

LECTURE #12

INSTREAM WATER
QUALITY – TEMPERATURE,
SEDIMENT, &
GENERAL CONSTITUENT

RCHRES STRUCTURE CHART

RCHRES

Simulate a reach or mixed reservoir

HYDR

Simulate hydraulic behavior

ADCALC

Estimate advective behavior of constituents

CONS

Simulate conservative constituents

HTRCH

Simulate heat exchange & water temperature

SEDTRN

Simulate inorganic sediment

GQUAL

Simulate generalized quality constituents

RQUAL

Simulate constituents involved in biochemical transformations

WATER TEMPERATURE (HTRCH)

- Temperature is a critical habitat characteristic for fish and other organisms
- Temperature affects rates of other water quality processes
- Dissolved oxygen concentrations are dependent on temperature

HEAT EXCHANGE PROCESSES Precipitation **Long-wave radiation** Atmospheric Water surface Conduction **Short-wave** radiation q_{sw} q_{atm} $\mathbf{q_b}$ $\mathbf{q_h}$ Heat gain with Heat Storage, indicated by inflow temperature x volume of water (temperature relative to freezing) **Ground conduction** $\mathbf{q}_{\mathbf{g}}$ 4 of 36

Evaporation

 $\mathbf{q_e}$

Heat loss

with outflow

WATER TEMPERATURE - ENERGY **BALANCE**

$$q_{total} = q_{sw} + q_{atm} + q_b + q_h + q_e + q_g$$

Component **Key parameters and inputs**

Short-wave radiation Solar radiation*, shading factor $\mathbf{q}_{\mathbf{sw}}$

Cloud cover*, air temperature,* **Long-wave radiation** q_{atm}

(atmospheric) LW radiation coefficient

Long-wave radiation $\mathbf{q_b}$

(back)

Air temperature*, wind speed*, **Conduction/convection** $\mathbf{q_h}$

Heat transport coefficient

Evaporation Dewpoint*, air temperature*, $\mathbf{q}_{\mathbf{e}}$

wind speed*, evaporation coefficient

Ground conduction Ground temperature, conduction (optional)

coefficients

Note: Air temperature is corrected for elevation

*Time series input

 $\mathbf{q_g}$

5 of 36

DATA REQUIRED FOR WATER TEMPERATURE

- Meteorologic data
 - solar radiation
 - air temperature
 - wind speed
 - cloud cover
 - dewpoint temperature
- Surface area of water exposed to radiation (shade)
- Boundary conditions inflow/outflow rates and temperatures
- Measured water temperatures for model calibration

WATER TEMPERATURE CALIBRATION

Calibration parameters:

CFSAEX - fraction of water surface exposed to solar radiation

KATRAD - atmospheric long-wave radiation coefficient (~ 9)

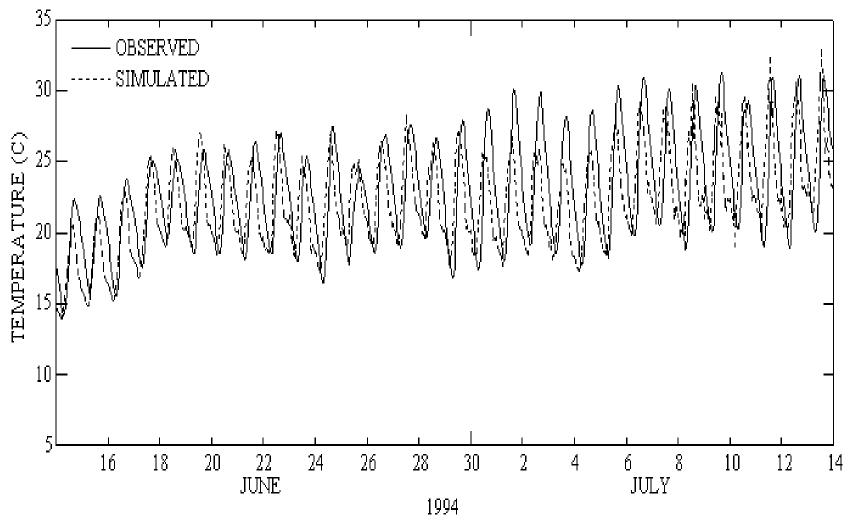
KCOND - conduction coefficient (1-20)

KEVAP - evaporation coefficient (1-5)

