

LECTURE #16

ANALYSIS OF ALTERNATIVES: MODELING SCENARIOS, BMPS, AND TMDLS

- Definition of alternatives
- Selection of constituents and numeric/ statistical measures
- Representation of alternatives
 - input changes
 - system configuration
 - parameter changes

Representation can be simple or complex

STEPS IN THE ANALYSIS OF ALTERNATIVES

- **1. Define Appropriate Base Conditions**
- 2. Define Basis and Measures for Comparison of Alternatives
- **3. Simulate Base Conditions**
- 4. Define Alternatives
- 5. Define and Evaluate Model Changes (Input, Parameters, Representation) for Each Alternative
- 6. Perform Simulation Runs of Alternatives
- 7. Compare Model Results for Base and Alternatives

MEASURES OF MODEL SCENARIO COMPARISONS

- Point-to-point paired data comparison
- Time and/or space integrated paired data comparison
- Frequency domain comparison

ANALYSIS OF ALTERNATIVES - # 1 ANALYSIS OF ALTERNATIVES - 1

Alternative:

Model Representation:

Possible HSPF Input Changes:

Point source waste treatment

Changes in point source loads

Modify point load input files in WDM

Modify MFACT in EXT SOURCES

Use GENER option to calculate new point loads Point Source Manager in WinHSPF

ANALYSIS OF ALTERNATIVES - 2

Alternative:

Model Representation:

Possible HSPF Input Changes:

Instream aeration

Point load of oxygen to stream

Develop point load oxygen files in WDM, and input to stream reach

Use GENER option to calculate new point load oxygen files Point Source Manager in WinHSPF

ANALYSIS OF ALTERNATIVES - 3

Alternative:	Land use changes
Model Representation:	Change areas for each PLS affected
Possible HSPF Input Changes:	Modify area factors in SCHEMATIC Block or NETWORK Block Land Use Editor in WinHSPF

ANALYSIS OF ALTERNATIVES - 4

Alternative:

Model Representation:

Possible HSPF Input Changes:

Reservoir operations analysis

Change in operating rule curves and/or outflows for existing reservoir

Modify FTABLES to reflect new operating procedures – Reach Editor in WinHSPF

Modify time-varying outflow demand files in WDM -- WDMUtil

Link to another reservoir model with MUTSIN/PLTGEN

ANALYSIS OF ALTERNATIVES - 5

	4	4.	
A	ferr		ρ:
			<u> </u>

Model Representation:

Possible HSPF Input Changes:

Reservoir site investigations

Replace existing stream reach with a proposed reservoir

Modify OPN SEQUENCE, RCHRES, and/or SCHEMATIC blocks, as needed

Modify/develop FTABLE for new reservoir

Reach Editor in WinHSPF

ANALYSIS OF ALTERNATIVES - 6

Alternative:

Model Representation:

Possible HSPF Input Changes:

Flow augmentation and/or diversions

Modify inflows and/or outflows to/ from specific reaches

Add or modify time series files of flows or outflow demands through changes to NETWORK, RCHRES, and/or FTABLE blocks, as needed

Reach Editor in WinHSPF

ANALYSIS OF ALTERNATIVES - 7

<u>Alternative:</u>	Rainfall/ET/air temp regime changes (precip augmentation, climate changes)					
Model Representation:	Clearly define expected changes in appropriate met data input files					
Possible HSPF Input Changes:	Modify input data files in WDM using MFACT in EXT SOURCES – Met Data Editor in WinHSPF					
	Calculate new input files using GENER option					
	Develop new input files – WDMUtil					
ANALYSIS OF ALTERNATIVES - 8						
<u>Alternative:</u>	Wasteload allocation					
Model Representation:	Distribute allowable waste loadings for each constituent among existing/expected dischargers					
Possible HSPF Input Changes:	Modify point loads input files and/or NPS loads by changes in file values, MFACT multipliers in EXT SOURCES, MASS-LINK Blocks, or BMP Module Point Load Editor and BMP Module in WinHSPF Will pood to iterate simulation					

ANALYSIS OF ALTERNATIVES - 9 <u>Alternative:</u>

Model Representation:

Possible HSPF Input Changes:

Stream channel modifications (e.g. channelization, levees)

