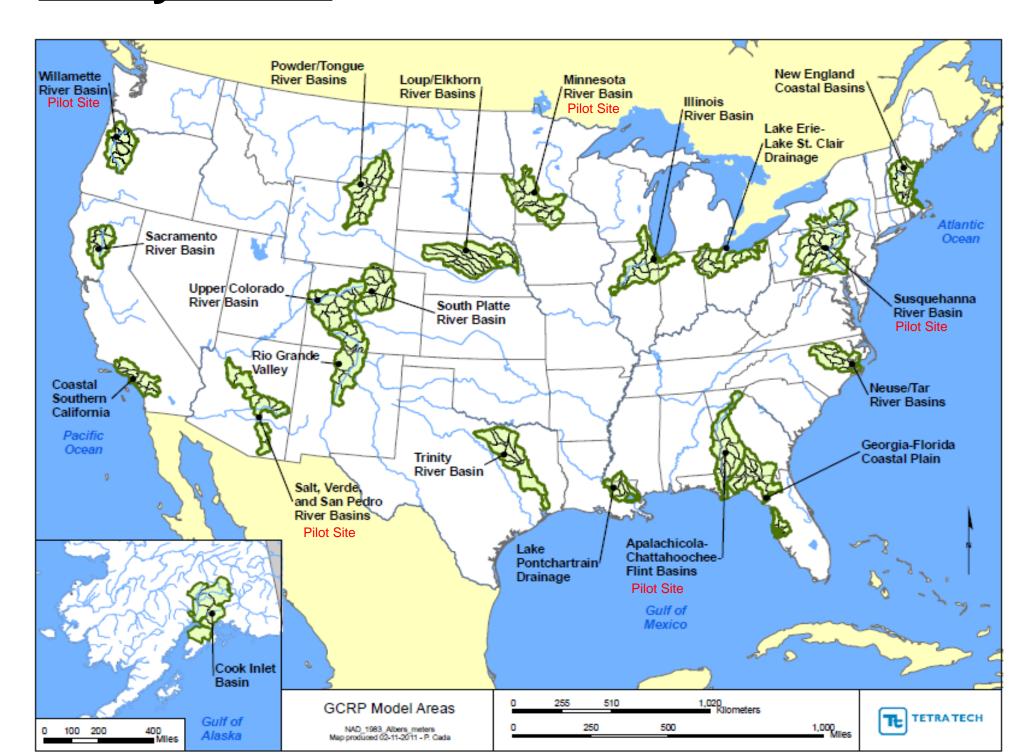


www.epa.gov

Watershed modeling to assess the sensitivity of streamflow, nutrient and sediment loads to potential climate change and urban development in 20 U.S. watersheds

Authors: Thomas Johnson¹, Jon Butcher², Chris Weaver³, Daniel Nover³, Jonathan Witt³, Andrew Parker²

1. USEPA Office of Research and Development (johnson.thomas@epa.gov); 2. Tetra Tech, Inc., Fairfax, VA; 3. USEPA Office of Research and Development


Purpose

- Assess the sensitivity of U.S. streamflow, nutrient (N and P), and sediment loading to climate change across a range of plausible mid-21st Century climate futures
- Potential interactions with urban development
- Methodological challenges associated with integrating existing tools (e.g., climate models, watershed models) and datasets to address these scientific questions

