmosphere is governed by the top 0.5m), leading to a net emission from the canopy of 12 g NH ₃ -N ha ⁻¹ per day.	See also Nemitz et al, 2000a and Sutton et al, 2000.
Peterjohn and Schlesinger, 1990 ³⁸	Desert soil, southwest	Determined nitrogen loss from desert soils in the U.S. using mass balance. Loss = 2.32 kg N m^2 or 77%.	
Source	Landscape	Results	Comment
---------------------------------------	--	--	--
Pryor et al., 2001 ³⁹	Deciduous forest in southern Indiana	Above canopy NH3 concentrations measured continuously indicate mean concentrations of 0.6–1.2 μ g m ⁻³ during the spring and 0.3 μ g m ⁻³ during the winter (geometric means of 0.4-0.8 and 0.3 μ g m ⁻³ , respectively). Measurements suggest that on average the forest act as a sink of NH ₃ with a representative daily deposition flux of 1.8 mg-NH ₃ m ⁻² during the spring. Observed concentrations seldom dropped below 0.1 μ g m ⁻³ indicating that this may be a regionally representative background concentration. An hourly profile is given for one day when emissions occurred.	The region has a ridge/ravine topography with a canopy approximately 25 meters above the forest floor. The soil consists of sandstone, siltstone, and shale. The forest is a secondary successional broadleaf forest: tulip poplar, white oak, red oak, and sugar maple.
Rattray et al., 2001 ⁴⁰	Alpine tundra site on Niwot Ridge, Colorado	The concentrations of NH ₃ , HNO ₃ , NH ₄ ⁺ , and NO ₃ ⁻ were extremely low and ranged between 5 and 70 ng N m ⁻³ . The NH ₃ compensation point at this alpine tundra site appears to have been at or below about 20 ng N m ⁻³ . Large deposition velocities (>2 cm s ⁻¹) were determined for nitrate and ammonium and may result from reactions with surface derived aerosols. Based on our calculated dry deposition fluxes ammonia contributed 20-25% of the N dry deposition total to the alpine tundra.	The site is an E-W trending ridge on the eastern slope of the Front Range of Colorado, at an elevation of 3517 meters. The site, bounded by low rounded hills, is contained within an alpine tundra ecosystem consisting of low perennial sedges and grasses broken by rock debris. Samples occurred between August-September 1998.

Source	Landscape	Results	Comment
Reido et al, 2002 ⁴¹	Grassland, Britain	Presents a two stage resistance model for soil-to-canopy and canopy-to-atmosphere exchange.	Based on measurements in an intensively managed grassland.
		$F_{TOT} = (X_{Z0} - X_A)/R_A$	
		$F_{\text{TOT}} = F_{\text{SOIL}} + F_{\text{CAN}}$	
		$F_{SOIL} = (X_{SOIL} - X_{Z0})/R_{AC}$	
		$F_{CAN} = (X_C - X_{Z0})/R_B$	
		$F_{CAN} = (X_S - X_C)/R_S - X_S/R_W$	
		where $R_W = f(RH)$	
Robarge et al, 2002 ⁴²	Agricultural site, North Carolina	Analyzes NH_3 concentrations in the air over agricultural land. The logarithm of NH_3 concentration is correlated with temperature. There is also a correlation with relative humidity up to about 50% relative humidity.	
Sakurai and Fujita, 2002 ⁴³	Japan	Model of the ammonia budget for the Kanto region of Japan. Uses a deposition velocity of 1.7 cm/s.	

Source	Landscape	Results	Comment
Schjoerring et al, 1998 ⁴⁴	N.W. Europe	Measured NH ₃ flux from 2 different indigenous species of plants in N.W. Europe. Interested in the measurements taken after harvest. Initial measurements indicate that NH ₃ is absorbed into the soil, however after 26 days NH ₃ is volatilized from soil until the air concentration of NH ₃ is ~ 10 nmol/mol air or greater. Highest flux measured = ~5 nmol $^{-2}$ s ⁻¹ . Interestingly commented that the rates of absorption/loss for NH ₃ from bare soil were similar to those seen with plant growth.	
Schlesinger and Hartley, 1992 ⁴⁵	Global	Review of available data on emissions from natural ecosystems. Estimates NH_3 emissions at 1.2 - 12 kg/ha-yr from forests (based on 6 studies); and 0.12 - 12 from grasslands, based on 10 studies.	
Shahin et al, 1999 ⁴⁶	Chicago	Measured deposition to simulated water body and building surfaces. NH ₃ deposition velocity was 2.46 cm/sec. Deposition rates averaged 2.64 mg/m ² -day overall, 3.21 when the wind was from land, 1.37 for wind from Lake Michigan. These rates imply average NH ₃ concentrations of 1.5 μ g/m ³ during the daytime, and 0.64 μ g/m ³ at night. Deposition rates were lower during the day (2.26 mg/m ² -day) than at night (3.02 mg/m ² -day), but the difference was not statistically significant.	
Sievering et al, 2000 ⁴⁷	Spruce forest, Maine	Average monthly dry deposition rates were measured for NH_3 from April thru November: 0.026, 0.060, 0.057, 0.059, 0.058, 0.057, 0.039, and 0.028 kg-N/ha.	

Source	Landscape	Results	Comment
Smith et al, 2000 ⁴⁸	General, United Kingdom	Develops a mechanistic model for ammonia deposition. The model also includes stomatal emissions when air concentrations are below the compensation point.	
Sorteberg and Hov, 1996 ⁴⁹	General, Europe	Mechanistic model for deposition and emissions. Gives dry deposition velocities for different land uses.	See also Smith et al, 2000
Sutton et al., 2000 ⁵⁰	Oilseed rape, Scotland	Fluxes of NH ₃ were bi-directional (-200 to 620 ng m ⁻² s ⁻¹), with deposition generally occurring when the canopy was wet and emission when it was dry, particularly during the day. The NH ₃ mean concentrations were 1.03 (pre-cutting of oilseed) to 2.48 μ g m ⁻³ (post-cutting). The net emissions of NH ₃ for the examined period was 0.7 kg N (0.1 total deposition and 0.8 total emission). Extrapolation to May- Augusts suggests a net emission of around 2.5 N ha ⁻¹ .	This was called the EXAMINE experiment. See also Nemitz et al, 2000a and 2000b.
Sutton et al, 1998 ⁵¹	Moorland, Devon, England	A compensation point of over 50 μ g/m ³ was measured for cut grass located within 1 km of land treated with animal slurry.	

Source	Landscape	Results	Comment
Sutton et al, 1997 ⁵²	Grass moorland and bog, Great Dun Fell	Ammonia was generally deposited to the Fell, but some periods of emissions were also observed at air concentrations less than $0.3 \ \mu g/m^3$. During periods of deposition, canopy resistance (R_C) was measured at 5 and 27 s/m on two example days. A more complex model was developed to cover the bidirectional flux, with parallel deposition to leaf cuticles and emissions from stomata. Terms were estimated as follows: resistance to deposition onto leaf cuticles (R_W) = 10s/m; stomatal compensation point (X_S) = 5 μ g/m ³ ;	Emissions can only escape the leaf surface when the leaf is dry.
Sutton et al, 1995, ⁵³ 2000 ⁵⁴	Great Britain	Develops a detailed emission inventory for Great Britain. Emissions from natural soils are taken as 0, stating: "any minor temporary emissions treated in definition of net dry deposition."	
Sutton et al, 1994 ⁵⁵	General	Measurement data on ammonia deposition and emission are compiled for a wide array of land uses. A net deposition flux is found for forested and semi-natural ecosystems, and a net emission flux is found in agricultural lands. Emissions are typically 0–10 kg-N/ha-yr for croplands, and 1–40 kg-N/ha-yr for intensively grazed pastures.	
Swank and Vose, 1997 ⁵⁶	North Carolina	Indicated when the forested system is disturbed it becomes a source of N instead of a sink. Mature healthy forests are generally sinks for N, whereas a forest that was transformed into a grassland became a source. Mentions a forest nutrient cycling model (Johnson <i>et al.</i> , 1995).	