KMUD - water-bed sediment heat conduction coefficient

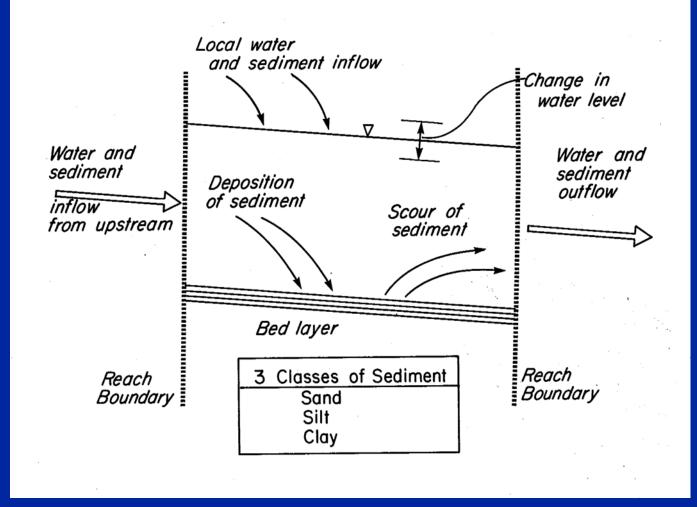
KGRND - ground-bed sediment heat conduction coefficient in two-interface method

MUDDEP – depth of mud/bed sediment in two-interface method


TGRND – ground temperature

- inflow temperature (heat loading from land)

• Inspect hourly simulation results to verify that diurnal variation is reasonable and stable


TRUCKEE RIVER - WATER TEMPERATURE

TRUCKEE RIVER WATER TEMPERATURE

SEDIMENT PROCESSES IN WATERBODIES

SEDIMENT TRANSPORT SIMULATION

- Sand, silt and clay fractions
- Advection, deposition and scour
- Completely-mixed (CSTR) water column and bed compartments
- Sand transport three options
 Toffaleti method
 Colby method
 Power function
- Cohesive (silt, clay) deposition and scour based on shear stress calculations (Krone and Partheniades)
- Scour and deposition does not affect hydraulic properties
- Reach-dependent parameters
- No lateral movement of bed materials between reaches
- Sediment inflows from land surface are divided into (constant) sand, silt and clay fractions

SAND TRANSPORT SIMULATION: TOFFALETI METHOD

Toffalleti method (SANDFG = 1)

- Four depth zones
- Velocity and relative concentration profiles assumed
- Temperature correction
- Sand transport capacity calculated for each zone; scour occurs if sand concentration is less than capacity; otherwise deposition occurs
- Inputs/parameters: water temperature, particle diameter, settling velocity, slope

SAND TRANSPORT SIMULATION: COLBY METHOD

Colby method (SANDFG = 2)

- Empirical relationships
- Sand transport capacity estimated from nomograph as a function of hydraulic radius, flow velocity, and sediment diameter
- Transport corrected for water temperature and fine sediment concentration
- Acceptable parameter ranges:

Median bed sediment diameter 0.1 - 0.8 mm.

Hydraulic radius 0.1 - 100 ft.

Mean stream velocity 1.0 - 10.0 ft/sec

SAND TRANSPORT SIMULATION: POWER FUNCTION METHOD

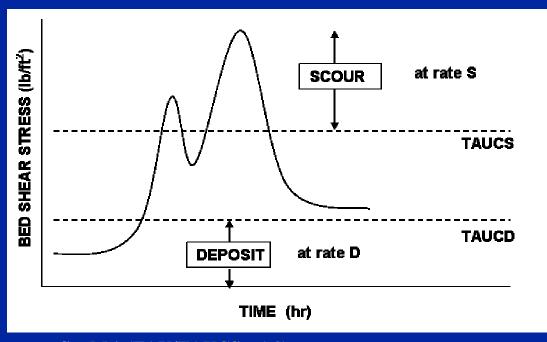
Power function equation (SANDFG = 3)

 $\overline{PSAND} = (\overline{KSAND})*(AVVEL)^{EXPSND}$

Where:

PSAND = potential sand concentration

KSAND = coefficient (input parameter)


AVVEL = average stream velocity

EXPSND = exponent (input parameter)

SCOUR/DEPOSITION FOR COHESIVE SEDIMENTS (SILT & CLAY)

Scour rate: S = M * (TAU/TAUCS - 1.0)

Deposition rate: D = W * CONC * (1.0 - TAU/TAUCD)