Modeling Approach

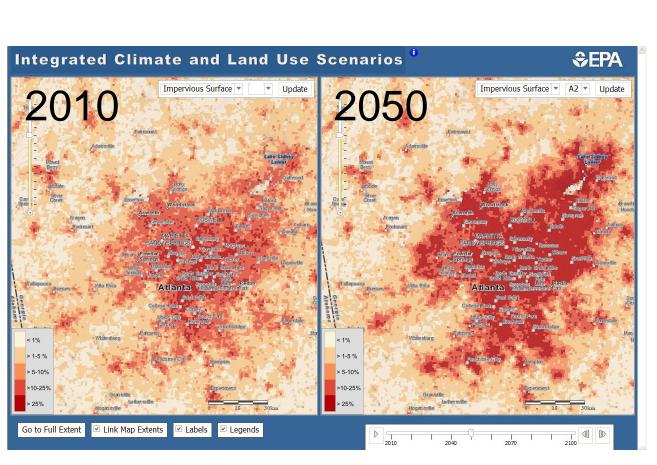
- Daily simulations of streamflow, N, P, sediment for historical (1970-2000) and future (2041-2070) periods
- Model segmentation within larger watersheds about HUC8 (~ 1000-2000 sq. miles)
- Climate change scenarios implemented using a change factor approach
- In all 20 watersheds:
- run SWAT model at daily time step
- 6 climate change scenarios (NARCCAP; SRES A2 emission scenario)
- 2 land development scenarios, current and 2050 (EPA ICLUS)
- In subset of 5 "pilot" watersheds:
- run HSPF model with same set of scenarios as SWAT
- 8 additional climate change scenarios with both models
 (4 from BCSD; 4 from parent GCM runs)
- evaluate sensitivity of simulation results to method of downscaling climate data and different watershed models

Study Areas

Study sites represent a range of geographic, hydrologic, and climatic characteristics

Scenarios

Climate scenarios based on dynamically downscaled (50m) data from the North American Regional Climate Change Assessment Program (NARCCAP), and bias-corrected and statistically downscaled (BCSD) data from the archive developed by Bureau of Reclamation/Santa Clara University/Lawrence Livermore.


	GCM				
	сдсмз	HADCM3	GFDL	CCSM	
Downscaling	None	None	None	None	
Approach or					
RCM	Statistical	Statistical *	Statistical	Statistical *	
	(BCSD)	(BCSD)	(BCSD)	(BCSD)	
	CRCM	HRM3	RCM3	WRFP	
	(NARCCAP)	(NARCCAP)	(NARCCAP)	(NARCCAP)	
	RCM3		GFDL hires		
	(NARCCAP)		(NARCCAP)		

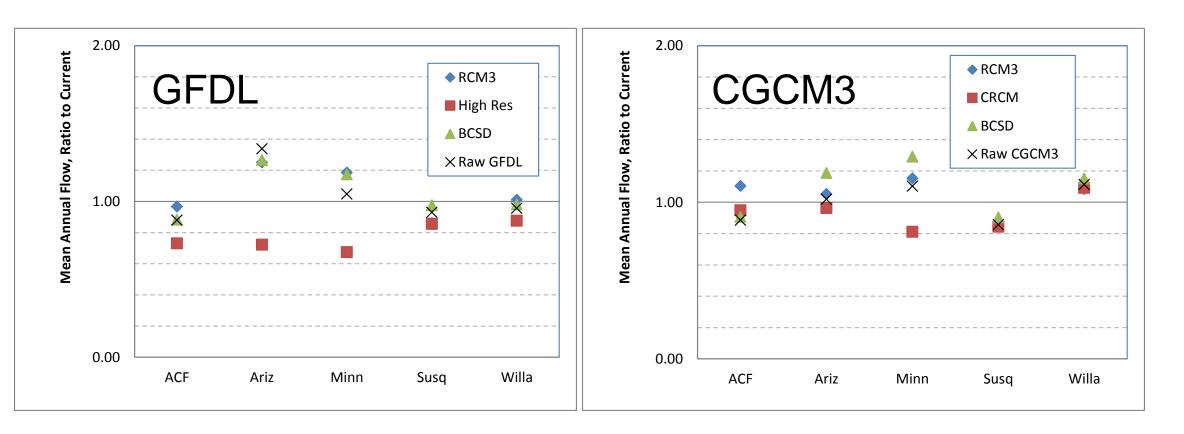
GFDL hires: Geophysical Fluid Dynamics
Laboratory 50-km global atmospheric timeslice

Not same run / from same family

VRFP: Weather Research and Forecasting Mod

Urban and residential development scenarios from EPA's Integrated Climate and Land Use Scenarios (ICLUS) project.