Modify flow characteristics in specific stream reaches

Modify RCHRES block and associated FTABLES to reflect changes

Reach Editor in WinHSPF

ANALYSIS OF ALTERNATIVES - 10

Alternative:

Model Representation:

Possible HSPF Input Changes:

Stormwater drainage and management

Define componets of proposed plan (e.g. storage/treatment, street sweeping)

Modify appropriate PERLND parameters

Modify RCHRES network for storage options (e.g. detention facilities)

Use GENER, MASS-LINK, or BMP Module to modify NPS loadings and/or outflows

Link with a separate urban storage/ treatment model using MUTSIN/PLTGEN Reach Editor and BMP Module in WinHSPF

ANALYSIS OF ALTERNATIVES -	- 11
<u>Alternative:</u>	Urban and/or agricultural best management practices (BMPs)
Model Representation:	Define all components of each BMP and differences from base conditions
Possible HSPF Input Changes:	Modify appropriate PERLND and/or SPEC-ACTIONS parameters
	Modify linkage of land and reach segments
	through MASS-LINK or BMP Module (BMP
	Efficiency Approach) BMP Module in WinHSPF
ANALYSIS OF ALTERNATIVES -	- 12
<u>Alternative:</u>	Land/soil disruptions (e.g. construction, mining waste disposal, clear cutting)
Model Representation:	Define components resulting from specific type of disruption/disturbance
Possible HSPF Input Changes:	Modify appropriate PERLND parameters to represent 'disturbed' or changed condition
	May require additional PLSs with adjusted parameters & corresponding changes throughout the UCI
	10 of 56

CONNECTICUT WATERSHED MODEL STUDY

AND

EXAMPLE TMDL CALCULATIONS

STUDY OBJECTIVES

- Develop a watershed model as a framework for quantifying nutrient sources and loadings to LIS from Connecticut watersheds
- Evaluate the potential for nutrient load reduction from various BMP implementation levels under both current and future growth scenarios
- Provide a spreadsheet compilation of nutrient loads to LIS and modeled scenarios as a simplified planning tool

CTWM – HSPF WITHIN GENSCN

CTWM, NUTRIENT MANAGEMENT ZONES, AND CALIBRATION SITES 2-3 2-4 militar R 6 Management Zones **CT State Boundary Test Basins Calibration Basins**

AVERAGE ANNUAL NUTRIENT LOADS (10³ lbs / yr) DELIVERED TO LIS FOR EACH OF THE MANAGEMENT ZONES

M-Zone	Тс	otal Nitrog	en	Total Phosphorus			Tota	l Organic Ca	rbon
	NPS	of Total	Total	NPS	% of Total	Total	NPS	% of Total	Total
1	4,078	71%	5,757	209	38%	552	32,334	63%	51,669
2	3,043	10%	29,343	168	7%	2,505	17,173	17%	101,395
3	978	24%	4,052	54	14%	398	2,511	48%	5,184
4	3,929	65%	6,061	316	61%	521	13,824	90%	15,386
5	475	26%	1,855	25	13%	194	2,262	40%	5,724
6	629	39%	1,616	34	20%	169	3,141	54%	5,852
Total									
$(10^{3} \text{ lbs / yr})$	13,132	27%	48,684	807	19%	4,338	71,245	38%	185,211
Total									
(tons / yr)	6,566	27%	24,342	404	19%	2,169	35,623	38%	92,606

Note: The totals for Management Zone 2 include the Fall-Line boundary condition loads for the Connecticut River at Thompsonville, while for Management Zone 4 they include the boundary condition for the Housatonic River at Ashley Falls, MA.

PIE CHARTS FOR 3 TEST WATERSHEDS

PIE CHARTS FOR 3 CALIBRATION BASINS

¹⁸ of 56

CTWM SCENARIOS

- Base Conditions (1991-1995)
- 10% BMP Implementation
- 30% BMP Implementation
- 50% BMP Implementation
- 2020 Buildout
- Double (2X) 2020 Buildout
- Double (2X) 2020 Buildout plus 50% BMP Implementation

BMP MODULE

BMPs MODULE

- Built-in default parameter database with references
- Choice of using default numbers or user specified numbers
- Efficiency factors used for pollutant removal
- Removal efficiency input as constant or varying monthly
- Keeps track of pollutant removed