Source	Landscape	Results	Comment
Tarnay et al., 2001 ⁵⁷	Lake Tahoe Basin,	Total flux from dry deposition ranges from 1.2 to 8.6 kg N ha ⁻¹ for the summer and fall dry season and is significantly higher than wet deposition, which ranges from 1.7 to 2.9 kg N ha ⁻¹ year ⁻¹ . The results of the study suggest that dry N deposition is more important than wet deposition for forest canopies.	Summer and fall, July through September 1997 and 1998.
Van Drecht et al, 2003 ⁵⁸	Global model	A global model was developed for nitrogen in the hydrosphere, including emissions and wet and dry deposition. The model assumes 50% of emissions are deposited within the same (5°) grid cell.	
Van Hove et al., 2002 ⁵⁹	Rye grass (<i>Lolium</i> <i>perenne L</i> .) in an intensively managed grassland.	The calculated values for compensation point varied between 0.5 and 4 μ g m ⁻³ . The gaseous NH ₃ concentrations inside the grass leaves were, with a few exceptions, always smaller than the measured ambient NH ₃ concentrations. Temperature appeard to have a predominant effect on compensation point, partly by affecting the equilibrium between gaseous NH ₃ inside the leaf and NH ₃ dissolved in the apoplast and partly by affecting physiological processes influencing the NH ₄ ⁺ concentrations during spring and summer coincided with a low total leaf N content (<3% dw).	Grassland located west of Wageningen, the Netherlands is a temperate humid perennial ryegrass pasture on a heavy clay soil with previous dairy slurry and artificial fertilizer N in previous years. Slurry was applied three times (60 kg N ha ⁻¹) and calcium nitrate fertilizer was added at four other times (27 kg N ha ⁻¹). The pH varied between 5.9 and 6.5 throughout the experimental period.

Source	Landscape	Results	Comment
Wyers and Erisman, 1998 ⁶⁰	Douglas Fir forest, Netherlands	Continuous record of NH_3 fluxes for a period of more than two years. Net emissions were 0.14 kg/ha-yr for 1993, and 0.05 kg/ha-yr for 1994. Ambient NH_3 concentration during these measurements was about 5 μ g/m ³ .	Ambient NH_3 may have exceeded the compensation point for a significant portion of the year.

Draft

References for Appendix A

- Andersen, Helle Vibeke, Mads F. Hovmand, Poul Hummelshoj, Niels Otto Jensen. 1999.
 "Measurements of ammonia concentrations, .uxes and dry deposition velocities to a spruce forest 1991-1995." *Atmospheric Environment*. 33: 1367-1383.
- 2. Anderson, Natalie, Ross Strader, Cliff Davidson. 2003. "Airborne reduced nitrogen: ammonia emissions from agriculture and other sources." *Environment International*. **29**: 277-286.
- Anderson, Stephen P., Richard L. Corsi, Joel Banks, Kerry Kinny and Mohammed G. Sawar. 2003. "Non-Point Source Ammonia Emissions in Texas: Estimation Methods, Pitfalls, Corrections, and Comparisons." *11th International Emission Inventory Conference:* "*Emission Inventories - Partnering for the Future,*" Atlanta, GA, April 15-18, 2002
- Asman, Willem A.H. 2001. "Modelling the atmospheric transport and deposition of ammonia and ammonium: an overview with special reference to Denmark." *Atmospheric Environment*. 35: 1969–1983.
- Bouwman, A.F., D.S. Lee, W.A.H. Asman, F.J. Dentener, K.W. Van Der Hoek, and J.G.F. Olivier. 1997. "A global high-resolution emission inventory for ammonia." *Global Biogeochemical Cycles.* 11: 561-587.
- 6. Burns, Douglas A. 2003. "The effects of atmospheric nitrogen deposition in the Rocky Mountains of Colorado and southern Wyoming, USA—a critical review." *Environmental Pollution*. **127**: 257–269.
- Fisk, M.C., Schmidt, S.K. 1995. "Nitrogen mineralization and microbial biomass nitrogen dynamics in three alpine tundra communities." *Soil Science Society of America Journal*. 59: 1036–1043.
- 8. Likens, G.E., Bormann, F.H. 1995. *Biogeochemistry of a Forested Ecosystem*. Springer-Verlag, NewYork.
- 9. Bytnerowicz, Andrzej, Michael Tausz, Rocio Alonso, David Jones, Ronald Johnson, Nancy Grulke. 2002. "Summer-time distribution of air pollutants in Sequoia National Park, California." *Environmental Pollution*. **118**: 187–203.
- 10. Bytnerowicz, Andrzej, and Mark E. Fenn. 1996. "Nitrogen deposition in California forests: a review." *Environmental Pollution*. **92**: 127–146.
- 11. Dabney, Seth M., and David R Bouldin. 1990. "Apparent deposition velocity and compensation point of ammonia inferred fromgradient measurements above and through alfalfa." *Atmospheric Environment*. **24A**(10): 2655-2666.

- 12. Denmead, O.T., J.R. Freny, and J.R. Simpson. 1976. "A Closed Ammonia Cycle within a Plant Canopy". *Soil Biology and Biochemistry*. **8**:161-164.
- 13. Denmead, O.T., R. Nulsen, and G.W. Thurtell. 1978. "Ammonia Exchange over a Corn Crop". *Soil Science Society of America Journal*. **42**: 840-842.
- 14. Dentener, Frank J., and Paul J. Crutzen. 1994. "A three-dimensional model of the global ammonia cycle." *Journal of Atmospheric Chemistry*. **19**: 331–369.
- Elliot, L.F., G.E. Schuman, and F.G. Viets, Jr. 1971. "Volatilization of Nitrogen-containing Compounds from Beef Cattle Areas". *Soil Science Society of American Proceedings*. 35: 752-755.
- Eugster, Werner, Silvan Perego, Heinz Wanner, Alex Leuenberger, Matthias Liechti, Markus Reinhardt, Peter Geissbuhler, Marion Gempeler, and Jurg Schenk. 1998. "Spatial variation in annual nitrogen deposition in a rural region in Switzerland." *Environmental Pollution*. 102, S1: 327–335
- Fournier, N., V.A. Pais, M.A. Sutton, K.J. Weston, U. Dragosits, S.Y. Tang, J. Aherne.
 2002. "Parallelisation and application of a multi-layer atmospheric transport model to quantify dispersion and deposition of ammonia over the British Isles." *Environmental Pollution*. 116: 95–107.
- 18. Fowler, D., M.A. Sutton, R.I. Smith, C.E.R. Pitcairn, M. Coyle, G. Campbell, and J. Stedman. 1998. "Regional mass budgets of oxidized and reduced nitrogen and their relative contribution to nitrogen inputs of sensitive ecosystems." *Environmental Pollution*. **102**, **S1**: 337–342.
- Fowler, D., C.E.R. Pitcairn, M.A. Sutton, C. Flechard, B. Loubet, M. Coyle, and R.C. Munro. 1998. "The mass budget of atmospheric ammonia in woodland within 1 km of livestock building." *Environmental Pollution*. **102, S1**: 343–348.
- 20. Gilliland, Alice B., Robin L. Dennis, Shawn J. Roselle, and Thomas E. Pierce. 2003.
 "Seasonal NH₃ emission estimates for the eastern United States based on ammonium wet concentrations and an inverse modeling method." *Journal of Geophysical Research*. 108(D15): 20-1 thru 20-12.
- Hesterberg, R., A. Blatter, M.Fahrni, M. Rosset, A. Neftel, W. Eugster, and H. Wanner.
 1996. "Deposition of nitrogen-containing compounds to an extensively managed grassland in central Switzerland." *Environmental Pollution*. **91**: 21–34.
- 22. Hicks, B.B., D.D. Baldocchi, T.P. Meyers, R.P. Hosker, Jr., and D.R. Matt. 1987. "A preliminary multiple resistance routine for deriving dry deposition velocities from measured quantities." *Water, Air, and Soil Pollution.* **36**: 311–330.