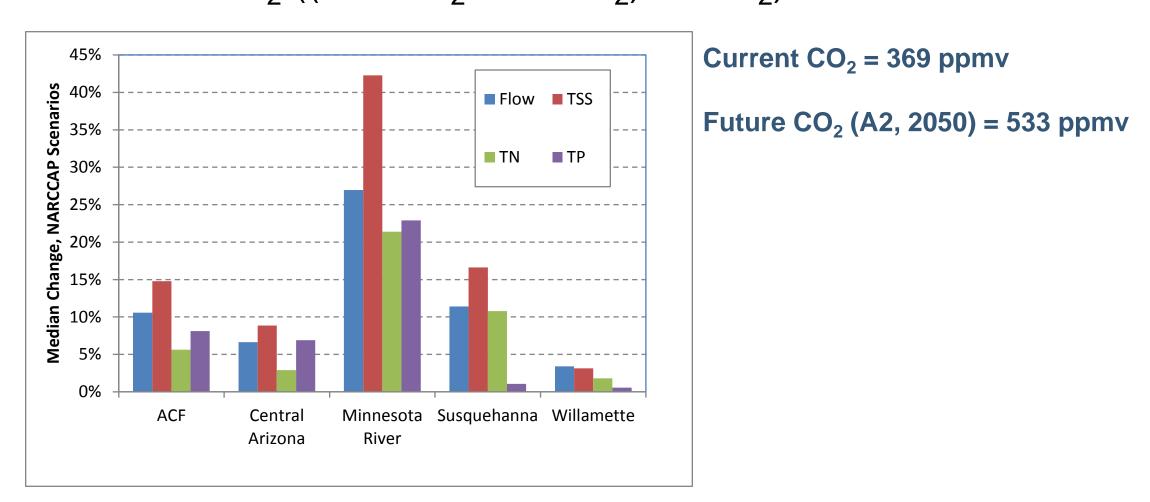
and developed lands consistent with IPCC SRE emissions storylines

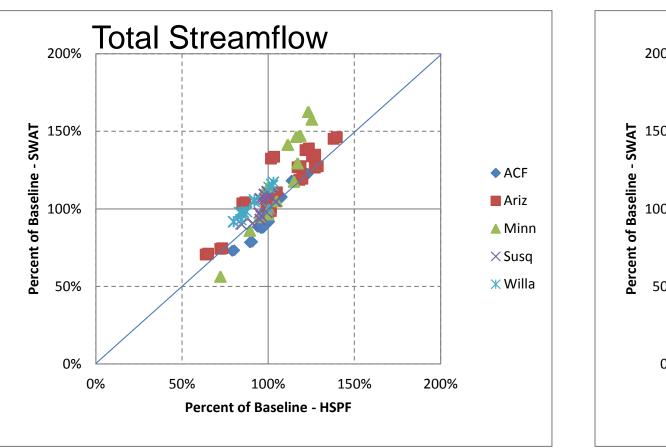

Developed based on county level population changes distributed spatially within counties using the Spatially Explicit Regional Growth Model (SERGoM).

