Tuesday
January 27, 1987

Part II

The President

Radiation Protection Guidance to Federal Agencies for Occupational Exposure; Approval of Environmental Protection Agency Recommendations

[This reprint incorporates corrections published in the Federal Registers of Friday, January 30, and Wednesday, February 4, 1987.]
Title 3—

The President

Recommendations Approved by the President

Radiation Protection Guidance to Federal Agencies for Occupational Exposure

The recommendations concerning Federal radiation protection guidance for occupational exposure transmitted to me by the Administrator of the Environmental Protection Agency in the memorandum published below are approved. I direct that this memorandum be published in the Federal Register. To promote a coordinated and effective Federal program of worker protection, the Administrator is directed to keep informed of Federal agency actions to implement this guidance and to interpret and clarify these recommendations from time to time, as necessary, in coordination with affected Federal agencies. Consistent with existing authority, the Administrator may, when appropriate, consult with the Federal Coordinating Council for Science, Engineering and Technology. The Administrator may also, when appropriate, issue interpretations and clarifications in the Federal Register.

Approved: January 20, 1987

Ronald Reagan

Memorandum for the President

FEDERAL RADIATION PROTECTION GUIDANCE FOR OCCUPATIONAL EXPOSURE

This memorandum transmits recommendations that would update previous guidance to Federal agencies for the protection of workers exposed to ionizing radiation. These recommendations were developed cooperatively by the Nuclear Regulatory Commission, the Occupational Safety and Health Administration, the Mine Safety and Health Administration, the Department of Defense, the Department of Energy, the National Aeronautics and Space Administration, the Department of Commerce, the Department of Transportation, the Department of Health and Human Services, and the Environmental Protection Agency. In addition, the National Council on Radiation Protection and Measurements (NCRP), the National Academy of Sciences (NAS), the Conference of Radiation Control Program Directors (CRCPD) of the States, and the Health Physics Society were consulted during the development of this guidance.

Executive Order 10831, the Atomic Energy Act, as amended, and Reorganization Plan No. 3 of 1970 charge the Administrator of the Environmental Protection Agency (EPA) to "... advise the President with respect to radiation matters, directly or indirectly affecting health, including guidance for all Federal agencies in the formulation of radiation standards and in the establishment and execution of programs of cooperation with States." This guidance has historically taken the form of qualitative and quantitative "Federal Radiation Protection Guidance." The recommendations transmitted here would replace those portions of previous Federal guidance (25 FR 4402), approved by President Eisenhower on May 13, 1960, that apply to the protec-
tion of workers exposed to ionizing radiation. The portions of that guidance which apply to exposure of the general public would not be changed by these recommendations.

These recommendations are based on consideration of (1) current scientific understanding of effects on health from ionizing radiation, (2) recommendations of international and national organizations involved in radiation protection, (3) proposed "Federal Radiation Protection Guidance for Occupational Exposure" published on January 23, 1981 (46 FR 7836) and public comments on that proposed guidance, and (4) the collective experience of the Federal agencies in the control of occupational exposure to ionizing radiation. A summary of the considerations that led to these recommendations is provided below. Public comments on the previously proposed guidance and a response to those comments are contained in the document "Federal Radiation Protection Guidance for Occupational Exposure Response to Comments" (EPA 520/1–84–011). Single copies of this report are available from the Program Management Office (ANR-458), Office of Radiation Programs, U.S. Environmental Protection Agency, Washington, D.C. 20460; telephone (202) 475–8398.

Background

A review of current radiation protection guidance for workers began in 1974 with the formation of a Federal Interagency committee by EPA. As a result of the deliberations of that committee, EPA published an "Advance Notice of Proposed Recommendations and Future Public Hearings" on September 17, 1979 (44 FR 53785). On January 23, 1981, EPA published "Federal Radiation Protection Guidance for Occupational Exposures: Proposed Recommendations, Request for Written Comments, and Public Hearings" (46 FR 7836). Public hearings were held in Washington, D.C. (April 20–23, 1981); Houston, Texas (May 1–2, 1981); Chicago, Illinois (May 5–6, 1981); and San Francisco, California (May 8–9, 1981) (46 FR 15205). The public comment period closed July 6, 1981 (46 FR 25557). On December 15, 1982, representatives of the ten Federal agencies noted above, the CRCPD, and the NCRP convened under the sponsorship of the EPA to review the issues raised in public comments and to complete development of these recommendations. The issues were carefully considered during a series of meetings, and the conclusions of the working group have provided the basis for these recommendations for revised Federal guidance.