Shear stress: TAU = SLOPE * GAM * HRAD

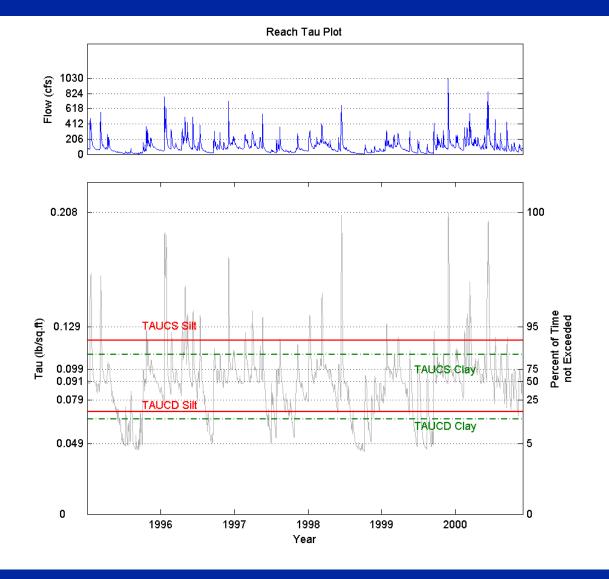
Where $M = \text{erodibility coefficient (lb/ft}^2/\text{hr})$

W = particle fall velocity in still water (ft/hr)

TAUCS = critical shear stress for scour (lb/ft^2)

TAUCD = critical shear stress for deposition (lb/ft^2)

 $CONC = concentration of sediment (lb/ft^3)$


 $GAM = density of water (lb/ft^3)$

HRAD = hydraulic radius (ft)

TAU PLOT

SEDIMENT TRANSPORT PARAMETERS

General and hydraulic information

BEDWID - Width of stream cross-section where deposition occurs

BEDWRN - When bed depth exceeds this value, a warning message is printed

POR - Bed porosity – used for calculating bed depth

LEN - Length of reach

DELTH - Drop in water surface elevation over reach length

DB50 - Median diameter of bed sediment

Sand parameters

D - Effective particle diameter

W - Particle fall velocityRHO - Particle density

KSAND - Coefficient in sand transport power function equationEXPSND - Exponent in sand transport power function equation

Silt & Clay parameters

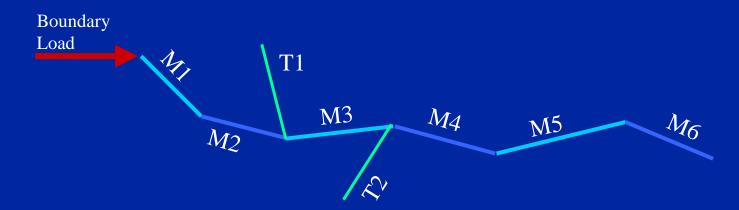
D - Effective particle diameter

W - Particle fall velocityRHO - Particle density

TAUCD - Critical bed shear stress for deposition

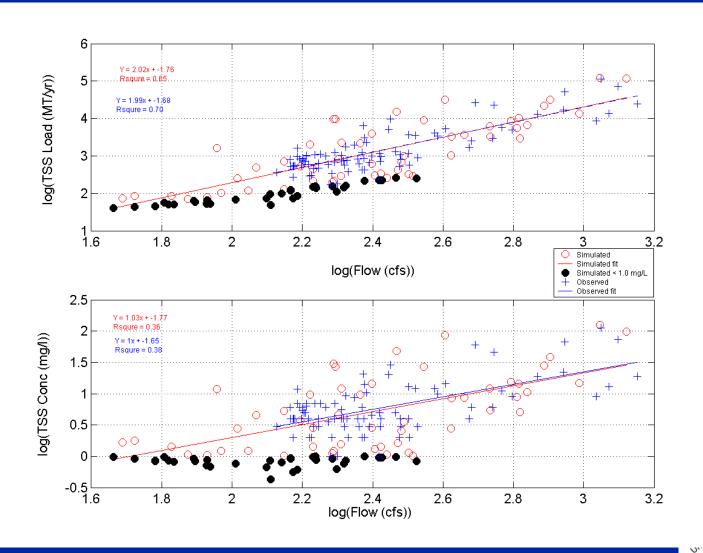
TAUCS - Critical bed shear stress for scour