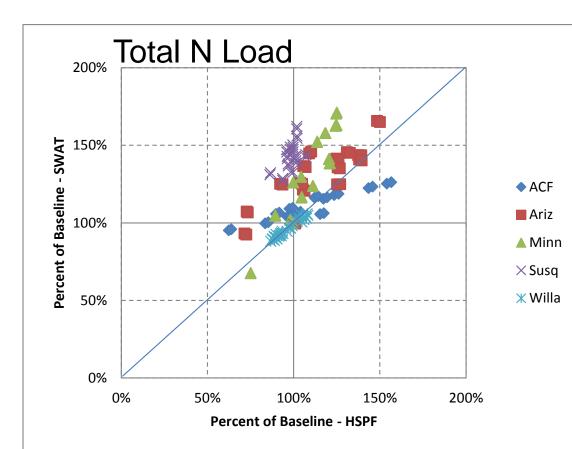
SWAT Calibration/Validation

Study Area	Initial Cal/Val Sub- watershed	Total Flow Cal/Val (NSE, Daily)	Total Flow Cal/Val (% Error)	TSS Load Cal/Val (% Error)	TP Load Cal/Val (% Error)	TN Load Cal/Val (% Error)
Apalachicola- ChattahooFlint	Upper Flint River	0.62/0.56	7.28/3.33	-9/17	-50/-30	-18/9
Coastal Southern	Santa Ana	0.02/0.30	7.20/3.33	-9/17	-30/-30	1-10/9
California Basins	River	0.63/0.59	3.71/1.61	19/NA	-14.7/NA	-5.5/NA
Cook Inlet Basin	Kenai River	0.68/0.55	-18.96/19.5	66.4/64.1	83.2/82.2	57.3/50.4
Georgia-Florida	Ochlockonee					
Coastal Plain	River	0.71/0.8	4.25/-5.54	9.5/-6.6	-7.4/-5.8	-8/-5
Illinois River Basin	Iroquois River	0.70/0.67	-16.99/-2.9	38/39	5/-1	56/60
Lake Erie-Lake St. Clair	Lake Erie-St. Clair Basin	0.61/0.62	-3.32/-13.4	67.9/69.8	23.9/-12.5	35.8/13.7
Lake Pontchartrain	Amite River	0.79/0.69	-1.61/-0.93	9.2/NA	2.4/NA	-8.9/NA
Loup/Elkhorn River Basin	Elkhorn River	0.42/0.52	-2.59/-8.81	59.6/66.8	24.2/34.9	28.1/18.1
Minnesota River Basin	Cottonwood River	0.79/0.74	-5.41/-0.84	9.2/9	9.3/-21.6	-8.9/-1.3
Neuse/Tar River Basins	Contentnea Creek	0.68/0.64	-3.98/-1.18	-19.9/9.9	15.9/5.3	-5.6/5.3
New England Coastal Basins	Saco River	0.61/0.76	1.08/0.67	-9/3.2	9.6/-11.5	27.5/26.3
Powder/Tongue River Basin	Tongue River	0.72/0.70	9.26/-9.95	-21.8/-3.4	8.8/35.1	3.9/31.5
Rio Grande Valley	Saguache Creek	0.47/0.07	-4.92/32.99	57.3/41	-46.9/-653	-28.3/-909
Sacramento River	Sacramento	0.75/0.55	40.00/40.00	0/55		405/456
Basin Salt, Verde, and	River	0.75/0.57	10.23/10.06	-2/-55	-8/-33	-135/-156
San Pedro	 Verde River	0.03/-1	-2.46/5.68	16.9/-42.6	83.5/31.4	-14.4/-15.9
South Platte River	South Platte	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.10/0.00	10.0/ 12.0	00.0/01.4	11.4, 10.0
Basin	River	0.74/0.52	9.82/-16.3	86.6/	-14/NA	6.1/NA
Susquehanna River Basin	Raystown Br. of the Juniata	0.29/0.42	-5.41/16.3	-10.1/-33.6	-0.5/-9.2	28.6/43.9
	Trinity River	0.62/0.47	-6.88/0.7	9.2/-17.4		-3.8/-31.9
Trinity River Basin Upper Colorado	THINKY KIVEI	U.UZ/U.41	-0.00/0.7	3.2/-11.4	3/-21.58	-3.0/-31.8
River Basin	Colorado River	0.83/0.78	8.18/0.93	0.4/NA	47.4/NA	15.1/NA
Willamette River Basin	Tualatin River	0.49/0.39	-4.76/-12.1	-12/-7	-114/-105	-72/-66