EPA has also sponsored or conducted four major studies in support of this review of occupational radiation protection guidance. First, the Committee on the Biological Effects of Ionizing Radiations, National Academy of Sciences—National Research Council reviewed the scientific data on health risks of low levels of ionizing radiation in a report transmitted to EPA on July 22, 1980: "The Effects on Populations of Exposure to Low Levels of Ionizing Radiation: 1980," National Academy Press, Washington, D.C. 1980. Second, EPA has published two studies of occupational radiation exposure: "Occupational Exposure to Ionizing Radiation in the United States: A Comprehensive Summary for the Year 1975" (EPA 520/4–80–001) and "Occupational Exposure to Ionizing Radiation in the United States: A Comprehensive Review for the Year 1980 and Summary of Trends for the Years 1900–1985" (EPA 520/1–84–005). Third, the Agency sponsored a study to examine the changes in previously derived concentration limits for intake of radionuclides from air or water that result from use of up to date dosimetric and biological transport models. These are presented in Federal Guidance Report No. 10, "The Radioactivity Concentration Guides: A New Calculation of Derived Limits for the 1960 Radiation Protection Guides Reflecting Updated Models for Dosimetry and Biological Transport" (EPA 520/1–84–010). Finally, the cost of implementing the changes in Federal guidance proposed on January 23, 1981 was surveyed and the findings published in the two-volume report: "Analysis of Costs for Compliance with Federal Radiation Protection Guidance for Occupational Exposure: Volume I—Cost of Compliance" (EPA 520/1 83 013 1) and "Volume II—Case Study Analysis of the Impacts" (EPA 520/1–83–013–2). These EPA
reports are available from National Technical Information Service, U.S. Department of Commerce. 5285 Port Royal Road, Springfield, Virginia 22161.

The interagency review of occupational radiation protection has confirmed the need for revising the previous Federal guidance, which was promulgated in 1960. Since that time knowledge of the effects of ionizing radiation on humans has increased substantially. We now have a greatly improved ability to estimate risk of harm due to irradiation of individual organs and tissues. As a result, some of the old numerical guides are now believed to be less and some more protective than formerly. Other risks, specifically those to the unborn, are now considered to be more significant and were not addressed by the old guidance. These disparities and omissions should be corrected. Drawing on this improved knowledge, the International Commission on Radiological Protection (ICRP) published, in 1977, new recommendations on radiation protection philosophy and limits for occupational exposure. These recommendations are now in use, in whole or substantial part, in most other countries. We have considered these recommendations, among others, and believe that it is appropriate to adopt the general features of the ICRP approach in radiation protection guidance to Federal agencies for occupational exposure. In two cases, protection of the unborn and the management of long-term exposure to internally deposited radioactivity, we have found it advisable to make additions.

There are four types of possible effects on health from exposure to ionizing radiation. The first of these is cancer. Cancers caused by radiation are not different from those that have been historically observed, whether from known or unknown causes. Although radiogenic cancers have been observed in humans over a range of higher doses, few useful data are available for defining the effect of doses at normal occupational levels of exposure. The second type of effect is the induction of hereditary effects in descendants of exposed persons. The severity of hereditary effects ranges from inconsequential to fatal. Although such effects have been observed in experimental animals at high doses, they have not been confirmed in studies of humans. Based on extensive but incomplete scientific evidence, it is prudent to assume that at low levels of exposure the risk of incurring either cancer or hereditary effects is linearly related to the dose received in the relevant tissue. The severity of any such effect is not related to the amount of dose received. That is, once a cancer or an hereditary effect has been induced, its severity is independent of the dose. Thus, for these two types of effects, it is assumed that there is no completely risk-free level of exposure.

The third type includes a variety of effects for which the degree of damage (i.e., severity) appears to depend on the amount of dose received and for which there is an effective threshold below which clinically observable effects do not occur. An example of such an effect is radiation sickness syndrome, which is observed at high doses and is fatal at very high doses. Examples of lesser effects include opacification of the lens of the eye, erythema of the skin, and temporary impairment of fertility. All of these effects occur at relatively high doses. At the levels of dose contemplated under both the previous Federal guidance and these recommendations, clinically observable examples of this third type of effect are not known to occur.

The fourth type includes effects on children who were exposed in utero. Not only may the unborn be more sensitive than adults to the induction of malformations, cancer, and hereditary effects, but recent studies have drawn renewed attention to the risk of severe mental retardation from exposure of the unborn during certain periods of pregnancy. The risk of less severe mental retardation appears to be similarly elevated. Although it is not yet clear to what extent the frequency of retardation is proportional to the amount of dose (the data available at occupational levels of exposure are limited), it is prudent to assume that proportionality exists.