- 23. Hov, Oystein, and Bjorn Aage Hjollo. 1994. "Transport distance of ammonia and ammonium in Northern Europe." *Journal of Geophysical Research*. **99**(D9): 18,735–18,748.
- 24. Husted, Soren, Jan K. Schjoerring, Kent H. Nielsen, Eiko Nemitz, Mark A. Sutton. 2000. "Stomatal compensation points for ammonia in oilseed rape plants under field conditions." *Agricultural and Forest Meteorology*. **105**: 371–383.
- 25. Hutchings, N.J., S.G. Sommer, J.M. Andersen, W.A.H. Asman. 2001. "A detailed ammonia emission inventory for Denmark." *Atmospheric Environment*. **35**: 1959–1968.
- 26. Kiefer, Jeffery W., and Mark E. Fenn. 1997. "Using vector analysis to assess nitrogen status of ponderosa and Jeffery pine along deposition gradients in forests of southern California." *Forest Ecology and Management*. **94**: 47-59.
- 27. de Kluizenaar, Y. and E. P. Farrell. 2000. *Ammonia monitoring in Ireland*. Forest Ecosystem Research Group Report No. 56, Department of Environmental Resource Management, University College Dublin, Ireland. <u>www.ucd.ie/~ferg/Research/Projects/Ammonia/</u>
- 28. Langford, A.O. and F.C. Fehsenfeld. 1992. "Natural vegetation as a source or sink for atmospheric ammonia: a case study." *Science*. **255**: 581–583.
- 29. Lawrence, Gregory B., Donald A. Goolsby, William A. Battaglin, Gary J. Stensland. 2000.
 "Atmospheric nitrogen in the Mississippi River Basin emissions, deposition and transport." *The Science of the Total Environment*. 248: 87-99.
- Losleben, Mark, Nick Pepin, Sandra Pedrick. 2000. "Relationships of precipitation chemistry, atmospheric circulation, and elevation at two sites on the Colorado front range." *Atmospheric Environment*. 34: 1723–1737.
- 31. Mathur, Rohit, and Robin L. Dennis. 2003. "Seasonal and annual modeling of reduced nitrogen compounds over the eastern United States: Emissions, ambient levels, and deposition amounts." *Journal of Geophysical Research*. **108**(D15): 22-1 thru 22-19.
- Mendoza-Dominguez, Alberto and Armistead G. Russell. 2001. "Emission Strength Validation Using Four-Dimensional Data Assimilation: Application to Primary Aerosol and Precursors to Ozone and Secondary Aerosol." *Journal of the Air & Waste Management Association.* 51: 1538–1550.
- Milford, Celia, Ken J. Hargreaves, Mark A. Sutton, Benjamin Loubet, and Pierre Cellier.
 2001. "Fluxes of NH₃ and CO₂ over upland moorland in the vicinity of agricultural land." *Journal of Geophysical Research*. **106**(D20): 24,169–24,181.

- 34. Mugasha, Ancelm G. And Donald J. Pluth. 1995. "Ammonia loss following surface application of urea fertilizer to undrained and drained forested minerotrophic peatland sites in central Alberta, Canada." *Forest Ecology and Management*. **78**: 139–145.
- Neftel, A., A. Blatter, A. Gut, D. Hogger, F. Meixner, C Ammann, and F.J. Nathaus. 1998.
 "NH₃ Soil and Soil Surface Gas Measurements in a Triticale Wheat Field". *Atmospheric Environment*. 32(3): 499-505.
- Nemitz, Eiko, Mark A. Sutton, Jan K. Schjoerring, Søren Husted, G. Paul Wyers. 2000.
 "Resistance modeling of ammonia exchange over oilseed rape." *Agricultural and Forest Meteorology*. 105: 405–425.
- Nemitz, Eiko, Mark A. Sutton, Andreas Gut, Roberto San Jose, Soren Husted, Jan K. Schjoerring. 2000. "Sources and sinks of ammonia within an oilseed rape canopy." *Agricultural and Forest Meteorology*. 105: 385–404.
- 38. Peterjohn, William T., and William H. Schlesinger. 1990. "Nitrogen Loss from Deserts in the Southwestern United States". *Biogeochemistry*. **10**: 67-79.
- 39. Pryor, S.C., R.J. Barthelmie, L.L. S rensenb, B. Jensen. 2001. "Ammonia concentrations and fluxes over a forest in the midwestern USA." *Atmospheric Environment*. **35**: 5645–5656.
- 40. Rattray, Gordon, Herman Sievering. 2001. "Dry deposition of ammonia, nitric acid, ammonium, and nitrate to alpine tundra at Niwot Ridge, Colorado." *Atmospheric Environment*. **35**: 1105-1109
- 41. Riedo, Marcel, Celia Milford, Martin Schmid, Mark A. Sutton. 2002. "Coupling soil–plant–atmosphere exchange of ammonia with ecosystem functioning in grasslands." *Ecological Modelling*. **158**: 83–110
- 42. Robarge, Wayne P., John T. Walker, Ronald B. McCulloch, George Murray. 2002.
 "Atmospheric concentrations of ammonia and ammonium at an agricultural site in the southeast United States." *Atmospheric Environment*. 36: 1661–1674.
- 43. Sakuraia, Tatsuya and Shin-ichi Fujita. 2002. "Analysis of atmospheric ammonia budget for the Kanto region, Japan." *Atmospheric Environment*. **36**: 4201–4209
- 44. Schjoerring, Jan K., Soren Husted, and Mette M. Poulsen. 1998. "Aoil-Plant-Atmosphere Ammonia Exhange Associated with *Calluna vulgaris* and *Deschampsia flexuosa*". *Atmospheric Environment*. **32**(3): 507-512.
- 45. Schlesinger, William H. and Anne E. Hartley. 1992. "A global budget for atmospheric NH₃." *Biogeochemistry*. **15**: 191-211.

- 46. Shahin, Usama M., Xiang Zhu, and Thomas M. Holsen. 1999. "Dry deposition of reduced and reactive nitrogen: a surrogate surfaces approach." *Environmental Science and Technology*. **33**: 2113–2117.
- 47. Sievering, Herman, Ivan Fernandez, John Lee, John Hom, and Lindsey Rustad. 2000. "Forest canopy uptake of atmospheric nitrogen deposition at eastern U.S. conifer sites: carbon storage implications?" *Global Biogeochemical Cycles*. **14**: 1153–1159.
- Smith, R.I., D. Fowler, M.A. Sutton, C. Flechard, and M. Coyle. "Regional estimation of pollutant gas dry deposition in the UK: model description, sensitivity analyses and outputs." *Atmospheric Environment*. 34: 3757–3777.
- 49. Sorteberg, Asgeir, and Oystein Hov. 1996. "Two parameterizations of the dry deposition exchange for SO₂ and NH₃ in a numerical model." *Atmospheric Environment*. **30**: 1823-1840.
- Sutton, M.A., E. Nemitz, D. Fowler, G.P. Wyers, R.P. Otjes, J.K. Schjoerring, S. Husted, K.H. Nielsen, R. San Jose, J. Moreno, M.W. Gallagher, A. Gut. 2000. "Fluxes of ammonia over oilseed rape Overview of the EXAMINE experiment." *Agricultural and Forest Meteorology.* 105: 327–349.
- Sutton, M.A., C. Milford, U. Dragosits, C.J. Place, R.J. Singles, R.I. Smith, C.E.R. Pitcairn, D. Fowler, J. Hill, H.M. ApSimon, C. Ross, R. Hill, S.C. Harvis, B.F. Pain, V.C. Phillips, R. Harrison, D. Moss, J. Webb, S.E. Espenhahn, D.S. Lee, M. Hornung, J. Ullyett, K.R. Bull, B.A. Emmett, J. Lowe, and G.P. Wyers. 1998. "Dispersion, deposition and impacts of atmospheric ammonia: quantifying local budgets and spatial variability." *Environmental Pollution.* 102, S1: 349–361.
- Sutton, M.A., E. Perthue, D. Fowler, R.L. Storeton-West, and J.N. Cape. 1997. "Vertical distribution and fluxes of ammonia at Great Dun Fell." *Atmospheric Environment*. 31: 2615–2624.
- Sutton, M.A., C.J. Place, M. Eager, D. Fowler, and R.I. Smith. 1995. "Assessment of the magnitude of ammonia emissions in the United Kingdom." *Atmospheric Environment*. 29: 1393–1411.
- 54. Sutton, M.A., U. Dragosits, Y.S. Tang, D. Fowler. 2000. "Ammonia emissions from non-agricultural sources in the UK." *Atmospheric Environment*. **34**: 855–869
- 55. Sutton, M.A., W.A.H. Asman, and J.K. Schjorring. 1994. "Dry deposition of reduced nitrogen." *Tellus.* **46B**: 255–273.
- 56. Swank, Wayne T., and James M. Vose. 1997. "Long-term nitrogen dynamics of Coweeta forested watersheds in the southeastern United States of America." *Global Biogeochemical Cycles.* **11**(4): 657-671.

- 57. Tarnay, L., A.W. Gertler, R.R. Blank, and G.E. Taylor Jr. 2001. "Preliminary measurements of summer nitric acid and ammonia concentrations in the Lake Tahoe Basin air-shed: implications for dry deposition of atmospheric nitrogen." *Environmental Pollution*. **113**: 145-153.
- 58. Van Drecht, G., A.F. Bouwman, J.M. Knoop, A.H.W. Beusen, and C.R. Meinardi. "Global modeling of the fate of nitrogen from point and nonpoint sources in soils, groundwater, and surface water." *Global Biogeochemical Cycles.* **17**: 26-1 thru 26-20.
- 59. van Hove, L.W.A., P. Heeres, M.E. Bossen. 2002. "The annual variation in stomatal ammonia compensation point of rye grass (*Lolium perenne L.*) leaves in an intensively managed grassland." *Atmospheric Environment*. **36**: 2965-2977.
- 60. Wyers, G.P. and J.W. Erisman. 1998. "Ammonia exchange over coniferous forest." *Atmospheric Environment* (Ammonia Special Issue) **32**: 441-451.

Appendix B:

Bibliography of Sources Related to Ammonia Emissions from Fertilizer

Source	Type of fertilizer	Results	Comment
Al-Kanani et al, 1991 ¹	Urea, UAN	Cumulative emissions are: 47–55% and 17–19% for urea and UAN in moist soils; 2.8–18 and 0.3–6.6 for urea and UAN in dry soils. Moist soil emissions are highest for the first 4 days. Dry soil emissions are steady over about 10 days (with no sign of abating).	Laboratory simulations
Al-Kanani and MacKenzie, 1991 ²	Urea and UAN	Emissions abate after about 10 days	
Bless <i>et al.</i> , 1991 ³	Slurry	Field experiments measuring NH ₃ flux from wheat stubble and rape using differing application techniques. Used a mass balance method. Results from wheat stubble and surface spreading or incorporation into soil showed that the latter reduced the flux overall. Drag horses were used with rape, which was in it's growing season and taller, and this proved to be the best method for application. Climatic conditions indicated that warmer/windier conditions led to higher volatilization than cool/rainy conditions.	
Bouwman et al, 1997 ⁴	synthetic N fertilizers, manure	Compiled global emission inventory of N emissions from various sources, to include synthetic N fertilizers. Primarily based emission factors on previous research from laboratory studies. Results include experiments using urea with rice which indicate that NH ₃ losses are greater after the first application of urea than the second. The increased canopy over the water reduces turbulence, thereby restricting the exchange process. When anhydrous ammonia is not injected deep enough, or the soil is too wet or dry, then emissions may occur. Also, injection spacing may play an important role in emissions, however this entire theory is old (1956). Fertilizer use was distributed on a 1° x 1° country database.	Corn is generally "side dressed" when it is "knee high", yet the canopy is greater, which in theory could reduce the turbulence and decrease the exchange.

Source	Type of fertilizer	Results	Comment
Bouwman et al, 2003 ⁵	All, manure	Literature review of existing studies regarding NH ₃ volatilization from synthetic fertilizers and animal manure. Calculation of global NH ₃ volatilization losses using relationships between regulating factors and NH ₃ volatilization rates in an empirical summary model.	
Branch et al. 1985	Ammonium sulfate	Losses were unexpectedly high for the 14 day trials in the field: The recovery was 84.7% for wet soil and 82.9% for dry soil in May and 86.3% from wet soil in July. (Losses-subtract from 100%)	
Burch and Fox, 1989 ⁶	Urea, $(NH_4)_2SO_4F$ allow soil	Urea and ammonium sulfate($(NH_3)_2SO_4$) applied to bare soil at 200 g N ha ⁻¹ . Measured losses in May and July. Losses ranged from 63.5 to 95.5 % dependant on soil moisture content more than temperature. Emissions are higher for wet conditions. Peak occurs within 4–8 days.	Emissions not measured directly, but by material balance
Clay et al, 1990 ⁷	Urea	Day-specific and 3-hour measurements of emissions. Peak emissions occur between 2 and 3 days from application.	
Cookson et al. 2001 ⁸	Granular Urea	This article focuses on the fates of autumn, late winter, and spring- applied nitrogen fertilizer to perennial ryegrass. Losses are lower for more dispersed fertilizer application (temporally).	
Dabney and Bouldin, 1990 ⁹	New York	Measured flux of NH_3 , NH_4^+ , and AN in alfalfa in NY. Compensation point = 2 ppb	
De Datta et al, 1991 ¹⁰	Urea on rice	Reports hourly emissions for 2 days.	
De Kluizenaar and Farrell, 2000 ¹¹	Ireland	Report of deposition monitored at 40 stations around Ireland. Measured NH_3 emissions, Table 5.1. Prior research estimated emissions at 117 kt NH_3 for Ireland.	

Source	Type of fertilizer	Results	Comment
Dragosits <i>et</i> <i>al.</i> , 2002 ¹²	NH ₃	NH_3 inventory for central England, using 5 x 5 km grid. Inputs: livestock grazing, livestock housing and manuer storage, landspreading of manuer, and N-fertilizer application. Emissions from fertilizer proportional to amount of N-fertilizer applied. Volatilization factor = 2.94% of N. Estimated N content and application rates. Manuer: cattle = 0.39 kg N/t; poultry = 4.06 kg N/t. See Table 3.	
Erismann and Monteny, 1998 ¹³	Manure and slurry	Charts hourly emissions over about 14 hours from surface spreading and sod injection. Emissions decline roughly linearly for about 7 hours after application, then stabilize at a rate about half the initial instantaneous rate.	
Fenn and Hossner, 1985 ¹⁴	All	The following model is given for emissions, E (%-N) from NH_4NO_3 based on time, t (hr), temperature T (C), and application rate, U (kg- NH_4 -N/ha):	Not a primary reference
		$\begin{split} E &= -18.44 + 1.24 \ t + 0.42 \ T + 0.091 \ U - 0.021 \ t^2 + 1.68 \times 10^{-4} \ t^3 - \\ & 4.71 \times 10^{-7} \ t^4 - 8.97 \times 10^{-5} \ U^2 \end{split}$	
		$(R^2 = 0.98)$	
		In the laboratory there were reported losses of 55 to 65 % losses from $(NH_4)_2HPO_4$, $(NH_4)_2SO_4$, and NH_4F at 22 degrees Celcius. In the greenhouse there was 61% NH_3 -N loss from $(NH_4)_2SO_4$ and there was a 55% NH_3 -N loss from $(NH_4)_2SO_4$ when measured in the field Temperate region losses of NH_3 from urea surface-applied to pasture have been found to range from 15 to 20% on a long-term average.	

Source	Type of fertilizer	Results	Comment
Galle et al, 2000	Pig slurry	Emission decays with time from application (4.4% of N on day 2, 2.4% on day 3), function of windspeed and temperature (emission becomes negligible when wind speed drops below ~2 m/s [at 1.5 m above ground] – temperature also declines from ~14 C to ~8 C)	60 kg-N/ha; soil is 40% clay, 3-6% organic
Genermont and Cellier, 1997 ¹⁵	Slurry	Developed a mechanistic model that simulates NH_3 volatilization as it is influenced by various factors and accounts for transfers between the soil and atmosphere. Model consists of 6 submodels; 3 deal with AN transfers and equilibria between AN species; the other 3 simulate heat and water transfers in the soil. Includes short term and long term capability.	This may be a better option than PaSim as all the equations are in the paper.
Genermont <i>et al.</i> , 1998 ¹⁶	Slurry	Mass balance method used to calculate emission for large areas within first few hours of spreading. Aerodynamic gradient method used for longer term flux. Results indicate it can operate under real field conditions. See Tale 1 for emissions over time.	
Goebes et al, 2003 ¹⁷	All types	Documents the Fertilizer subsystem of the Carnegie Mellon University ammonia emission model. Presents an ammonia emission inventory for fertilizer application that for the first time incorporates county-level data at monthly resolution, and includes more accurate activity levels and emission factors.	
Harper and Sharpe, 1998 ¹⁸	Urea, Georgia	Measured NH ₃ loss from soil and plants using ¹⁵ N and micrometeorological techniques. Also determined adsorption of NH ₃ using both methods and measured transport. When there was drought conditions both measurements were the same. When there was plant activity however NH ₃ losses as determined by the ¹⁵ N method were 2 to 6 times greater than the net NH ₃ losses measured by the micrometeorological technique. See Table 1	

Source	Type of fertilizer	Results	Comment
Harper et al, 2000	Dairy slurry	Emissions were 1.5 kg-N/ha-da on days of application and 0.9 kg-N/ha-da on other days. Losses appeared to be roughly constant during daylight hours. About 113 kg-NH ₄ /ha was applied over the course of the season.	Assumes overnight emissions are small, and 12% of N is emitted on spraying
Hertel <i>et al.</i> , 1995 ¹⁹		Developed a trajectory model ; ACDEP (Atmospheric Chemistry and Deposition), to calculate nitrogen deposition to Danish seawaters. Uses land-use data and detailed emissions for Denmark. Transport, chemical transformations, and depositions are computed by following an air parcel along a trajectory to a given receptor point. The results show that computations of concentrations and depositions can e made for a limited area with high geographical resolution. Deposition of nitrogen compounds were calculated in Danish seawater. Uses Lagrangian framework.	
Huijsmans, et al., 2003 ²⁰	Manure	The experiments included various application techniques (surface spreading, surface incorporation, deep placement), incorporation techniques, soil types (sand, sandy loam, and clay), soil water contents, stubble heights, manure characteristics and weather conditions. The mean total volatilization, expressed as % of the total ammoniacal nitrogen (TAN) applied, was 68% for surface spreading, 17% for surface incorporation and 2% for deep placement: $E(\ln z_k(t)) = \alpha_0 + F_k + \alpha_1 \ln(t) + \alpha_1 ATAN + \alpha_2 rate + \alpha_3 wind + \alpha_4 temp + F_{kw} wind$	Observed in the Netherlands between March and September from 1990 to 1998.

Summary of Recent	t Studies of An	nmonia Emissions	from Fertilizer (continued)
-------------------	-----------------	------------------	-----------------------------

Source	Type of fertilizer	Results	Comment
Ismail et al. 1991 ²¹	Urea solution applied to loamy sand	Gives the following model for total ammonia emissions, E (kg-N/ha), temperature, T (C), soil pH, soil moisture, MC (g-water/g-dry soil), urea application rate, R (kg-N/ha), application depth, D (cm): $E = -11 + \exp \left[-0.935 - 0.04017 \text{ T} + 0.570 \text{ pH} + 0.00367 \text{ R} + 0.178 \text{ MC} - 0.445 \text{ D} + 0.00154 \text{ T}^2 - 0.00739 \text{ MC}^2 + 0.00285 \text{ D}^2 - 0.000378 \text{ R} \times \text{D}\right]$	Based on laboratory measurements.
Jambert et al, 1994 ²²	All	Experiments over 1 year period testing the emissions from a maize field and pine forest located in France. Measurements taken before, during, and after fertilization, and again after harvest. Identification of type of gases, understanding of emission mechanism in relation to soil characteristics, fertilizer type, and application method are the goals of this research. Relationship of maize field and pine tree forest determined to reduce N_2O emissions to atmosphere, as pine forest acts as a sink for the emissions. See Table 2 for NH_3 flux.	Total denitrification had not been measured, yet, look for other reports.
Kirk and Nye, 1991 ²³	Urea	Expands on a mechanistic model by Rachhpal-Singh and Nye to add drainage and moisture evaporation.	

Source	Type of fortilizer	Results	Comment
Source			
Lewis et al, 2002^{24}	N fertilizer,	Simulated long-term effects of nitrogen fertilizer and slurry use in	Includes some
2003-	and slurry	agricultural systems using SOIL and SOILN (Swedish based models),	volatilization data, with
		over a 12-year period. SOIL is a multilayer model which can indicate	the main focus on
		the sol water content and horizontal movement of water to field drain	leaching. Figures
		backfill at different depths, as well as deep percolation, with a range of	indicate that
		drainage system options. The model has a sophisticated treatment of	volatilization is constant
		soil heat processes including freezing, and representation of falling and	for each spreading
		lying snow. SOILN was designed to work with SOIL, and includes	option.
		major processes that describe the N cycle. SOILN was designed	
		primarily when solid manure and ploughing following application are	
		used, so adaptation is required for slurry and grassland applications	
		apply. NH ₃ volatilization from slurry is estimated using Hutchings'	
		model, which combines the partition of ammonia molecules in air and	
		liquid through Henry's Law, with aerodynamic resistance and surface	
		boundary layer resistance terms. Knowledge of atmospheric	
		windspeed and pressure, and slurry temperature and pH are required to	
		calculate volatilization rates. Study conducted in Scotland & Ireland	
		where high winter rainfall and low soil moisture shortages are typical.	
		This is part of a larger project sponsored by the EC initiative on Slurry	
		Waste and Agriculture Management (SWAMP). Results show (Table	
		2) that the most important decision regarding slurry spreading is the	
		selection of the spreading date, and field (soil) selection. For instance	
		a spring slurry application produces a marked decrease in overall	
		leaching compared to autumn spreading.	

Source	Type of fertilizer	Results	Comment
Marshall and Debell, 1980 ²⁵	Urea	Forest soils fertilized with 220 kg N ha ⁻¹ . Measured data indicate an emission of 22-26% of the applied fertilizer as NH ₃ , with the closed-dynamic method, which most closely resembled observations from field measurements.	From CMU
McInnes et al 1986 ²⁶	Urea solution	Day-specific emissions estimates from field measurements. Roughly steady for 10–16 days.	In one case, emissions do not seem to abate after 16 days.
Menzi et al, 1998 ²⁷	Animal slurry	Gives the following model for total emissions, E (%-N), as a function of temperature, T \bigcirc): E $\approx 28 + (2 \times T)$	$R^2 = 0.68$
Milford <i>et al.</i> , 2001 ²⁸	Scotland	Developed a canopy compensation point model for measured events. NH_3 flux resulted in primarily deposition with emission occurring only 12% of the time. Uptake of NH_3 from the atmosphere was 30 μ mol/m ² d. The greatest emissions occur in the morning between 9 and 12. When measuring NH_3 flux near other agricultural sources there is an underestimation of flux when using the gradient method. Using the compensation point model revealed that NH_3 flux in this landscape is dominated by deposition rather than stomatal response. Contrasts to agricultural crop (general term) emissions where stoma plays a much larger role.	
Misselbrook et al, 2000 ²⁹	Urea, NH ₄ NO ₃ , other	Presents emission factors used in an inventory for the UK: 23%, 1.6%, and 1.6% for urea, AN and other N fertilizers applied to grasslands; 11.5%, 0.8%, and 0.8% for the same fertilizers applied to arable land.	Not a primary reference

Source	Type of fertilizer	Results	Comment
Misselbrook et al. 2001 ³⁰	Urea, cattle slurry and solid pig manure	Field evaluation of the equilibrium concentration technique (JTI method).	No numbers.
Mugasha and Pluth, 1995 ³¹	Urea	Tested N limited flora in peatland soil; compared drained vs. undrained soil. Applied 200 or 400 kg N/ha. For undrained soils N emissions were 3% and 4% for 200 and 400 applications. For drained soils N emissions were 0.7% and 7% for 200 and 400 applications.	Did not discuss why emissions seemed to show an order of magnitude difference for the drained soils whereas the undrained only showed a change of one percentage point, with an increase in fertilization.
O'Deen and Follett, 1992 ³²	Soybean tissue	Measured NH ₃ volatilization from calcareous soil amended with soy bean tissue. Experimental/laboratory/Measured values only. Confirms others research indicating that NH ₃ volatilizes more readily at higher temperatures and lower pH. <i>OF NOTE:</i> if more soybean residue is present MORE NH ₃ will volatilize.	
Pain <i>et al.</i> , 1998 ³³	Slurry, manuer	Compiled an extensive NH ₃ inventory in the United Kingdom from most animal practices, to include: cattle, poultry, sheep, pigs, and others. Included land spreading of manuer/slurry. Tables 1-7 provide specific information regarding losses.	
Plochl 2001 ³⁴	Manure	It can be illustrated that the time course of accumulated ammonia emission follows a non-linear Michaelis-Menten-like function.	Model cannot determine what occurs in the first 2 hours

Source	Type of fertilizer	Results	Comment
Reido et al, 2002^{33}	NH ₄ NO ₃	Presents a two stage resistance model of an intensively managed grassland, receiving about 270 kg-N/ha-yr.	
Rodhe and Rammer, 2002 ³⁴	Slurry	Evaluated methods of application for slurry applied to ley in Sweden. Used a mass balance method to determine the NH ₃ emissions from field study measurements. Slurry applied at 25 T/ha. Evaluated differing application methods to include: band spreading, pressurized injection, shallow injection with 1 open slot V-disc tine, and shallow injection with 2 open slots 2 angled disc coulters. Shallow injection methods led to ½ entire amount of NH ₄ -N applied being volatilized, also mitigated by hot, dry conditions. The lowest Φ NH ₃ = shallow injection with twin discs (33%), and then band spreading (44%).	
Roelle and Aneja, 2002 ³⁵	Hog slurry, corn crop	Corn crop sprayed with hog slurry. Measurements made after the harvest, when the soil is bare. Flux ranged from 3.4 to 26.1 ng N m ⁻² s. Soil temperature, soil pH, soil moisture, total Kjeldahl nitrogen were monitored. Soil temperature was found to explain the largest variability in soil NH ₃ emissions: ($Log_{10}NH_3$ -N Flux=0.054T _{soil} +0.66; R ² = 0.71) and soil nitrogen was also significant in predicting NH ₃ flux:	An analysis of the source strengths confirmed that lagoon emissions are a larger flux source than soil flux
		$[NH_3 Flux=55.5(NH_3-N)-160, R^2=0.86]$ NH ₃ Flux=0.6(TKN)-410, R ₂ =0.27].	

Summary of Recent	t Studies of Ammonia	Emissions from	Fertilizer (continued)
-------------------	----------------------	-----------------------	------------------------

Source	Type of fertilizer	Results	Comment
Ross et al, 2001 ³⁶	Cattle urine	The wind-tunnels were used to examine the effects of herbage length, cutting and N status on rates of NH_3 fluxes from a grass sward with cattle urine. Between 20 and 60% of the NH_3 emitted was deposited within 2m. Compensation points of between 1.0 and 2.3 μ gm ⁻³ were calculated for the grass sward. One significant relationship was found for NH_3 and environmental conditions (in multiple linear regression model):	Heavy impermeable clay soil
		$logNH_{4}-Nlos = -94.75 - 4.99(\pm 2.5) \times log(air temp.) + 65.8(\pm 13.9) \times log(soil temp) - 15.4(\pm 6.8) \times log(\% RH)$	
Schoop, 1998 ³⁷	All, Germany	Developed a multiple regression model to estimate adequate N fertilization with no net residue using measured data and compiling it with N-PROG. See Table 2.	Does not discuss volatilization. Residue = $N_{fert} - N_{plant uptake}$ therefore merely N that is not used.
Sogaard et al, 2002 ³⁸	Cattle and pig slurry	The ALFAM model estimates of NH_3 volatilization from typical cattle and pig slurries show the variables that significantly affect this include: soil water content, air temperature, wind speed slurry type, dry matter content of slurry, total ammoniacal nitrogen content of slurry (TAN = $NH_3 + NH_4^+$), application method and rate, slurry incorporation and measuring technique. The application times modeled were 1 week before spring sowing, mid-season grass cut, and 1 week after harvesting of spring crop. The model predictions of the cumulative NH_3 loss 7 days after slurry application.	Michaelis-Menten-type neural network model was used to fit measured NH ₃ loss rates.

	1		
Source	Type of fertilizer	Results	Comment
Sommer et al, 2000 ³⁹	Slurry	Developed a regression model that related emissions to wind speed, soil slurry surface water content, global radiation, soil slurry surface pH and precipitation. A statistical analysis of data showed that NH_3 volatilization rate during the first 4-5 hours after slurry application increased significantly (P<5%) with wind speed and soil slurry surface water content. NH_3 volatilization in the six measuring periods during the experiments increased significantly (P<5%) with relative water content of the soil slurry surface, global radiation, and pH. Six experiments were conducted in 1997 from March 17 to June 30. The soil was loamy sand and the pig or cattle slurry was applied at rates from 2.87 to 3.13 kg/m^{-2} .	Cereal Crops at the Research Center Foulum in Demark
Sommer <i>et al.</i> , 2001 ⁴⁰	Sow urine	Measured NH ₃ volatilization from urine patches from sows on grasslands. Used a mass balance method. See equation 1. Flux highly variable due to distribution of urine. At feeding areas = 2.8 g NH_3 -N/m ² day; 40 m from feeding areas = no losses; pastureland = 0.07 to 2.1 kg NH ₃ /ha/day.	
Tian et al, 2001 ⁴¹	Urea	Day specific emissions are given for a rice-wheat rotational system, with application rates of 0,100, 200 or 300 kg-/ha/growing season, and 200 kg N/ha without rice straw amendment. The results show that N losses through NH_3 volatilization accounted for 4-19% of N applied during the wheat growing season and for 5-11% during the rice growing season. Ammonia volatilization was affected significantly by soil moisture and temperature before and after fertilizer application during the wheat growing season. The soil type was paddy soil.	
Tiquia and Tam, 2000 ⁴²	Chicken litter	Used mass balance approach to measure NH_3 emissions from composted chicken litter. Results follow previous manuer studies. No equations for flux.	