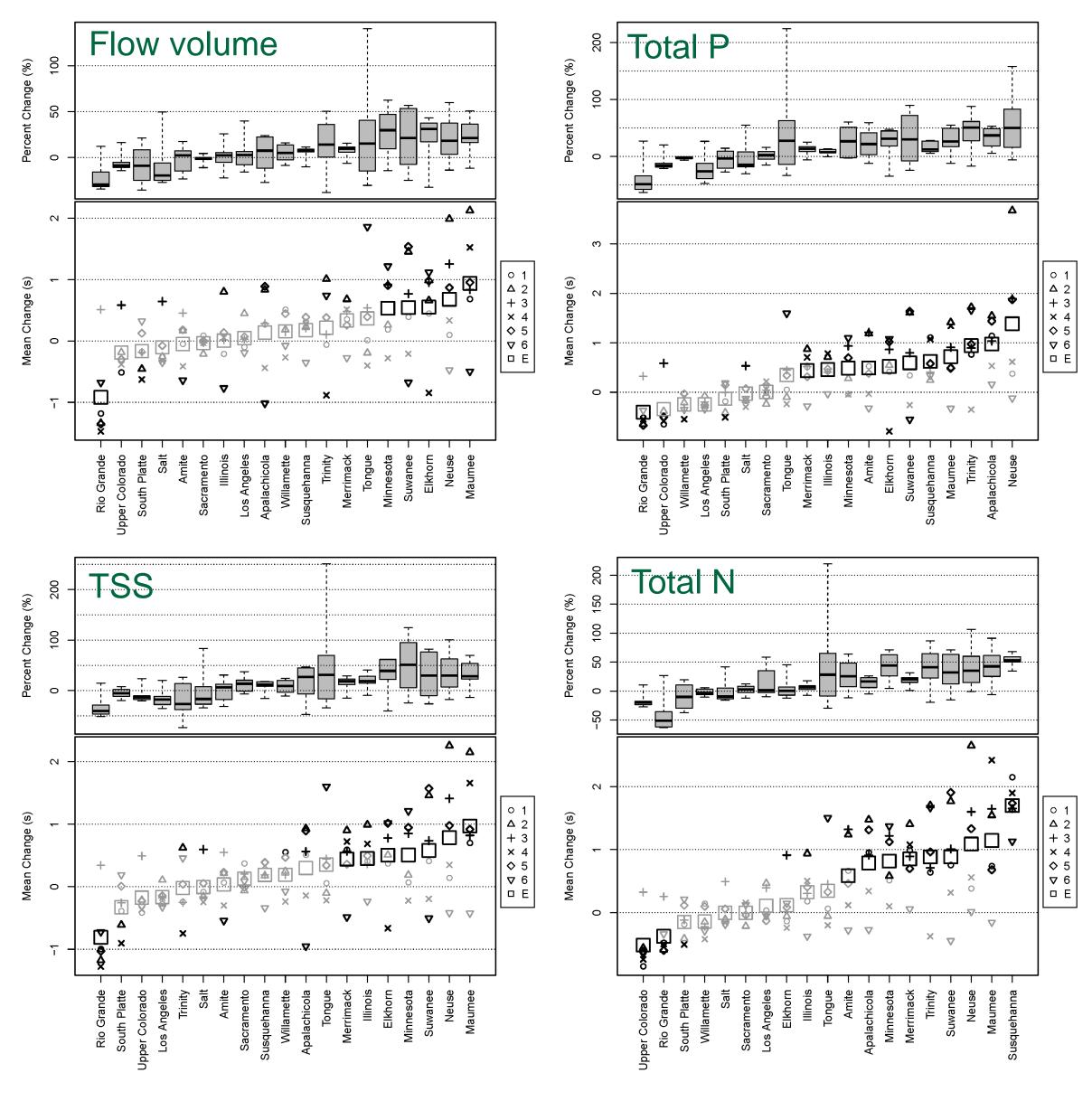
Comparison of Methods and Models


SWAT simulations for mean annual flow using different downscaled (NARCCAP, BCSD) and non-downscaled GCM projections from GFDL and CGCM3 GCMs