The risks to health from exposure to low levels of ionizing radiation were reviewed for EPA by the NAS in reports published in 1972 and in 1980.
Regarding cancer there continues to be divided opinion on how to interpolate between the absence of radiation effects at zero dose and the observed effects of radiation (mostly at high doses) to estimate the most probable effects of low doses. Some scientists believe that available data best support use of a linear model for estimating such effects. Others, however, believe that other models, which usually predict somewhat lower risks, provide better estimates. These differences of opinion have not been resolved to date by studies of the effects of radiation in humans, the most important of which are those of the Hiroshima and Nagasaki atom bomb survivors. Studies are now underway to reassess radiation dose calculations for these survivors and in turn to provide improved estimates of risk. It will be at least several years before these reassessments and estimates are completed, and it is not likely that they will conclusively resolve uncertainties in estimating low dose effects. EPA is monitoring the progress of this work. When it is completed we will initiate reviews of the risks of low levels of radiation, in order to provide the basis for any indicated reassessment of this guidance.

In spite of the above uncertainties, estimates of the risks from exposure to low levels of ionizing radiation are reasonably well bounded, and the average worker is believed to incur a relatively small risk of harm from radiation. This situation has resulted from a system of protection which combines limits on maximum dose with active application of measures to minimize doses within these limits. These recommendations continue that approach. Approximately 13 million workers were employed in occupations in which they were potentially exposed to radiation in 1980, the latest year for which we have comprehensive assessments. About half of these workers received no measurable occupational dose. In that year the average worker measurably exposed to external radiations received an occupational dose equivalent of 0.2 rem to the whole body, based on the readings of individual dosimeters worn on the surface of the body. We estimate (assuming a linear non-threshold model) the increased risk of premature death due to radiation-induced cancer for such a dose is approximately 2 to 5 in 100,000 and that the increased risk of serious hereditary effects is somewhat smaller. To put these estimated risks in perspective with other occupational hazards, they are comparable to the observed risk of job-related accidental death in the safest industries, wholesale and retail trades, for which the annual accidental death rate averaged about 5 per 100,000 from 1980 to 1984. The U.S. average for all industries was 11 per 100,000 in 1984 and 1985.

These recommendations are based on the assumption that risks of injury from exposure to radiation should be considered in relation to the overall benefit derived from the activities causing the exposure. This approach is similar to that used by the Federal Radiation Council (FRC) in developing the 1980 Federal guidance. The FRC said then, "Fundamentally, setting basic radiation protection standards involves passing judgment on the extent of the possible health hazard society is willing to accept in order to realize the known benefits of radiation." This leads to three basic principles that have governed radiation protection of workers in recent decades in the United States and in most other countries. Although the precise formulation of these principles has evolved over the years, their intent has continued unchanged. The first is that any activity involving occupational exposure should be determined to be useful enough to society to warrant the exposure of workers; i.e., that a finding be made that the activity is "justified". This same principle applies to virtually any human endeavor which involves some risk of injury. The second is that, for justified activities, exposure of the work force should be as low as reasonably achievable (commonly designated by the acronym "ALARA"); this has most recently been characterized as "optimization" of radiation protection by the International Commission on Radiological Protection (ICRP). Finally, to provide an upper limit on risk to individual workers, "limitation" of the maximum allowed individual dose is required. This is required above and beyond the protection provided by the first two principles because their primary objective is to minimize the total harm from occupational exposure in
the entire work force; they do not limit the way that harm is distributed among individual workers.

The principle that activities causing occupational exposure should produce a net benefit is important in radiation protection even though the judgment of net benefit is not easily made. The 1960 guidance says: "There should not be any man made radiation exposure without the expectation of benefit resulting from such exposure . . ." And "It is basic that exposure to radiation should result from a real determination of its necessity." Advisory bodies other than the FRC have used language which has essentially the same meaning. In its most recent revision of international guidance (1977) the ICRP said " . . . no practice shall be adopted unless its introduction produces a positive net benefit." and in slightly different form the NCRP, in its most recent statement (1975) on this matter, said " . . . all exposures should be kept to a practicable minimum; . . . this principle involves value judgments based upon perception of compensatory benefits commensurate with risks, preferably in the form of realistic numerical estimates of both benefits and risks from activities involving radiation and alternative means to the same benefits."

This principle is set forth in these recommendations in a simple form: "There should not be any occupational exposure of workers to ionizing radiation without the expectation of an overall benefit from the activity causing the exposure." An obvious difficulty in making this judgment is the difficulty of quantifying in comparable terms costs (including risks) and benefits. Given this situation, informed value judgments are necessary and are usually all that is possible. It is perhaps useful to observe, however, that throughout history individuals and societies have made risk-benefit judgments, with their success usually depending upon the amount of accurate information available. Since more is known about radiation now than in previous decades, the prospect is that these judgments can now be better made than before.