BMPs INCLUDED IN MODULE

- Changes in land use acreage's due to land use planning/management
- Wet detention pond
- Dry detention pond
- Vegetated swales and filter strips (various widths)
- Stream buffers (25 feet and 100 feet)
- User specified sediment and pollutant (nitrogen, phosphorous, BOD, fecal coliform, metals copper, cadmium, and zinc) load reductions

HSPF BMP MODULE

SPECIFY BMP DETAILS

🚝 WinHSPF - Best N	Management Practices Editor	
Select Summary of	r Reach below BMP: 680:South River, Dooms	
	Current BMP Details	
<u>A</u> dd BMP	ID: 680 Edit Removal Efficiency	
Delete BMP	Description: Wet Detention	

Contributing Sources to Reach 680 (South River, Dooms)

Source	Area	% No BMP	% BMP 680
PERLND : 191 (FOREST)	54275	50	50
PERLND : 192 (HIGH TILL CROPLAND)	1582	50	50
PERLND : 193 (LOW TILL CROPLAND)	3663	50	50
PERLND : 194 (PASTURE)	15561	50	50
PERLND : 195 (URBAN)	10035	50	50
PERLND : 196 (HAY)	8527	50	50
IMPLND : 194 (ANIMAL/FEEDLOT)	34	50	50
IMPLND : 195 (RESIDENTIAL)	3566	50	50

<u>U</u>pdate UCI

CONSULTANT

<u>C</u>lose

SET BMP EFFICIENCY INFORMATION

🚝 WinHSPF - Best Management Practices Efficiency Editor

BMP Name:

Wet Detention

BMP Operation # 680

Reference: Urban Drainage and Flood Control District - Denver, Colorado. Urban Storm Drainage Criteria 🛌 Manual, Volume 3 - Best Management Practices, Stormwater Quality. September 1992.

•

Removal Fractions

Constituent	Fraction	DB Range	Reference	
Sediment:Sand	0.	80%-90%	2	
Sediment:Silt	0.	80%-90%	2	
Sediment:Clay	0.	80%-90%	2	
Fecal Coliforms:Solution	0.	50%-90%	9	
Fecal Coliforms:Sand Assoc.	0.	50%-90%	9	
Fecal Coliforms:Silt Assoc.	0.	50%-90%	9	
Fecal Coliforms:Clay Assoc.	0.	50%-90%	9	
BOD	0.	20%-40%	2	
NO3:Solution	0.	30%-40%	2	
TAM:Solution	0.	20%-30%	2	
NO2:Solution	0.	30%-40%	2	
PO4:Solution	0.	60%-70%	2	
NH4:Sand Adsorbed	0.	20%-30%	2	
NH4:Silt Adsorbed	0.	20%-30%	2	
NH4:Clay Adsorbed	0.	20%-30%	2	
PO4:Sand Adsorbed	0.	40%-50%	2	
PO4:Silt Adsorbed	0.	40%-50%	2	
PO4:Clay Adsorbed	0.	40%-50%	2	
TDS	0.	20%-40%	2	
Load-Solution	n	70%_90%	2	

Update UCI

CTWM SCENARIOS

- Base Conditions (1991-1995)
- 10% BMP Implementation
- 30% BMP Implementation
- 50% BMP Implementation
- 2020 Buildout
- Double (2X) 2020 Buildout
- Double (2X) 2020 Buildout plus 50% BMP Implementation

MODEL REPRESENTATION OF SCENARIOS

- Land use distributions for each model segment for the 2020 Buildout and 2X 2020 Buildout scenarios
- BMP removal efficiencies for urban and agricultural BMPs for all modeled constituents
- Model land use affected by the BMP implementation levels 10%, 30%, 50%

REMOVAL EFFICIENCY VALUES USED IN THE CTWM

Constituent	Removal Efficiency (%)
BODu	40%
NOx	35%
NH3	45%
PO4	50%
Organic N	55%
Organic P	55%
Organic C	55%