M - Scour/erodibility coefficient

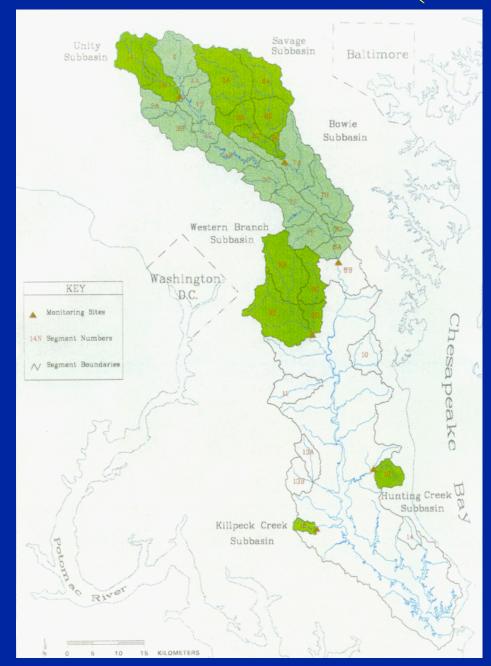

SEDIMENT TRANSPORT CALIBRATION

- Estimate initial parameter values for cohesive (silt, clay) and sand sediment fractions
- Make calibration run and output shear stress (TAU) values (max and min daily) for each reach
- Perform sediment mass balance to determine land surface versus stream channel contributions
- Evaluate sediment load simulation for both mass outflow and composition compared to available data
- Adjust TAUCS and TAUCD to cause scour and deposition of cohesive sediments at appropriate times
- Adjust erodibility (M) to improve calibration of cohesive sediments for storms with good flow simulation
- Adjust sand parameters based on bed and load composition compared to available data
- Re-do calibration run and output analyses