The preceding discussion has implicitly focused on major activities, i.e., those instituting or continuing a general practice involving radiation exposure of workers. This principle also applies to detailed management of facilities and direct supervision of workers. Decisions on whether or not particular tasks should be carried out (such as inspecting control systems or acquiring specific experimental data) require judgments which can, in the aggregate, be as significant for radiation protection as those justifying the basic activities these tasks support.

The principle of reduction of exposure to levels that are "as low as reasonably achievable" (ALARA) is typically implemented in two different ways. First, it is applied to the engineering design of facilities so as to reduce, prospectively, the anticipated exposure of workers. Second, it is applied to actual operations; that is, work practices are designed and carried out to reduce the exposure of workers. Both of these applications are encompassed by these recommendations. The principle applies both to collective exposures of the work force and to annual and cumulative individual exposures. Its application may therefore require complex judgments, particularly when tradeoffs between collective and individual doses are involved. Effective implementation of the ALARA principle involves most of the many facets of an effective radiation protection program: education of workers concerning the health risks of exposure to radiation; training in regulatory requirements and procedures to control exposure; monitoring, assessment, and reporting of exposure levels and doses; and management and supervision of radiation protection activities, including the choice and implementation of radiation control measures. A comprehensive radiation protection program will also include, as appropriate,

* The recommendation that Federal agencies, through their regulations, operational procedures and other appropriate means, maintain doses ALARA is not intended to express, and therefore should not be interpreted as expressing, a view whether the ALARA concept should constitute a duty of care in tort litigation. Implementation of the ALARA concept requires a complex, subjective balancing of scientific, economic and social factors generally resulting in the attainment of average dose levels significantly below the maximum permitted by this guidance.
properly trained and qualified radiation protection personnel; adequately designed, operated, and maintained facilities and equipment; and quality assurance and audit procedures. Another important aspect of such programs is maintenance of records of cumulative exposures of workers and implementation of appropriate measures to assure that lifetime exposure of workers repeatedly exposed near the limits is minimized.

The types of work and activity which involve worker exposure to radiation vary greatly and are administered by many different Federal and State agencies under a wide variety of legislative authorities. In view of this complexity, Federal radiation protection guidance can address only the broad prerequisites of an effective ALARA program, and regulatory authorities must ensure that more detailed requirements are identified and carried out. In doing this, such authorities may find it useful to establish or encourage the use of 1) administrative control levels specifying, for specific categories of workers or work situations, dose levels below the limiting numerical values recommended in this guidance; 2) reference levels to indicate the need for such actions as recording, investigation, and intervention; and 3) local goals for limiting individual and collective occupational exposures. Where the enforcement of a general ALARA requirement is not practical under an agency's statutory authority, it is sufficient that an agency endorse and encourage ALARA, and establish such regulations which result from ALARA findings as may be useful and appropriate to meet the objectives of this guidance.

The numerical radiation protection guidance which has been in effect since 1960 for limiting the maximum allowed dose to an individual worker is based on the concept of limiting the dose to the most critically exposed part of the body. This approach was appropriate, given the limitations of scientific information available at that time, and resulted in a set of five independent numerical guides for maximum exposure of a) the whole body, head and trunk, active blood-forming organs, gonads, and lens of eye; b) thyroid and skin of the whole body; c) hands and forearms, feet and ankles; d) bone, and e) other organs. A consequence of this approach when several different parts of the body are exposed simultaneously is that only the part that receives the highest dose relative to its respective guide is decisive for limiting the dose. Current knowledge permits a more comprehensive approach that takes into account the separate contributions to the total risk from each exposed part of the body. These recommendations incorporate the dose weighting system introduced for this purpose by the ICRP in 1977. That system assigns weighting factors to the various parts of the body for the risks of lethal cancer and serious prompt genetic effects (those in the first two generations); these factors are chosen so that the sum of weighted dose equivalents represents a risk the same as that from a numerically equal dose equivalent to the whole body. The ICRP recommends that the effective (i.e. weighted) dose equivalent incurred in any year be limited to 5 rems. Based on the public response to the similar proposal published by EPA in 1981 and Federal experience with comparable exposure limits, the Federal agencies concur. These recommendations therefore replace the 1960 whole body numerical guides of 3 rems per quarter and 5(N–18) rems cumulative dose equivalent (where N is the age of the worker) and associated critical organ guides with a limiting value of 5 rems effective dose equivalent incurred in any year. Supplementary limiting values are also recommended to provide protection against those health effects for which an effective threshold is believed to exist.

In recommending a limiting value of 5 rems in any single year, EPA has had to balance a number of considerations. Public comments confirmed that, for some beneficial activities, occasional doses approaching this value are not reasonably avoidable. On the other hand, continued annual exposures at or near this level over substantial portions of a working lifetime would, we believe, lead to unwarranted risks. For this reason such continued annual exposures should be avoided, and these recommendations provide such guidance. As noted earlier, these recommendations also continue a system of protection which combines limiting values for maximum dose with a require-
ment for active application of measures to minimize doses the ALARA requirement. This has resulted in steadily decreasing average annual doses to workers (most recently to about one-fiftieth of the recommended limiting value), and, to date, only a few hundred out of millions of workers have received planned cumulative doses that are a substantial fraction of the maximum previously permitted cumulative dose over an occupational lifetime. EPA anticipates that the continued application of the ALARA requirement, combined with new guidance on avoidance of large cumulative doses, will result in maintaining risks to all workers at low levels. EPA will continue to review worker doses with a view to initiating recommendations for any further modifications of the dose limitation system that are warranted by future trends in worker exposure.

Certain radionuclides, if inhaled or ingested, may remain in and continue to irradiate the body for many years. These recommendations provide that radionuclides should be contained so as to minimize intake, to the extent reasonably achievable. When avoidance of situations that may result in such intake is not practical, the recommendations distinguish between pre-exposure and post-exposure situations. With respect to the former, Federal agencies should base control of prospective internal exposure to radionuclides (e.g., facility design, monitoring, training, and operating procedures) upon the entire future dose that may result from any intake (the committed dose), not just upon the dose accrued in the year of intake. This is to assure that, prior to exposure to such materials, proper account is taken of the risk due to doses in future years.

With respect to post-exposure situations, most significant internal exposure to radionuclides occurs as the result of inadvertent intakes. In the case of some long-lived radionuclides, it may also be difficult to measure accurately the small quantities corresponding to the recommended numerical guidance for control of committed doses. In such cases, when workers are inadvertently exposed or it is not otherwise possible to avoid intakes in excess of these recommendations for control of committed dose, it will be necessary to take appropriate corrective action to assure control has been reestablished and to properly manage future exposure of the worker. In regard to the latter requirement, provision should be made to continue to monitor the annual dose received from radionuclides in the body as long as they remain in sufficient amount to deliver doses significant compared to the limiting values for annual dose. These recommendations extend those of the ICRP, because it is appropriate to maintain active management of workers who exceed the guidance for committed dose in order that individual differences in retention of such materials in the body be monitored, and to assure, whenever possible, conformance to the limiting values for annual dose.

These recommendations also incorporate guidance for limiting exposure of the unborn as a result of occupational exposure of female workers. It has long been suspected that the embryo and fetus are more sensitive to a variety of effects of radiation than are adults. Although our knowledge remains incomplete, it has now become clear that the unborn are especially subject to the risk of mental retardation from exposure to radiation at a relatively early phase of fetal development. Available scientific evidence appears to indicate that this sensitivity is greatest during the period near the end of the first trimester and the beginning of the second trimester of pregnancy, that is, the period from 8 weeks to about 15 weeks after conception. Accordingly, when a woman has declared her pregnancy, this guidance recommends not only that the total exposure of the unborn be no more limited than that of adult workers, but that the monthly rate of exposure be further limited in order to provide additional protection. Due to the incomplete state of knowledge of the transfer of radionuclides from the mother to the unborn (and the resulting uncertainty in dose to the unborn), in those few work situations where intake of radionuclides could normally be possible it may also be necessary to institute measures to avoid such intakes by pregnant women in order to satisfy these recommendations.
The health protection objectives of this guidance for the unborn should be achieved in accordance with the provisions of Title VII of the Civil Rights Act of 1964, as amended, with respect to discrimination in employment practices.\(^4\) The guidance applies only to situations in which the worker has voluntarily made her pregnancy known to her employer. Protection of the unborn may be achieved through such measures as temporary job rotation, worker self-selection, or use of protective equipment. The guidance recognizes that protection of the unborn is a joint responsibility of the employer and worker. Workers should be informed of the risks involved and encouraged to voluntarily make pregnancies known as early as possible so that any temporary arrangements necessary to modify exposures can be made. Conversely, employers should make such arrangements in a manner that minimizes the impact on the worker.

The recommended numerical guidance for limiting dose to workers applies to the sum of dose from external and internal sources of radiation. This procedure is recommended so as to provide a single limit on the total risk from radiation exposure. Therefore, in those cases where both kinds of radiation sources are present, decisions about the control of dose from internal sources should not be made without equal consideration of their implication for dose from external sources.