SWAT simulated changes in mean annual flow in response to climate change and urban development (across all HUC 8 subwatersheds in the study area)


	Flow Response to Climate Change		Flow Response to Urbanization	
	Minimum	Maximum	Minimum	Maximum
Apalachicola-Chattahoochee-Flint Basins	-45.73%	27.69%	0.00%	3.70%
Salt, Verde, and San Pedro River Basins	-35.29%	152.52%	0.00%	1.48%
Loup/Elkhorn River Basin	-77.45%	20.69%	0.00%	0.27%
Lake Erie Drainages	-22.89%	21.12%	0.00%	1.84%
Georgia-Florida Coastal Plain	-39.73%	37.17%	0.01%	7.36%
Illinois River Basin	-23.05%	18.95%	0.00%	11.90%
Minnesota River Basin	-20.61%	85.38%	0.00%	0.19%
New England Coastal Basins	-12.55%	9.16%	0.01%	0.76%
Lake Pontchartrain Drainage	-24.75%	21.82%	0.00%	1.24%
Rio Grande Valley	-38.80%	11.06%	-0.11%	0.08%
Sacramento River Basin	-20.79%	0.04%	-0.03%	0.47%
Coastal Southern California Basins	-26.91%	21.08%	1.66%	9.50%
South Platte River Basin	-60.45%	-0.68%	-1.00%	6.87%
Susquehanna River Basin	-23.80%	25.79%	0.00%	0.23%
Tar and Neuse River Basins	-13.65%	61.83%	0.28%	4.31%
Trinity River Basin	-60.57%	40.43%	6.39%	34.91%
Upper Colorado River Basin	-20.21%	5.58%	-0.38%	0.47%
Willamette River Basin	-17.51%	1.31%	-1.18%	0.00%
Powder/Tongue River Basins	-86.54%	-76.33%	0.00%	0.00%

Changes in SWAT projected changes with representation of increased CO₂ ((withCO₂ – noCO₂)/noCO₂)


SWAT and HSPF simulated changes in total flow and nitrogen load in pilot sites (relative to current conditions)

Regional Variability

SWAT simulated changes in streamflow, N, P and TSS loading for mid-21st century climate change (6 NARCCAP scenarios). In each figure, the top panel shows percent change relative to baseline, and bottom panel shows the change normalized by the standard deviation of baseline values. Bold symbols indicate change is significant from baseline (p<0.05).

Conclusions

- High variability in simulated responses to potential mid-21st century climatic conditions; span a wide range and in many cases do not agree in the direction of change
- Simulations sensitive to methodological choices such as different approaches for downscaling global climate change simulations and use of different watershed models.
- Simulated responses to urban development scenarios small at the spatial scale of this study; larger effects likely at finer scales
- Results are conditional on methods and scenarios used in this study. Scenarios represent a plausible range of changes but are not comprehensive of all possible futures.

<u> Acknowledgements – Project Team</u>

Tetra Tech, Inc.	Texas A&M University	AQUA TERRA Consultants	EPA ORD Global Program
 Scott Job 	 Raghavan Srinivasan 	 Anthony Donigian 	 Meredith Warren
 Mustafa 	 Pushpa Tuppad 	 Jack Kittle 	 Britta Bierwagen
Faizullabhoy	 Deb Debjanian 	 Brian Bicknell 	 Philip Morefield
 Sam Sarkar 	NCAR	 Paul Hummel 	
 Peter Cada 	 Seth McGinnis 	 Paul Duda 	

Disclaimer: The views expressed in this presentation are those of the authors and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency