

LECTURE #2

INTRODUCTION TO HSPF AND THE MODEL APPLICATION PROCESS

HSPF: HYDROLOGIC SIMULATION PROGRAM - FORTRAN

Continuous simulation model

 \bullet

- Natural and developed watersheds and water systems
- Land surface and subsurface hydrology and quality processes
- Stream/lake hydraulics and water quality processes
- Time series data management and storage
- Time series data statistical analysis and operations
- Core watershed model in EPA BASINS and Army Corps WMS
 - Development and maintenance activities sponsored by U.S. EPA and U.S. Geological Survey

CONTINUOUS SIMULATION

Representing hydrologic processes, storages, and pathways (fluxes) for a watershed, continuously for many days to multiple years, with time steps of one day or less, usually in the range of minutes to hours

RESULTS FROM CONTINUOUS SIMULATION

Daily Flow

Flow Duration/Frequency

Storm Hydrographs

COMPONENTS OF WATER QUALITY PROBLEMS AND POLLUTION

0]0**// 1** | | | |

CONSULTAN

COMPONENTS OF WATERSHED WATER QUALITY MODELS

Nonpoint Loading Simulation

- Runoff quantity surface and subsurface
- Sediment erosion/solids loading
- Runoff quality
- Atmospheric deposition
- Inputs needed by instream simulation

Instream Simulation

- Hydraulics
- Sediment transport
- Sediment-contaminant interactions
- Water quality constituents and processes
- Point source accommodation
- Lake/reservoir simulation
- Benthal processes and impacts

HSPF APPLICATION & UTILITY MODULES (Version 12, 2001)

APPLICATION MODULES

BMP IMPLND RCHRES PERLND Flow Snow Snow **Hydraulics** Conservative Any constituent Water Water simulated in PERLND, Sediment Solids Temperature **IMPLND or RCHRES** Quality **Sediment** Quality Pesticide Nonconservative Nitrogen **BOD/DO Phosphorus** Nitrogen Tracer **Phosphorus** Carbon **Plankton**

UTILITY MODULES COPY, MUTSIN, PLTGEN, DURANL, GENER, DISPLY, REPORT

PERLND STRUCTURE CHART

PERLND **Simulate a pervious** land segment

ATEMP **Correct air** temperature

SNOW Simulate snow and ice

PWATER Simulate water budget

 	AGCHEM
SEDMNT Simulate sediment	MSTLAY Estimate solute transport
PSTEMP Estimate soil temperature(s)	PEST Simulate pesticide
PWTGAS Estimate water temperature and gas concentrations	NITR Simulate nitrogen
POUAL Simulate general quality constituents	PHOS Simulate phosphorus
	TRACER Simulate a conservative tracer

SEGMENTATION OF COMPLEX WATERSHEDS FOR MODELING

SOIL PROFILE REPRESENTATION BY THE AGCHEM MODULE

HSPF - STRENGTHS

- Comprehensive representation of watershed land and stream processes
- Comprehensive representation of watershed pollutant sources, including nonpoint sources (by multiple land uses), point sources, atmospheric, etc.
- Flexibility and adaptability to a wide range of watershed conditions
- Well-designed code modularity and structure
- Companion database and support programs to assist model users (e.g., WDMUtil, WinHSPF, GenScn, HSPEXP)
- Ongoing development and support by U.S. EPA and U.S.G.S.
- Continuing code enhancements funded by numerous groups
- Strict code version control through joint agreement of U.S. EPA & U.S.G.S.

HSPF - IDENTIFIED/PERCEIVED LIMITATIONS AND WEAKNESSES

- Extensive data requirements (e.g., hourly rainfall) BASINS helps
- User training normally required BASINS helps
- No comprehensive parameter guidance available **BASINS** helps
- Limited spatial definition (i.e., lumped parameter approach)
- Hydraulics limited to non-tidal freshwater systems and unidirectional flow
- Simplified representation of urban drainage systems (e.g., culverts, pipes, CSOs)
- Limited representation of algal species phytoplankton, zooplankton, benthic algae – 3 types of BA in V 12

HSPF - RECENT ENHANCEMENTS AND DEVELOPMENTS

- Wetlands and shallow water-table hydrologic capabilities (funded by SFWMD)
- Implementation of water quality linkage between land segments for modeling buffer strips, riparian zones, grass waterways, etc. (funded by MPCA)
- Irrigation capabilities added to define application methods and sources (funded by SFWMD)
- Simplified snow algorithms (degree-day method) added to minimize meteorologic data needs (funded by EPA OW/OST for use within BASINS)
- Online interactive HSPF HELP available (complete HSPF Manual, V.11 in Windows) (funded by USGS)
- Development of Scenario Analysis (GENSCN) GUI software for generation, display, and evaluation of watershed model scenarios (funded by USGS & EPA)
- BMP and REPORT modules developed (funded by TMDL studies in Georgia)
 - Multiple benthic algae species incorporated (Version 13, funded by NV group)

THE BASINS/HSPF APPLICATION PROCESS

THE MODELING PROCESS

Phase I

Phase II

Phase III

- Data collection
- Model input preparation
- Parameter evaluation
- Calibration
- Validation
- (Post-audit)
- Analysis of alternatives

Model

Testing

HSPF APPLICATION PROCESS

- Study definition
- Development of modeling strategy
- Learn operational aspects of HSPF
- Input/management of time series data
- Parameter development
- Calibration/validation

 \bullet

Analysis of alternate scenarios

STUDY DEFINITION

- Problems/questions for analysis, study goals
- Data availability
- Project resource availability (time, money, expertise)

MODELING STRATEGY

- Processes, constituents, and sources to be modeled
- Watershed segmentation (spatial and temporal detail)
- Channel segmentation and tributary areas
- Data to support modeling effort
- Human impacts, alternatives to be analyzed
- Develop simulation plan

CONSTITUENT SOURCES IN HSPF

- Initial storages
- Nonpoint loadings
- Point loadings
- Atmospheric deposition
- Chemical transformations
- Releases from the channel bottom
- Atmospheric gas invasion

AQUA TERRA CONSULTANTS

MODEL VERSUS NATURAL SYSTEM: INPUTS, OUTPUTS, AND ERRORS

ANALYSIS OF ALTERNATIVES

- Definition of alternatives
- Selection of constituents and numeric/statistical measures
- Representation of alternatives
 - input changes
 - system configuration
 - parameter changes

RELATIVE EFFORT FOR HSPF APPLICATION STEPS (through calibration/validation)

TASK	<u>% EFFORT</u>
Problem definition	5
Modeling strategy	10
Learn operational aspects	10
• Development and input of time series	30
Parameter development	15
Calibration and validation	30

REPRESENTATIVE HSPF PROJECT SCHEDULE

<u>TASK</u>

TIME (weeks or months)

WATERSHED ASSESSMENT WITH BASINS/HSPF

CASE STUDY INTRODUCTION

PATUXENT RIVER BASIN

PATUXENT STUDY

- Initiated in 1985 by the U.S. Geological Survey and the Maryland Department of the Environment
- Nonpoint source nutrient loadings
- Representative of other subbasins of the Chesapeake Bay

MAJOR ISSUES

- Substantial commercial, residential, and industrial development
- Investigate effects of future growth on water quality
- Planning growth to minimize potential adverse effects

WESTERN BRANCH

- Discharges directly to the Patuxent estuary
- Land use 45% Forest/Wetland, 25% Agriculture, 25% Urban
- Gage at Upper Marlboro, drainage area about 90 square miles

WATER QUALITY CONSTITUENTS SIMULATED

- Water Temperature
- Sediment
- Dissolved Oxygen, BOD
- Nitrogen NH₃, NO₂/NO₃, Org N
- Phosphorus PO₄, Org P
- Plankton Phytoplankton, Benthic Algae (as Chl a)