The guidance emphasizes the importance of recordkeeping for annual, committed, and cumulative (lifetime) doses. Such recordkeeping should be designed to avoid burdensome requirements for cases in which doses are insignificant. Currently, regulatory records are not generally required for doses small compared to regulatory limits for annual external and internal doses. Under this guidance such regulatory practices would continue to be appropriate if due consideration is given to the implications of summing internal and external doses and to recordkeeping needs for assessing cumulative doses. To the extent reasonable such records should be established on the basis of individual dosimetry rather than on monitoring of exposure conditions.

In summary, many of the important changes from the 1990 guidance are structural. These include introduction of the concept of risk-based weighting of doses to different parts of the body and the use of committed dose as the primary basis for control of internal exposure. The numerical values of the guidance for maximum radiation doses are also modified. These changes bring this guidance into general conformance with international recommendations and practice. In addition, guidance is provided for protection of the unborn, and increased emphasis is placed on eliminating unjustified exposure and on keeping justified exposure as low as reasonably achievable, both long-standing tenets of radiation protection. The guidance emphasizes the importance of instruction of workers and their supervisors, monitoring and recording of doses to workers, and the use of administrative control and reference levels for carrying out ALARA programs.

These recommendations apply to workers exposed to other than normal background radiation on the job. It is sometimes hard to identify such workers because everyone is exposed to natural sources of radiation and many occupational exposures are small. Workers or workplaces subject to this guidance will be identified by the responsible implementing agencies. Agencies will have to use care in determining when exposure of workers does not need to be regulated. In making such determinations agencies should consider

\(^4\) The Civil Rights Act of 1964, as amended, provides that "It shall be unlawful employment practice for an employer [1] to fail or refuse to hire or to discharge any individual, or otherwise to discriminate against any individual with respect to his compensation, terms, conditions, or privileges of employment, because of such individual's... sex... [42 U.S.C. 2000e-2(a)]. The Pregnancy Discrimination Act of 1978 defines "because of sex" to include because of or on the basis of pregnancy, childbirth, or related medical conditions [42 U.S.C. 2000e(k)].
both the collective dose which is likely to be avoided through regulation and the maximum individual doses possible.

Implementation of these recommendations will require changes that can reasonably be achieved only over a period of time. It is expected that Federal agencies will identify any problem areas and provide adequate flexibility and the necessary transition periods to avoid undue impacts. While at the same time assuring reasonably prompt implementation of this new guidance.

Upon implementing these recommendations, occupational exposure should be reduced. It is not possible to quantify the overall exposure reduction that will be realized because it cannot be predicted how efficiently these recommendations will be implemented or how much of existing exposure is unnecessary. These recommendations reduce the maximum whole body dose that workers may receive in any one year by more than half (i.e., from 3 rems per quarter to 5 rems per year), require that necessary exposure to internal radioactivity be controlled on the basis of committed dose, require that internal and external doses be considered together rather than separately, and provide increased protection of the unborn. We also expect the strengthened and more explicit recommendations for maintaining occupational exposure “as low as reasonably achievable” will improve the radiation protection of workers. Finally, these recommendations would facilitate the practice of radiation protection by introducing a self-consistent system of limits in accordance with that in practice internationally.

Recommendations

The following recommendations are made for the guidance of Federal agencies in their conduct of programs for the protection of workers from ionizing radiation.

1. There should not be any occupational exposure of workers to ionizing radiation without the expectation of an overall benefit from the activity causing the exposure. Such activities may be allowed provided exposure of workers is limited in accordance with these recommendations.

2. No exposure is acceptable without regard to the reason for permitting it, and it should be general practice to maintain doses from radiation to levels below the limiting values specified in these recommendations. Therefore, it is fundamental to radiation protection that a sustained effort be made to ensure that collective doses, as well as annual, committed, and cumulative lifetime individual doses, are maintained as low as reasonably achievable (ALARA), economic and social factors being taken into account.

3. In addition to the above recommendations, radiation doses received as a result of occupational exposure should not exceed the limiting values for assessed dose to individual workers specified below. These are given separately for protection against different types of effects on health and apply to the sum of doses from external and internal sources of radiation. For cancer and genetic effects, the limiting value is specified in terms of a derived quantity called the effective dose equivalent. For other health effects, the limiting values are specified in terms of the dose equivalent* to specific organs or tissues.