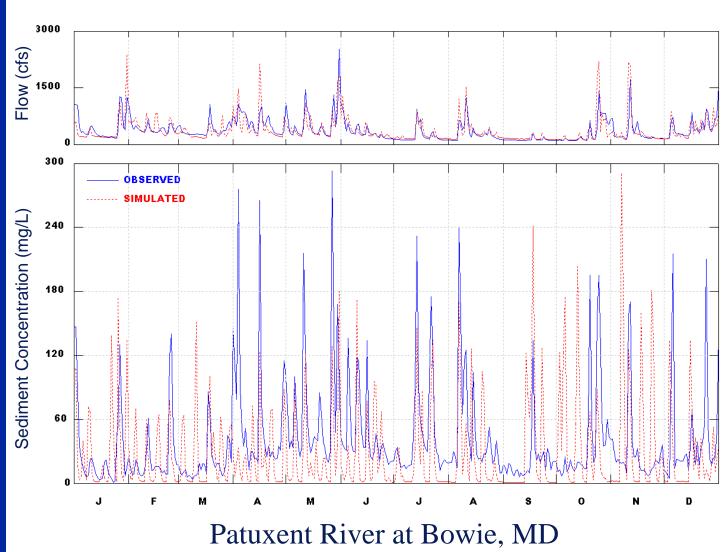
TABULATION OF STREAM SEDIMENT FLUXES AND BEHAVIOR FOR REVIEW

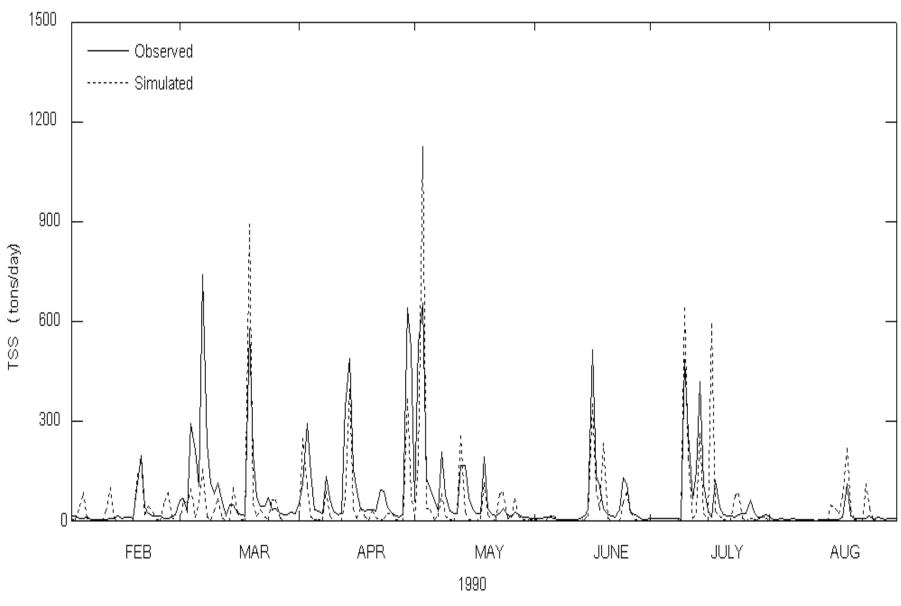


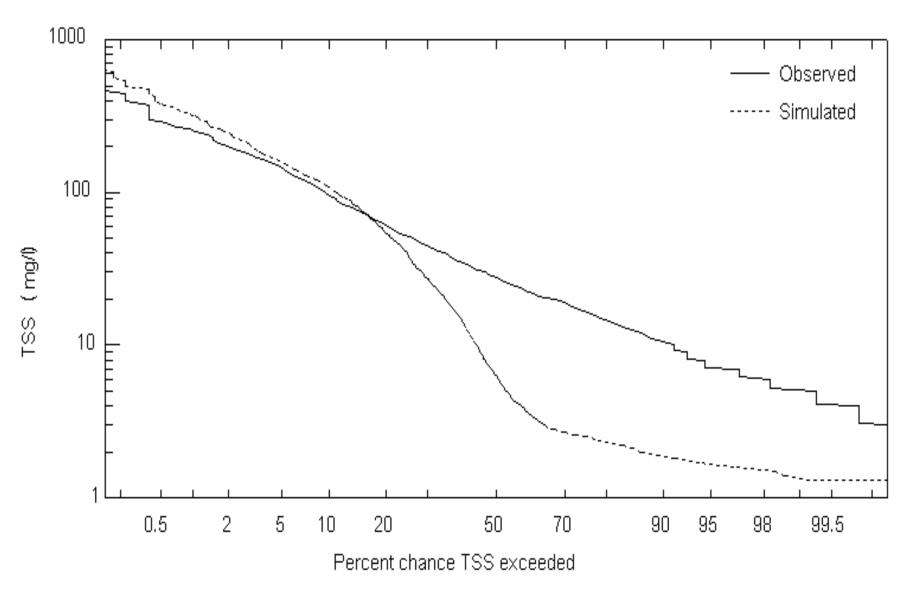
	Nonnaint	Point	Upstream	Total	Outflow	Deposit (+)	Cumulative	Cumulative Trapping	Reach Trapping
Reach	Nonpoint	Source	<u>In</u>	Inflow	Outflow	Scour (-)	Point/NonPt	Efficiency	Efficiency
Segment	(tons)	(tons)	(tons)	(tons)	(tons)	(tons)	(tons)	(%)	(%)
Mainstem 1	212.5	107.4	6,453.7	6,785.3	6,186.3	599.7	10,566.9	41.5	8.8
Mainstem 2	68.8	0.0	6,186.3	6,255.0	5,384.8	870.6	10,635.7	49.4	13.9
Tributary 1	102.4	0.0	0.0	102.2	125.0	-22.7	102.2	-22.0	-22.0
Mainstem 3	5.8	0.0	5,509.8	5,515.6	4,916.3	599.9	10,744.0	54.2	10.9
Tributary 2	281.1	0.0	0.0	280.5	352.6	-72.1	280.5	-25.5	-25.5
Mainstem 4	215.4	0.0	5,268.9	5,483.9	4,269.8	1,215.1	11,240.4	62.0	22.1
Mainstem 5	54.1	0.0	4,269.8	4,323.8	3,507.1	826.2	11,294.5	68.9	18.9
Mainstem 6	93.9	0.0	3,507.1	3,600.8	2,190.8	1,421.3	11,388.4	80.8	39.2



OBSERVED AND SIMULATED RATING CURVES


PATUXENT RIVER BASIN (MD)





ANNUAL TIMESERIES PLOT

Patuxent River at Bowie, MD Sediment Load

Patuxent River at Bowie, MD Sediment Concentration (1986-1990)

PATUXENT RIVER - SOIL EROSION TARGETS & ANNUAL SEDIMENT LOADS

Soil Erosion Targets For Patuxent Model (tons/acre/year)

Low Density Residential	0.09
Med Density Residential	0.27
Commercial	0.67
Forest	0.009 - 0.017
Pasture	0.05 - 0.09
Hay	0.11 - 0.21
High-till crops	0.38 - 1.93
Low-till crops	0.27 - 0.91

Simulated and Observed Annual Sediment Loads at Bowie (tons)

YEAR	SIMULATED	OBSERVED
1986	20,000	20,200
1987	21,000	18,900
1988	13,100	18,700
1989	46,400	36,000
1990	18,200	23,500
MEAN	23,700	23,500

PATUXENT RIVER – SEDIMENT PARAMETERS

	SAND	SILT	CLAY
D (in)	0.005	0.0004	$\overline{0.0001}$
W (in/sec)	0.10	0.0003	0.00001
RHO (g/cm ³)	2.50	2.20	2.00
TZCLANID	0.05 0.10		

KSAND 0.05 - 0.10

EXPSND 1.7 – 5.5

 TAUCD (lbs/ft²)
 0.08 - 0.12 0.10 - 0.14

 TAUCS (lbs/ft²)
 0.10 - 0.32 0.10 - 0.40

 $M (lbs/ft^2/day) 0.01 - 0.90 0.01 - 0.90$

HSPF SEDTRN PARAMETERS AND TYPICAL/POSSIBLE RANGES (#1)

				ANGE (OF VALU	ES				
NAME	DEFINITION UNITS		TYPICAL		POSSIBLE		FUNCTION OF	COMMENT		
			MIN	MAX	MIN	MAX				
SANDFG	SANDFG									
SDFG	Indicates Method Used for Sandload Simulation	none	1	3	1	3	Type of stream; user experience.	1 - Toffaleti, 2 - Colby, 3 - Power Function		
SED-GEN	IPARM									
BEDWID	Width of cross-section over which HSPF will assume bed sediment is deposited	ft	10	500	5	1000	Reach \ Waterbody morphology	Constant regardless of stage, top-width, etc		
BEDWRN	Bed depth which, if exceeded (i.e., through deposition) will cause a warning message to be printed	ft	0.5	10	0.5	20	Reach \ Waterbody morphology, User Needs	Only affects when warning messages will be printed about high bed depth/deposition. Lakes/reservoirs will have higher values.		
POR	Porosity of the bed (volume voids/total volume)	none	0.3	0.6	0.25	0.9	Reach \ Sediment Bed Characteristics	Only affects bed depth calculation. Can set to 0.5 if no data are available.		
SED-HYD	PARM									
LEN	Length of the RCHRES	miles	0.1	1.0	0.01	100	Topography, stream morphology	If very large lengths are calculated, reach should be subdivided.		
	Drop in water elevation from upstream to downstream extremities of the RCHRES	ft	5	50	0.1	100	Topography, stream morphology	If large drops are calculated, the reach should be subdivided into multiple separate reaches.		
	Median diameter of bed sediment (assumed constant)	in	0.01	0.02	0.001	1.0	Channel bed properties	Only used for lake shear stress and Toffaleti/Colby methods		

HSPF SEDTRN PARAMETERS AND TYPICAL/POSSIBLE RANGES (#2)

				RANGE OF VALUES				
NAME	E DEFINITION UNITS		TYPICAL		POSSIBLE		FUNCTION OF	COMMENT
			MIN	MAX	MIN	MAX		
SAND-PM								
D	Effective diameter of the transported sand particles	in	.002	0.08	.0005	0.2	Sediment properties	Not used in calculations. Set to 0.01 in.
W	Fall velocity of transported sand particles in still water	in/sec	0.2	4.	0.1	10.	Particle diameter and density	Used for Toffaleti method.
RHO	Density of sand particles	g/cm ³	2.2	2.7	1.5	3.0	Sediment properties	Used for calculating bed depth.
KSAND	Coefficient in sandload power function formula	complex	0.01	0.5	0.001	10.	Sand properties and hydraulics	Calibration. Affects sand concentration.
EXPSND	Exponent in sandload power function formula	complex	1.5	3.5	1.0	6.0	Sand properties and hydraulics	Calibration. Affects sand scour. Usually start with 2.0
SILT-CLA	Y-PM							
D	Effective diameter of silt, or clay particles	in	.0002 .00001	.0025 .00015	.0001	.004		Used for calculating bed depth.
W	Fall velocity of transported silt or clay particles in still water	in/sec	.0001	0.01	0.0	0.1	Particle diameter and density	Affects concentration during low flow.
RHO	Density of silt or clay particles	g/cm ³	1.8	2.7	1.5	3.0	Sediment properties	Used for calculating bed depth.
TAUCD*	Critical bed shear stress for deposition	lb/ft ²	0.01	0.3	0.001	1.0	Silt/clay properties and hydraulics	Calibration. Affects timing & magnitude of deposition. Initial values based on computed shear stress.
TAUCS*	Critical bed shear stress for scour	lb/ft ²	0.05	0.5	0.01	3.0	Silt/clay properties and hydraulics	Calibration. Affects timing & magnitude of scour. Initial values based on computed shear stress.
м*	Erodibility coefficient	lb/ft ² .d	0.01	2.	0.001	5.0	Silt/clay properties and hydraulics	Calibration. Affects magnitude of scour.

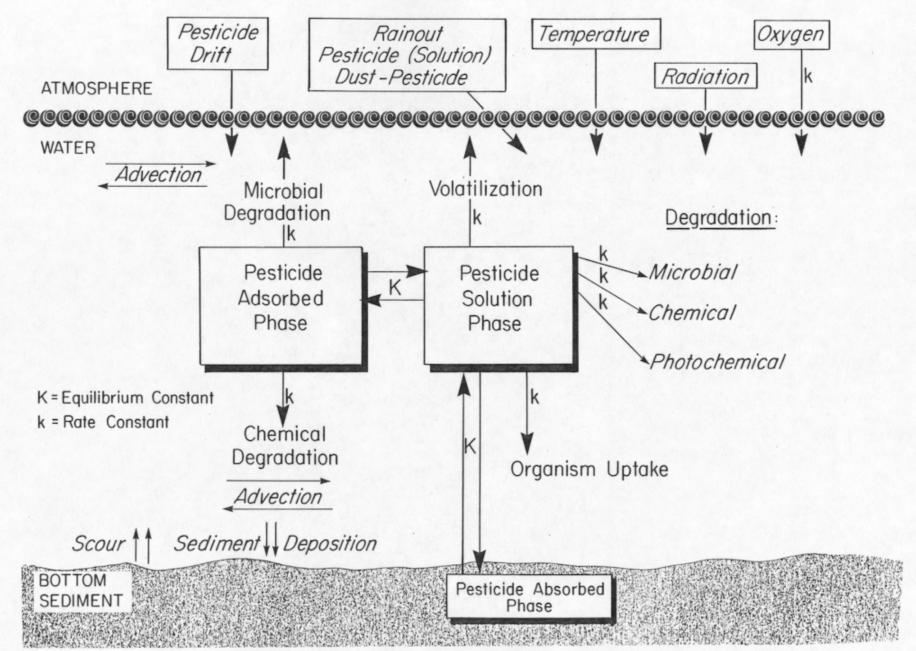
GENERAL QUALITY CONSTITUENTS – GQUAL

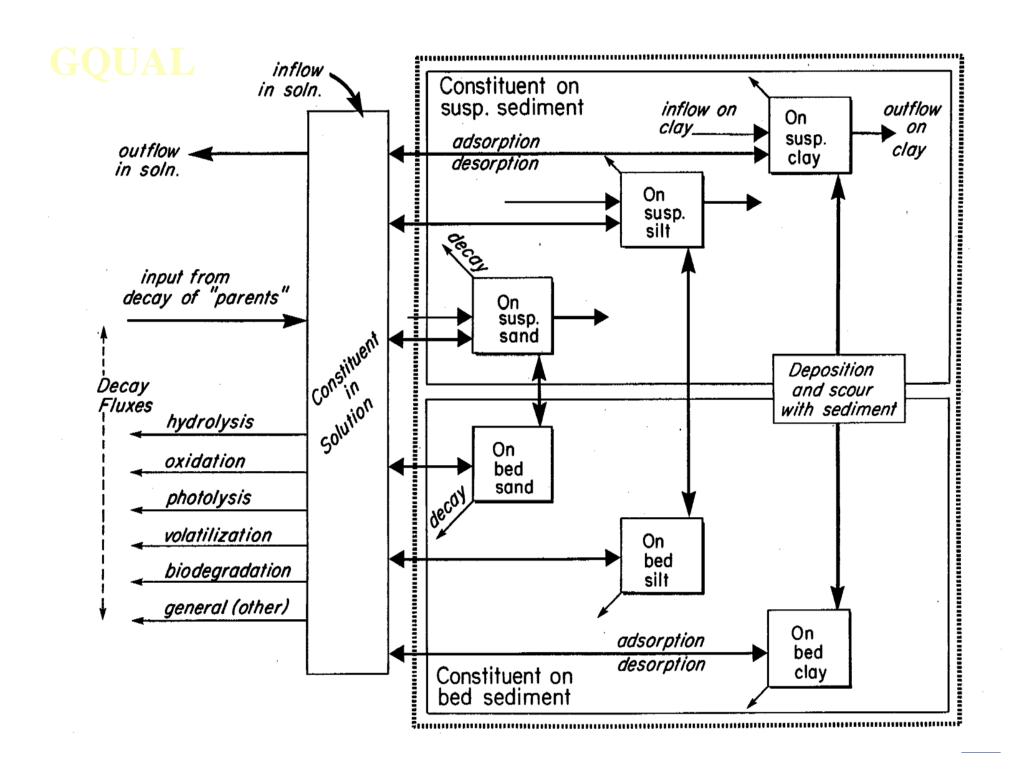
ORGANICS/PESTICIDES BACTERIA METALS

- 1. Can simulate up to five independent constituents
- 2. Constituent can be a "daughter" product of another constituent
- 3. Optional decay mechanisms
- 4. Sediment association (adsorption/desorption)

GENERAL QUALITY CONSTITUENTS – GQUAL

Instream Transport & Fate Processes


- Advection
- Decay/Die-Off
- Adsorption/Desorption
- Sedimentation & Scour


Pollutant Sources

- Nonpoint Source
 - PQUAL/IQUAL or PEST
 - potency factor or accumulation/washoff method
- Point Source
 - characterize flow and pollutant load

PESTICIDE PROCESSES IN STREAMS

GQUAL PARAMETERS – DISSOLVED PHASE

General First Order Decay

- rate (FSTDEC)
- temperature correction coefficient (THFST)

Hydrolysis

- rates (KA, KB, KN)
- temperature correction coefficient (THHYD)

Oxidation by Free Radical Oxygen

- rate (KOX)
- temperature correction coefficient (THOX)

Volatilization

- ratio of volatilization rate to reaeration rate (CFGAS)

Biodegradation

- rate (BIOCON)
- temperature correction coefficient (THBIO)

Photolysis

- chemical absorption coefficients, quantum yield, temperature correction coefficient, absorption coefficients (base, sediment, plankton), extinction efficiency of clouds, fraction of surface exposed to radiation

GQUAL PARAMETERS – ADSORBED PHASE

Decay rates of adsorbed chemical*

Temperature correction coefficients of adsorbed decay*

Adorption/desorption partition coefficients*

Adsorption/desorption transfer rates*

Adsorption/desorption transfer temperature correction coefficients*

* Six (6) values are input: suspended sand, silt, clay, and bed sand, silt, clay.

GQUAL - UNITS CONVERSION FACTOR

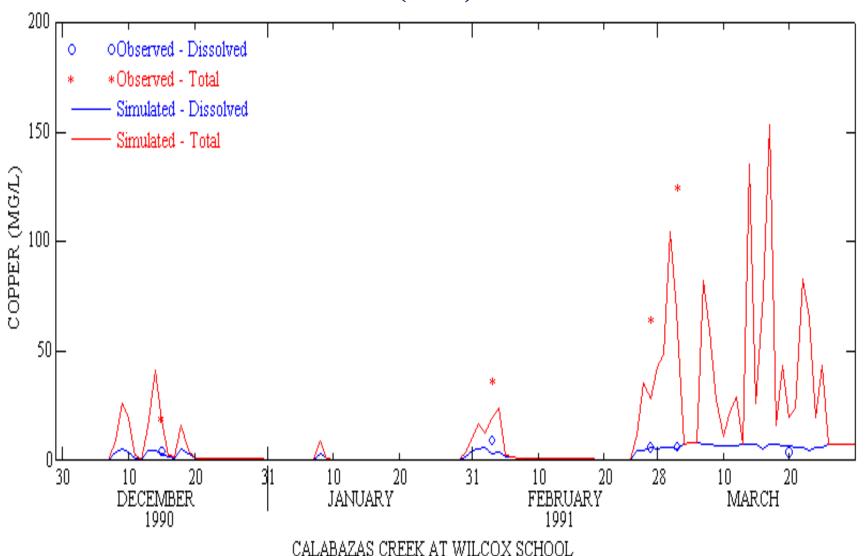
CONCentration = CONV * (QTYID/VOLume)

where

- CONCentration = dissolved concentration units (e.g., μg/L, mg/L, #organisms/L)
- **CONV** = conversion factor
- QTYID = mass units (e.g., lbs, kg, or #organisms)
- VOLume = volume of water (ft³ if **EMFG**=1; m³ if **EMFG**=2)

Examples:

	CONC units	<u>QTYID</u>	EMFG	<u>CONV</u>
Metal/Pest/Organic	e μg/L	lbs	1	1.602E+07
Metal/Pest/Organic	e μg/L	kg	1	3.532E+07
Bacteria	#organisms/L	#organisms	1	0.03532
Bacteria	#organisms/L	#organisms	2	0.001


GQUAL CALIBRATION

Key Parameters:

- Decay/transformation rates
- Adsorption/desorption (partition) coefficients
- Adsorption/desorption transfer rates

CALABAZAS CREEK (CA) - COPPER

COPPER CONCENTRATION