Source	Type of fertilizer	Results	Comment
van der Weerden and Jarvis, 1997 ⁴³	Urea, AN	Estimated NH_3 emissions from urea and AN for two soil types in UK on grasslands (Table 2). Determined new emission factors (Table 4).	
Watson et al, 1992 ⁴⁴	Urea prills and solution	Day-specific emission measurements show a peak between 1 and 3 days, and declining emissions to about 10 days.	Northern Ireland
Webb <i>et al.</i> , 2000 ⁴⁵	N-fertilizer	Measured N-outputs via leaching, NH_3 volatilization, N_2O and N_2 emissions, and crop takeoff, together with N-fertilization and wet deposition over 2 arable rotations on contrasting soil types. Mass balance. N-fertilizer not specified. Fluxes measured for 5 years, these results indicate the first 3 years of measurements. Flux ranged from 3 g N/ha/day to 131 g N/ha/day for alluvial silt site.	
Yamulki et al, 1996 ⁴⁶	Nitram (NH ₄ NO ₃ Ca(NO ₃) ₂ mix)	Seasonal variations in emissions. Ammonia emission was favored regardless of fertilization in dry and warm conditions in summer with an average NH ₃ flux of about 0.03 μ g N m ⁻² s ⁻¹ , while an average flux of -0.068 μ g N m ⁻² s ⁻¹ was observed during wet conditions in winter. The average apparent deposition velocity was about 1.6 cm s ⁻¹ . Ammonia exchange patterns throughout the whole experimental study showed a dependence on the ambient NH ₃ concentration with a compensation point of 3-4 μ g ⁻³ . Loss to the atmosphere accounted for approximately 1% of the fertilizer applied to the soil. From March 1991 and April 1992. Fertilizer was applied twice at a rate of 200 and 150 kg N/ha. The soil pH of this field was 6.8 ± 0.4.	

Source	Type of fertilizer	Results	Comment
Yang et al, 2003 ⁴⁷	Manure	Reports the measurement of ammonia emission from cattle slurry manure applied to upland in Miyazaki, Japan. The emission flux of the first day was 110 μ g N ha ⁻¹ s ⁻¹ . The loss of NH ₄ ⁺ –N in the applied slurry was 60% five days after application. A diurnal cycle of volatilization is apparent and it indicates that the volatilization of NH ₃ is positively related to the air temperature. The soil properties are sandy loam, a CEC 18.9 cmol kg ⁻¹ , a water content of 33%, 2.0 mg kg ⁻¹ NH ₄ ⁺ –N, 125 mg kg-1 NO ₃ ⁻ N, 6.12 pH (H ₂ O), and 5.55 pH (KCl).	The results did not show a statistically significant relationship between the wind speed and NH ₃ flux.

References for Appendix B

- 1. Al-Kanani, T., A.F. MacKenzie, and N.N. Barthakur. 1991. "Soil water and ammonia volatilization relationships with surface-applied nitrogen fertilizer solutions." *Soil Science Society of America Journal.* **55**: 1761–1766.
- 2. Al-Kanani, T. and A.F. MacKenzie. 1991. "Effect of tillage practices and hay straw on ammonia volatilization from nitrogen fertilizer solutions." *Canadian Journal of Soil Science*. **72**(2): 145–157.
- 3. Bless, H.G., R. Beinhauer, B. Sattelmacher. 1991. "Ammonia emission from slurry applied to wheat stubble and rape in north Germany." *Journal of Agricultural Science, Cambridge*. **117**: 225-231.
- 4. Bouwman, A.F., D.S. Lee, W.A.H. Asman, F.J. Dentener, K.W. Van Der Hoek, and J.G.J. Olivier. 1997. "A global high-resolution emission inventory for ammonia." *Global Biogeochemical Cycles.* **11**(4): 561-587.
- 5. Bouwman, A.F., L.J.M. Boumans, and N.H. Batjes. 2002. "Estimation of global NH₃ volatilization loss from synthetic fertilizers and animal manure applied to arable lands and grasslands." *Global Biogeochemical Cycles.* **16**(2):1024.
- 6. Burch, Judith A., and Richard H. Fox. 1989. "The effect of temperature and initial soil moisture content on the volatilization of ammonia from surface-applied urea." *Soil Science*. **147**(5): 311–318.
- 7. Clay, D.E., G.L. Malzer, and J.L. Anderson. 1990. "Ammonia volatilization from urea as influenced by soil temperature, soil water content, and nitrification and hydrolysis inhibitors." *Soil Science Society of America Journal.* **54**(1): 263–266.
- 8. Cookson, W.R., J.S. Rowarth, and K.C. Cameron. 2001. "The fate of autumn-, late winter- and spring-applied nitrogen fertilizer in a perennial ryegrass (*Lolium perenne L.*) seed crop on a silt loam soil in Canterbury, New Zealand." *Agriculture, Ecosystems and Environment.* **84**: 67–77.
- 9. Dabney, Seth M., and David R Bouldin. 1990. "Apparent deposition velocity and compensation point of ammonia inferred fromgradient measurements above and through alfalfa." *Atmospheric Environment*. **24A**(10): 2655-2666.
- 10. De Datta, S.K., R.J. Buresh, M.I. Samson, W.N. Obcemea, and J.G. Real. 1991. "Direct measurement of ammonia and denitrification fluxes from urea applied to rice." *Soil Science Society of America Journal.* **55**: 543–548.
- 11. De Kluizenaar, Y., and E.P. Farrell. 2000. "Ammonia monitoring in Ireland: a full year of ammonia monitoring; set-up and results." Prepared for the Environmental Protection Agency, Forest Ecosystem Research Group. Report Number 56.

- 12. Dragosits, U., M.R. Theobald, C.J. Place, E. Lord, J. Webb, J. Hill, H.M. ApSimon, and M.A. Sutton. 2002. "Ammonia emission, deposition and impact assessment at the field scale: a case study of sub-grid spatial variability." *Environmental Pollution*. **117**: 147-158.
- 13. Eriaman, J.W. and G.J. Monteny. 1998. "Consequences of new scientific findings for future abatement of ammonia emissions." *Environmental Pollution*. **102**: 275–282.
- 14. Fenn, L.B. and L.R. Hossner. 1985. "Ammonia volatilization from ammonium or ammonium-forming nitrogen fertilizers" in *Advances in Soil Science, Volume 1*. B.A. Stewart, ed. Springer-Verlag, New York.
- 15. Genermont, S., and P. Cellier. 1997. "A mechanistic model for estimating ammonia volatilization from slurry applied to bare soil." *Agricultural and Forest Meteorology*. **88**: 145-167.
- 16. Genermont, S., P. Cellier, D. Flura, T. Morvan, and P. Laville. 1998. "Measuring ammonia fluxes after slurry spreading under actual field conditions." *Atmospheric Environment*. **32**(3): 279-284.
- Goebes, Marian Diaz, Ross Strader, and Cliff Davidson. 2003. "An ammonia emission inventory for fertilizer application in the United States." *Atmospheric Environment*. 37: 2539–2550.
- 18. Harper, Lowry A., and Ron R. Sharpe. 1998. "Atmospheric ammonia: issues on transport and nitrogen isotope measurement." *Atmospheric Environment*. **32**(3): 273-277.
- 19. Hertel, Ole, Jesper Christensen, Erik H. Runge, Willem A. H. Asman, Ruwin Berkowicz, and Mads F. Hovmand. 1995. "Development and testing of a new variable scale air pollution model ACDEP." *Atmospheric Environment*. **29**(11): 1267-1290.
- 20. Huijsmans, J.F.M, J.M.G. Hol, G.D. Vermeulen. 2003. "Effect of application method, manuer characteristics, weather and field conditions on ammonia volatilization from manure applied to arable land." *Atmospheric Environment.* **37**(26): 3669-3680.
- 21. Ismail, K.M., F.W. Wheaton, L.W. Douglass, and W. Potts. 1991. "Modeling ammonia volatilization from loamy sand soil treated with liquid urea." *Transactions of the American Society of Agricultural Engineers (ASAE), General Edition.* **34**(3): 756–763.
- 22. Jambert, Corinne, Robert A. Delmas, Louis Labroue, and Peirre Chassin. 1994. "Nitrogen compound emissions from fertilized soils in a maize field pine tree forest agrosystem in the southwest of France." *Journal of Geophysical Research*. **99**(D8): 16,523-16,530.
- 23. Kirk, G.J.D. and P.H. Nye. 1991. "A model of ammonia volatilization from applied urea. V. The effects of steady-state drainage and evaporation." *Journal of Soil Science*. 42: 103–113.

- 24. Lewis, D.R., M.B. McGechan, and I.P. McTaggart. 2003. "Simulating field-scale nitrogen management scenarios involving fertilser and slurry applications." *Agricultural Systems.* **76**: 159-180.
- 25 Marshall, V.G., and D.S. Debell. 1980. "Comparison of Four Methods of Measuring Volatilization Losses of Nitrogen Following Urea Fertilization of Forest Soil". *Canadian Journal of Soil Science*. **60**: 549-563.
- 26. McInnes, K.J., R.B. Ferguson, D.E. Kissel, and E.T. Kanemasu. 1986. "Field measurements of ammonia loss from surface applications of urea solution to bare soil." *Agronomy Journal.* **78**(1): 192–196.
- 27. Menzi H, P.E. Katz, M. Fahrni, A. Neftel, and R. Frick. 1998. "A simple empirical model based on regression analysis to estimate ammonia emissions after manure application." *Atmospheric Environment*. **32**: 301–307. as cited in Anderson et al, 2003
- 28. Milford, Celia, Ken J. Hargreaves, and Mark A. Sutton. 2001. "Fluxes of NH₃ and CO₂ over upland moorland in the vicinity of agricultural land." *Journal of Geophysical Research*. **106**(D20): 24,169-24,181.
- 29. Misselbrook, T.H., T.J. Van Der Weerden, B.F. Pain, S.C. Jarvis, B.J. Chambers, K.A. Smith, V.R. Phillips, and T.G.M. Demmers. 2000 "Ammonia emission factors for UK agriculture." *Atmospheric Environment.* **34**: 871–880.
- 30. Misselbrook. T.H., and M.N. Hansen. 2001. "Field evaluation of the equilibrium concentration technique (JTI method) for measuring ammonia emission from land spread manure or fertiliser." *Atmospheric Environment.* **35**: 3761–3768.
- 31. Mugasha, Ancelm G., and Donald J. Pluth. 1995. "Ammonia loss following surface application of urea fertilizer to undrained and drained forested minerotrophic peatland sites in central Alberta, Canada." *Forest Ecology and Management.* **78**: 139-145.
- O'Deen, W.A., and R.F. Follett. 1992. Ammonia emission from soybean-amended calcareous soil with various soil temperature and moisture levels." *Agronomy Journal*. 84: 893-896.
- 33. Pain, B.F., T.J. van der Weerden, B.J. Chambers, V.R. Phillips, and S.C. Jarvis. 1998. "A new inventory for ammonia emissions from U.K. agriculture." *Atmospheric Environment*. **32**(3): 309-313.
- 34. Plochl, Matthias. 2001. "Neural network approach for modelling ammonia emission after manure application on the field." *Atmospheric Environment*. **35**: 5833–5841.
- Riedo, Marcel, Celia Milford, Martin Schmid, Mark A. Sutton. 2002. "Coupling soil-plant-atmosphere exchange of ammonia with ecosystem functioning in grasslands." *Ecological Modelling.* 158: 83–110.

- 34. Rodhe, Lena, and Chri Rammer. 2002. "Application of slurry to ley by band spreading and injection methods." *Biosystems Engineering*. **83**(1): 107-118.
- 35. Roelle, Paul A., and Viney P. Aneja. 2002. "Characterization of ammonia emissions from soils in the upper coastal plain, North Carolina." *Atmospheric Environment*. **36**: 1087–1097.
- 36. Ross, C.A. and S.C. Jarvis. 2001. "Measurement of emission and deposition patterns of ammonia from urine in grass swards." *Atmospheric Environment*. **35**: 867–875
- 37. Schoop, Peter. 1998. "Computer-aided model system N-PROG[®] for estimating the requirements of nitrogen, crop yields and post-harvest nitrogen residues with respect to ecological parameters, economic and crop management factors." *Environmental Pollution.* **102**(S1): 531-538.
- 38. Sogaard,, H.T., S.G. Sommer, N.J. Hutchings, J.F.M. Huijsmans, D.W. Bussink, F. Nicholson. 2002. "Ammonia volatilization from field-applied animal slurry the ALFAM model." *Atmospheric Environment.* **36**: 3309–3319.
- 39. Sommer, S.G., and J.E. Olesen. 2000. "Modelling ammonia volatilization from animal slurry applied with trail hoses to cereals." *Atmospheric Environment.* **34**: 2361–2372.
- 40. Sommer, S.G., H.T. Sogaard, H.B. Moller, S. Morsing. 2001. "Ammonia volatilization from sows on grassland." *Atmospheric Environment.* **35**: 2023-2032.
- 41. Tian, Guangming, Zucong Cai, Jinliu Cao, and Xiaoping Li. 2001. "Factors affecting ammonia volatilization from a rice–wheat rotation system." *Chemosphere.* **42**: 123–129.
- 42. Tiquia, S.M., and N.F.Y. Tam. 2000. "Fate of nitrogen during composting of chicken litter." *Environmental Pollution*. **110**: 535-541.
- 43. Van der Weeden, T.J., and S.C. Jarvis. "Ammonia emission factors for N fertilizers applied to two contrasting grassland soils." *Environmental Pollution.* **95**(2): 205-211.
- 44. Watson, C.J., R.J. Stevens, R.J. Laughlin, and P. Poland. 1992. "Volatilization of ammonia from solid and liquid urea surface-applied to perennial ryegrass." *Journal of Agricultural Science, Cambridge*. **119**: 223–226.
- 45. Webb, J., R. Harrison, and S. Ellis. 2000. "Nitrogen fluxed in three arable soils in the UK." *European Journal of Agronomy*. **13**: 207-223.
- 46. Yamulki, Sirwan, Roy M. Harrison, and K.W.T. Goulding. 1995. "Ammonia surface–exchange above an agricultural field in southeast England." *Atmospheric Environment*. **30**: 109–115.
- 47. Yang, Zhen, Hiroshi Niimi, Ken-ichi Kanda, Yuko Suga. 2003. "Measurement of ammonia volatilization from a field in upland Japan, spread with cattle slurry."