* “Dose equivalent” is the product of the absorbed dose, a quality factor which varies with the energy and type of radiation, and other modifying factors, as defined by the International Commission on Radiation Units and Measurements.
Cancer and Genetic Effects. The effective dose equivalent, H_E, received in any year by an adult worker should not exceed 5 rem (0.05 sievert).\(^2\) The effective dose equivalent is defined as:

$$H_E = \sum T w_T H_T,$$

where w_T is a weighting factor and H_T is the annual dose equivalent averaged over organ or tissue T. Values of w, and their corresponding organs and tissues are:

<table>
<thead>
<tr>
<th>Organ</th>
<th>w</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gonads</td>
<td>0.25</td>
</tr>
<tr>
<td>Breasts</td>
<td>0.15</td>
</tr>
<tr>
<td>Red bone marrow</td>
<td>0.12</td>
</tr>
<tr>
<td>Lungs</td>
<td>0.12</td>
</tr>
<tr>
<td>Thyroid</td>
<td>0.03</td>
</tr>
<tr>
<td>Dose surface</td>
<td>0.03</td>
</tr>
<tr>
<td>Remainder(^3)</td>
<td>0.30</td>
</tr>
</tbody>
</table>

For the case of uniform irradiation of the whole body, where H_T may be assumed the same for each organ or tissue, the effective dose equivalent is equal to the dose equivalent to the whole body.

Other Health Effects. In addition to the limitation on effective dose equivalent, the dose equivalent, H_T, received in any year by an adult worker should not exceed 15 rem (0.15 sievert) in the lens of the eye, and 50 rem (0.5 sievert) to any other organ, tissue (including the skin), or extremity\(^4\) of the body.

Additional limiting values which apply to the control of dose from internal exposure to radionuclides in the workplace are specified in Recommendation 4. Continued exposure of a worker at or near the limiting values for dose received in any year over substantial portions of a working lifetime should be avoided. This should normally be accomplished through application of appropriate radiation protection practices established under Recommendation 2.

4. As the primary means for controlling internal exposure to radionuclides, agencies should require that radioactive materials be contained, to the extent reasonably achievable, so as to minimize intake. In controlling internal exposure consideration should also be given to concomitant external exposure.

The control of necessary exposure of adult workers to radioactive materials in the workplace should be designed, operated, and monitored with sufficient frequency to ensure that, as the result of intake of radionuclides in a year, the following limiting values for control of the workplace are satisfied: (a) the anticipated magnitude of the committed effective dose equivalent from such intake plus any annual effective dose equivalent from external exposure will not exceed 5 rem (0.05 sievert), and (b) the anticipated magnitude of the committed dose equivalent to any organ or tissue from such intake plus any annual dose equivalent from external exposure will not exceed 50 rem (0.5 sievert). The committed effective dose equivalent from internal sources of radiation, $H_{E,50}$, is defined as:

$$H_{E,50} = \sum T w_T H_{T,50},$$

\(^2\) The unit of dose equivalent in the system of special quantities for ionizing radiation currently in use in the United States is the "rem." In the recently-adopted international system (SI) the unit of dose equivalent is the "sievert." One sievert = 100 rems.

\(^3\) "Remainder" means the five other organs (such as liver, kidneys, spleen, brain, thymus, adrenals, pancreas, stomach, small intestine, upper large intestine, and lower large intestine, but excluding skin, lens of the eye, and extremities) with the highest doses. The weighting factor for each such organ is 0.06.

\(^4\) "Extremity" means the forearms and hands, or the lower legs and feet.
where \(w_r \) is defined as in Recommendation 3 and the committed dose equivalent, \(H_{20} \), is the sum of all dose equivalents to organ or tissue \(T \) that may accumulate over an individual's anticipated remaining lifetime (taken as 50 years) from radionuclides that are retained in the body. These conditions on committed doses should provide the primary basis for the control of internal exposure to radioactive materials.\(^5\)

In circumstances where assessment of actual intake for an individual worker shows the above conditions for control of intake have not been met, agencies should require that appropriate corrective action be taken to assure control has been reestablished and that future exposure of the worker is appropriately managed. Provision should be made to assess annual dose equivalents due to radionuclides retained in the body from such intake for as long as they are significant for ensuring conformance with the limiting values specified in Recommendation 3.

5. Occupational dose equivalents to individuals under the age of eighteen should be limited to one-tenth of the values specified in Recommendations 3 and 4 for adult workers.

6. Exposure of an unborn child should be less than that of adult workers. Workers should be informed of current knowledge of risks to the unborn\(^6\) from radiation and of the responsibility of both employers and workers to minimize exposure of the unborn. The dose equivalent to an unborn as a result of occupational exposure of a woman who has declared that she is pregnant should be maintained as low as reasonably achievable, and in any case should not exceed 0.5 rem (0.005 sievert) during the entire gestation period. Efforts should be made to avoid substantial variation above the uniform monthly exposure rate that would satisfy this limiting value. The limiting value for the unborn does not create a basis for discrimination, and should be achieved in conformance with the provisions of Title VII of the Civil Rights Act of 1964, as amended, regarding discrimination in employment practices, including hiring, discharge, compensation, and terms, conditions, or privileges of employment.

7. Individuals occupationally exposed to radiation and managers of activities involving radiation should be instructed on the basic risks to health from ionizing radiation and on basic radiation protection principles. This should, as a minimum, include instruction on the somatic (including in utero) and genetic effects of ionizing radiation, the recommendations set forth in Federal radiation protection guidance for occupational exposure and applicable regulations and operating procedures which implement this guidance, the general levels of risk and appropriate radiation protection practices for their work situations, and the responsibilities of individual workers to avoid and minimize exposure. The degree and type of instruction that is appropriate will depend on the potential radiation exposures involved.

8. Appropriate monitoring of workers and the work place should be performed and records kept to ensure conformance with these recommendations. The types and accuracy of monitoring methods and procedures utilized should be periodically reviewed to assure that appropriate techniques are being competently applied.

Maintenance of a cumulative record of lifetime occupational doses for each worker is encouraged. For doses due to intake of radioactive materials, the committed effective dose equivalent and the quantity of each radionuclide in the body should be assessed and recorded. To the extent practicable. A summary of annual, cumulative, and committed effective dose equivalents should be provided each worker on no less than an annual basis; more.

\(^{5}\) When these conditions on intake of radioactive materials have been satisfied, it is not necessary to assess contributions from such intake to annual doses in future years. And, as an operational procedure, such doses may be assigned in the year of intake for the purpose of assessing conformance with Recommendation 3.

\(^{6}\) The term "unborn" is defined to encompass the period commencing with conception and ending with birth.
detailed information concerning his or her exposure should be made available
upon the worker’s request.

9. Radiation exposure control measures should be designed, selected, utilized,
and maintained to ensure that anticipated and actual doses meet the object-
ives of this guidance. Establishment of administrative control levels\(^7\) below
the limiting values for control may be useful and appropriate for achieving this
objective. Reference levels\(^8\) may also be useful to determine the need to take
such actions as recording, investigation, and intervention. Since such admin-
istrative control and reference levels will often involve ALARA consider-
ations, they may be developed for specific categories of workers or work
situations. Agencies should encourage the establishment of measures by
which management can assess the effectiveness of ALARA efforts, including,
where appropriate, local goals for limiting individual and collective occupa-
tional doses. Supervision should be provided on a part-time, full-time, or task-
by task basis as necessary to maintain effective control over the exposure of
workers.

10. The numerical values recommended herein should not be deliberately
exceeded except during emergencies, or under unusual circumstances for
which the Federal agency having jurisdiction has carefully considered the
reasons for doing so in light of these recommendations. If Federal agencies
authorize dose equivalents greater than these values for unusual circum-
stances, they should make any generic procedures specifying conditions under
which such exposures may occur publicly available or make specific instances
in which such authorization has been given a matter of public record.

The following notes are provided to clarify application of the above recom-
mendations:

1. Occupational exposure of workers does not include that due to normal
background radiation and exposure as a patient of practitioners of the healing
arts.

2. The existing Federal guidance (34 FR 576 and 30 FR 12921) for limiting
exposure of underground miners to radon decay products applies independ-
ently of, and is not changed by, these recommendations.

3. The values specified by the International Commission on Radiological
Protection (ICRP) for quality factors and dosimetric conventions for the
various types of radiation, the models for reference persons, and the results of
their dosimetric methods and metabolic models may be used for determining
conformance to these recommendations.

4. “Annual Limits on Intake” (ALIs) and/or “Derived Air Concentrations”
(DACs) may be used to limit radiation exposure from intake of or immersion
in radionuclides. The ALI or DAC for a single radionuclide is the maximum
intake in a year or average air concentration for a working year, respectively,
for a reference person that, in the absence of any external dose, satisfies the
conditions on committed effective dose equivalent and committed dose equi-

\(^7\) Administrative control levels are requirements determined by a competent authority or the
management of an institution or facility. They are not primary limits, and may therefore be
exceeded, upon approval of competent authority or management, as situations dictate.

\(^8\) Reference levels are not limits, and may be expressed in terms of any useful parameter. They
are used to determine a course of action, such as recording, investigation, or intervention, when
the value of a parameter exceeds, or is projected to exceed, the reference level.
will use this new guidance as the basis upon which to revise or develop detailed standards and regulations to the extent that they have regulatory or administrative jurisdiction. The Environmental Protection Agency will keep informed of Federal agency actions to implement this guidance, and will issue any necessary clarifications and interpretations required to reflect new information, so as to promote the coordination necessary to achieve an effective Federal program of worker protection.

If you approve the foregoing recommendations for the guidance of Federal agencies in the conduct of their radiation protection activities, I further recommend that this memorandum be published in the Federal Register.

Lee M. Thomas,
Administrator, Environmental Protection Agency.