PERCENT CHANGE IN AVERAGE ANNUAL LOADS DELIVERED TO LIS FOR EACH OF THE CTWM SCENARIOS

					Total C	rganic
Scenario	Total N	itrogen	Total Pho	osphorus	Car	bon
	NPS	Total	NPS	Total	NPS	Total
10% BMP Implementation	-1.78	-0.48	-2.11	-0.39	-2.78	-1.07
30% BMP Implementation	-5.70	-1.54	-6.62	-1.23	-8.99	-3.46
50% BMP Implementation	-9.62	-2.59	-11.13	-2.07	-15.20	-5.85
2020 Buildout	1.38	0.37	1.38	0.26	1.72	0.66
Double 2(X) 2020						
Buildout	2.56	0.69	2.53	0.47	3.09	1.19
Double 2(X) 2020						
Buildout plus 50% BMP						
Implemetation	-7.90	-2.10	-9.40	-1.70	-13.40	-5.20

RELATIONSHIP BETWEEN PERCENT REDUCTION IN LOADS DELIVERED TO LIS AND PERCENT BMP IMPLEMENTATION ON URBAN AND AGRICULTURAL LAND

CTWM SUMMARY CONCLUSIONS

- NPS reductions are relatively small, <15%, for all BMP scenarios. However, this is consistent with expectations. Larger reductions would require increased area treated, increased removal efficiencies, or extending BMPs to other land uses.
- Largest reductions are for TOC, TP, and TN, in that order. Order is due to assumed removal efficiencies, loading rates, delivery processes, and sources.
- Significant differences in NPS impacts among CT Management Zones.
- Urban buildout scenarios show an almost linear impact on NPS loading rates. Increases are small due to limited potential for buildout and relatively small state-wide urban fraction. Reasonable BMP implementation levels can offset growth impacts.
- CTWM and associated spreadsheet tool can be used for watershed and statewide planning-level assessments of BMPs and TMDL development.
 31 of 56

SAMPLE TMDL CALCULATION

DAILY MEAN TOTAL N at WALLINGFORD

SAMPLE: IMPACTS OF POINT SOURCE REDUCTION

SAMPLE: IMPACTS OF NONPOINT SOURCE REDUCTION

SAMPLE TMDL DETERMINATION

SAMPLE TMDL DETERMINATION

HSPF APPLICATION TO THE ARROYO SIMI WATERSHED

VENTURA COUNTY, SOUTHERN CA

HSPF APPLICATION TO THE ARROYO SIMI WATERSHED VENTURA COUNTY, SOUTHERN CA

STUDY OBJECTIVES

- Develop hydrologic model of watershed
- Assess potential urbanization impacts
- Assess impacts of detention on flows and flood peaks
- Provide tool for TMDLS, hydrograph modification, urban stream erosion assessment (ongoing efforts)

LOCATION OF ARROYO SIMI WATERSHED

REACH SEGMENTATION

SCENARIOS

- Natural, Pre-development
- 10% increase in urban fringe areas
- 30% increase in urban fringe areas
- 50% increase in urban fringe areas
- Detention Basins implemented with 50% increase in urban fringe areas

NATURAL CONDITIONS

- 1. Removed all timeseries representing **groundwater pumping and dewatering**, which contributed to the mainstem below Royal.
- 2. Removed all **irrigation inputs** for landscape watering.
- 3. Removed all **detention and debris basins** included within the Baseline setup, including Las Llagas, Runkle, Tapo 1 and 2, Erringer, and Sycamore. Oak Canyon basins were not constructed until after the calibration period, and therefore were not included in the Baseline model.
- 4. Eliminated any **impervious areas**, which were reassigned pervious land parameter values.
- 5. Assigned **model parameters** for the OPEN land use category to all the urban categories, except for physical characteristics such as slope, overland flow length, etc. which remained unchanged. This included parameters related to surface roughness, vegetal interception and ET, soil moisture storages (upper zone), and interflow.

LAND USE FOR BASELINE/CURRENT AND URBAN SEGMENT BOUNDARIES

LAND USE FOR BASELINE AND URBANIZATION SCENARIOS

	Base Condition		10% Increase		30% Increase			50% Increase				
	Open	Urban	Total	Open	Urban	Total	Open	Urban	Total	Open	Urban	Total
Total Area (Acres)	34,898	15,094	50,179	34,313	15,866	50,179	33,143	17,036	50,179	31,972	18,206	50,179
% of Watershed	69.5%	30.1%	100.0%	68.4%	31.6%	100.0%	66.0%	34.0%	100.0%	63.7%	36.3%	100.0%
% EIA		6.7%			7.0%			7.5%			7.9%	

GENERALIZED LOCATIONS OF SCENARIO DETENTION BASINS

FLOW DURATION CURVES FOR MADERA USEP SITE FOR ALL SCENARIOS

STORM PEAK FLOWS (CFS) FOR ALL SCENARIOS BASED ON LOG PEARSON TYPE III ANALYSES

					Scenario			
							+50%	
	Return			+10%	+30%	+50%	Urban w	
Location	Period, yr	Natural	Base	Urban	Urban	Urban	11 DBs	Observed
	2	98	991	1031	1111	1195	514	1256
ROYAL	5	1389	2359	2425	2555	2691	1480	2646
	10	4991	3776	3852	4004	4166	2628	3915
	2	213	1677	1810	1856	1964	1044	2199
MADERA	5	1867	4024	4225	4317	4491	2770	4418
	10	5744	6515	6734	6869	7081	4741	6431
	2	2	3	3	3	3	3	
CANYON	5	23	17	17	17	17	17	
CANTON	10	88	48	48	48	48	48	
	2	1	13	14	16	18	18	
	5	13	58	61	67	73	73	
CANTON	10	48	129	134	144	155	155	
OAK	2	2	71	79	93	107	107	
CANYON	5	15	159	172	199	225	225	
#1	10	53	244	262	297	333	333	
OAK	2	2	63	69	83	96	24	
CANYON	5	15	140	152	176	200	70	
#2	10	49	216	232	264	296	126	

WALNUT CREEK WATERSHED, IOWA

Agricultural Management Systems Evaluation Area (MSEA) Study

Joint USDA/ARS – EPA Effort

WALNUT CREEK WATERSHED, IOWA

Table 3.3 Relative	e In	np	80	t (of	50	le	c1	ed	1	BMP	's	0	n	Н	151	PF	F	Para	m	et	ĊI	3							01 00	N. 0	ate .
	RUE	othe	elote epsc	in the second	AN AN AN	SUR SUR	UR UN	FILT	(FW)	ELEVE	white add	ment	Re	in the second	×~~~	er a	et et	13 44	illes the the	nico	A ST	inter up	A che Perton	micol nonino	he gu	out of the lock	LONG TON	unatorn Lotore	allor .	areast areast	Der of	ure The selft
MANAGEMENT PRACTICE												Ĭ			Ĺ		Ť	Ì		٦	~~~			Ľ	ľ	T	T T			Ţ	٦	
Nonstructural Measures			-	\vdash	-					_		_			-	-		_						-		F	\square		-	1	=	
I. No Tillage 2. Conservation Tillage 3. Contout. Farming 4. Graded Rows 5. Contour. Strip Cropping 2 6. Spring Plowing 5 7. Sod Bysed Ratation 4 8. Winter Crop Cover 9. Permanent Meadow 10. Mechanical Cultivation 11. Crop Rotation		++000+++	+++0+++0			++00+1+++0	++0 0++++++0	00+00+00+0		++ 0 0 0 0 + + 0 0		++00++++0+				00 11101111	11000010140			+++00000107107	^b 1 1 0 1 0 0 0 0 + +	++00001+101	100001++	++0000++000	0000000				01110001001110	**************************************	++00000+0+%0	
1. Terraces 2. Diversions 3. Grassod Waterways ⁵ 4. Filter Strips ⁶ 5. Tile Drainage 6. Retention_Basins		00,1,100	+0++00	++00000	000000	0 0 + 0 0	+-++	+00++0	00000	000000		001	001100	00000		111100	00	00000		00-	0 0 - - 0 0	001100	0011100			0000000	000000000000000000000000000000000000000			0 0 0 0 1 0	00+100	
Input Management Options I. Improve Soil Fertility 2. Eliminate Excessive Applications 3. Optimize Timing of Planting and Chamical Applications 4. Control Release and Transformation Rates 5. Biological Control 6. Incorporate Applied Chemicals Footnotes to Management Practice Many practices have effects whic Comparisons indicate overall to 2. Parameter changes are conside	Vs. H h are ng ter red o	+ 00 0 00 SP tin m nly	+ 00 0 0+ F dev	o o o o o o o o o o o o o o o o o o o	ooo oo ame end ion	o o o ter ent s fr e st	+ 0 0 0 0 0 0 0 0 0 0 0 0 0		+0 0 ++ + x se f	+-17 0 0 0 0 0	y are of additions		-0 0 +0 +0	o o o o o o o o o o o o o o o o o o o	0 0 0 0 +	o o o o o o o o o o o o o o o	0 0 0 0 0 1 0 1 0 1 1 1 1	0 0 0 0 0 -0 5 0 -0 5 0 -0 -0 5 5 9	asons of rowing	o 	0 	or 	0 - 		+ 0 0 + 0 + 0 + 7	+0 + + 0 +	0 / 0 7 7 t -		0 0 0 +?			GEND Increases p with respec
5. The overall effects of shifting p 4. Parameter changes are considere 5. Parameter changes are considere	lowing Idfor Idonl	fro the ly v	om e so vith	fall od y in t	to ear he	spr on gra	ing ly. sse	ar d w	e c ate	ons	idered. ay.																			-	•	decreases respect to

- 6. Parameter changes are considered only within the filter strips.
- 7 Crop residues catch drifting snow which can be represented by increasing SNOWCF.
- 8. Decrease in incorporation of chemicals into the soil results in an increase in surface availability. Also, nutrient leaching from crop residues can increase nutrient availability from the base condition

- Increases parameter with respect to conventional practices
- decreases parameter with respect to conventional practices
- does not result in effects significantly different than those of conventional practices

ALTERNATE SCENARIOS FOR WALNUT CREEK

Baseline Conditions: Current Practices (i.e. MASTER Farming System # 2)

- Corn-soybean rotation
- Fall Chisel plow, residues remain
- Atrazine applied @ 0.4 kg a.i./ha, and Metolachlor applied @ 1.12 kg a.i./ha
- Corn land treated at 61% with Atrazine, and 53% with Metolachlor
- Spring fertilizer application @ 209 kg N/ha, on corn only (100%) (31 kgN/ha urea applied and incorporated on 3/21, and 178 kgN/ha anhydrous NH₃ knifed in on 4/15)

Historical Conditions:Condition/Practices in 1960/70 (i.e. MASTER Farming System #1)

- Continuous corn (on all current cropland)
- Fall Moldboard plow; no residues remain
- Atrazine applied @ 3.36 kg a.i./ha; Metolachlor @ 2.24 kg a.i./ha
- Corn area treated at same levels as Baseline, for both pesticides and N fertilizer
- Fall fertilizer application @ 152 kgN/ha, spread and incorporated

Potential BMP Plan: Following Practices applied to Current (Baseline) Scenario

- MASTER Farming System No. 4: Crop Rotation corn, soybeans, oats, meadow; 25% of crop land area planted in each crop.
- Riparian buffer strips & grass water ways represented by an 80% reduction in sediment and surface runoff pesticide and nitrogen loads (based on literature summary by Fawcett and Christiansen (1992)), and 40% reduction in shallow subsurface (Interflow) loads.
- No change to Baseline pesticide application rates.
- Split fertilizer applications @ 140 kgN/ha: 25% at planting, 50% at 4 weeks, and 25% at 8 weeks with anhydrous NH ₃ knifed-in.

FREQUENCY ANALYSIS FOR ATRAZINE AND METOLACHLOR FOR ALL SCENARIOS

FREQUENCY ANALYSIS OF NITRATE FOR ALL SCENARIOS

LETHALITY ANALYSIS OF CHEMICAL CONCENTRATION DATA

DURATION.

PERCENT OF TIME DAILY PESTICIDE AND NO₃-N CONCENTRATIONS ARE EXCEEDED FOR ALTERNATIVE WALNUT CREEK SCENARIOS (Based on 10-year simulations)

Chemical/ **Concentrations** HISTORICAL BASELINE Atrazine 0.1 ppb 89.2 33.9 1.0 ppb 4.6 36.1 3.0 ppb 19.6 0.4 **Metolachlor** 0.05 ppb 68.1 40.3 27.3 0.1 ppb 54.7 1.0 ppb 11.7 3.4 NO₃-N 5.0 mg/l 90.4 97.3 10.0 mg/l 66.7 74.0 20.0 mg/l 31.2 39.7

BMP

14.0

0.2

0.0

14.4

9.6

0.01

82.7

47.3

12.0