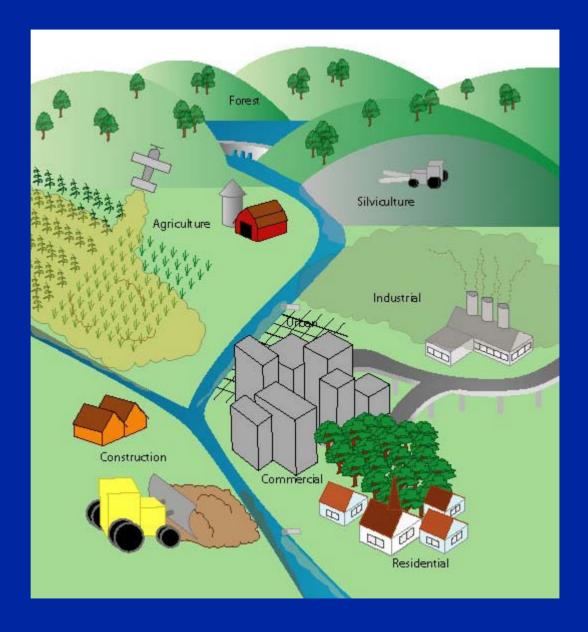
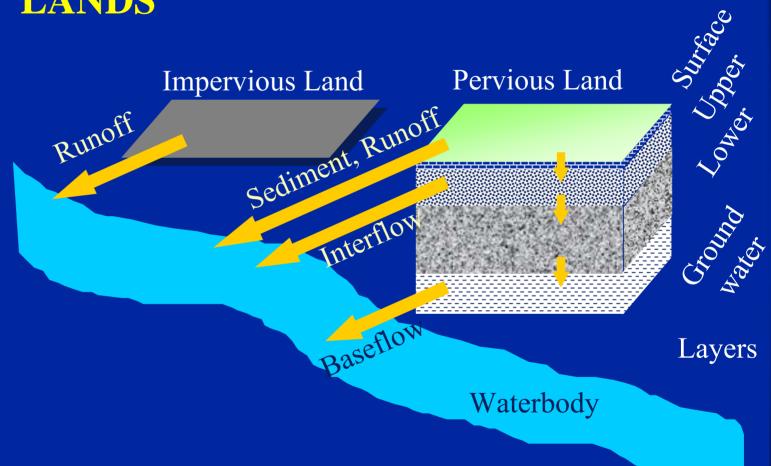


LECTURE #11


NPS QUALITY (PQUAL, IQUAL)
PROCESSES, PARAMETERS
AND CALIBRATION


SOURCES OF NONPOINT POLLUTION

GENERATION OF CONSTITUENTS FROM PERVIOUS AND IMPERVIOUS LANDS

PERLND

Simulate a pervious land segment

ATEMP

Correct air temperature

SNOW

Simulate snow and ice

PWATER

Simulate water budget

SEDMNT

Simulate sediment

PSTEMP

Estimate soil temperature(s)

PWTGAS

Estimate water temperature and gas concentrations

PQUAL

Simulate general quality constituents

MSTLAY

Estimate solute transport

PEST

Simulate pesticides

NITR

Simulate nitrogen

PHOS

Simulate phosphorus

TRACER

Simulate a conserv. tracer

PERLND STRUCTURE CHART

PERLND/IMPLND QUALITY PROCESSES AND MODULES

Module Process

PQUAL, IQUAL General (User-Specified) Pollutant

Accumulation and Washoff

PWTGAS, IWTGAS Dissolved Gas Washoff

MSTLAY Moisture Movement and Washoff

PEST Pesticide Sorption, Decay, and Fate

NITR Nitrogen Transformations and Fate

PHOS Phosphorus Transformations and Fate

IMPLND STRUCTURE CHART

IMPLND

Performs computations on a segment of impervious land

ATEMP

PERLND)

SNOW

(see module (see module PERLND)

IWATER

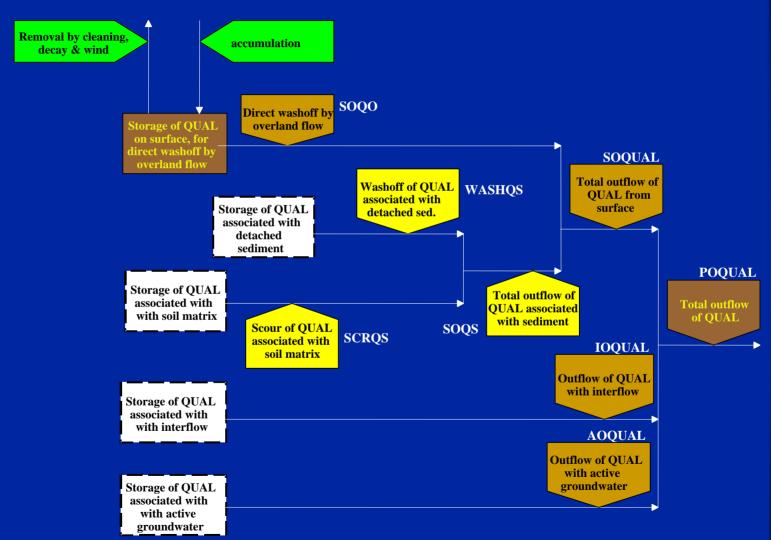
Simulate water budget for impervious land segment

SOLIDS

Accumulate Simulate and remove water solids

IWTGAS

temperatures and dissolved gas concs.


IOUAL

Simulate quality constituents using simple relationships with solids and/or water vield

PQUAL FLOW DIAGRAM

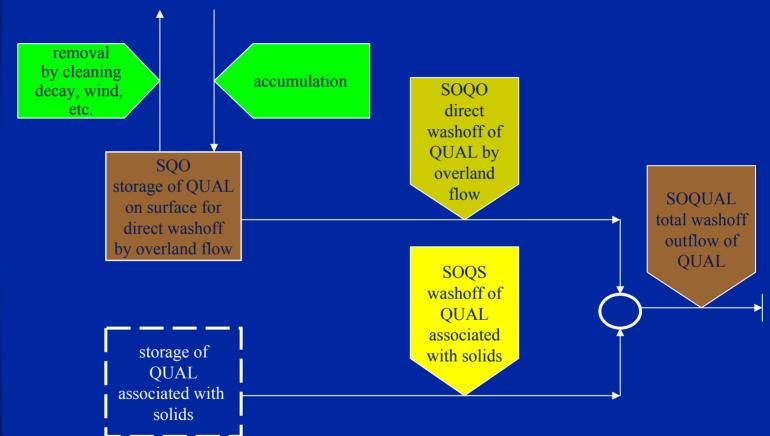
IQUAL STRUCTURE CHART

IQUAL

Simulate washoff of quality constituents using simple relationships with solids and/or water

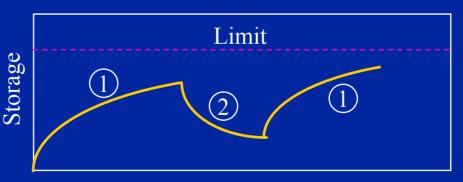
WASHSD

Simulate by association with solids


WASHOF

Accumulate & remove by a constant unit rate and by overland flow

IQUAL FLOW DIAGRAM


OVERLAND GENERAL QUALITY BUILDUP

- Build-up
- Washoff

Constituent Build-up

- Accumulation at a constant rate for the constituent not attached to the sediment.
- Computed at daily time interval
- Build-up is not calculated for sediment associated portion since an unlimited supply of sediment is assumed

- ① Build up
- 2 Washoff

Time

Change of storage with time

OVERLAND GENERAL QUALITY - WASHOFF

- Build-up
- Washoff

Constituent removal from pervious land

Processes independent of sediment washoff

- by overland flow
- by processes independent of storm events, i.e. cleaning, decay, wind erosion

Sediment associated

- associated with sediment/solids washoff
- associated with sediment scour

TYPES OF CONSTITUENTS SIMULATED BY PQUAL/IQUAL

<u>Identity</u>	Simulation Method	Input Parameter
QUALSD	Associated with Sediment Washot Associated with Sediment Scour	ff POTFW POTFS
QUALOF	Daily Accumulation and Washoff by Overland Flow	ACQOP SQOLIM WSQOP
QUALIF	Associated with Interflow (PQUAL Only)	IOQC
QUALGW	Associated with Groundwater Flow (PQUAL Only)	w AOQC

QUALOF SIMULATION WITH PQUAL/IQUAL

Accumulation:

SQO = ACQOP + SQOS * (1.0 - REMQOP)

Where:

 $\overline{REMQOP} = \overline{ACQOP/SQOLIM}$

Washoff:

SOQO = SQO * (1.0 - EXP(-SURO * WSFAC))

Where:

WSFAC = 2.3/WSQOP

Input Parameters

ACQOP SQOLIM WSQOP

PQUAL/IQUAL CALIBRATION PROCEDURES

- For sediment-associated pollutants, adjust relevant Potency Factors (POTFW, POTFS)
- For overland pollutants,
 - Reduce SQOLIM if too much washoff for all storms, and vice versa
 - Increase WSQOP if too much washoff for small storms only, and vice versa
 - Reduce ACQOP if too much washoff for closely-spaced storms only, and vice versa
- For interflow and groundwater pollutants, adjust for IOQC and AOQC, respectively, for appropriate time period.

PERVIOUS PQUAL PARAMETER VALUES FROM THE PATUXENT STUDY

LAND USE NO₃ NH₄ PO₄ BOD

POTENCY FACTORS (LB/TON)

Low density resid.	0.75	0.2	0.55	45.
Unsewered low density	0.75	0.2	0.55	45.
Med/high density resid.	3.0	1.0	0.8	90.
Commercial/industrial	5.0	1.6	1.35	135.
Forest and Wetland	0.05 - 0.09	0.0055 - 0.0095	0.02 - 0.035	5.5 - 8.5
Pasture	1.8	0.2	0.135	30.
Idle agricultural land	1.0	0.1	0.08	15.

SUBSURFACE CONCENTRATIONS (MG/L)

Low density resid.	0.65 - 1. *	0.03	0.025, 0.002 **	1.3
Unsewered low density	1.3 - 2.2	0.06	0.025, 0.002	1.3
Med/high density resid.	1.9 - 2.6	0.06	0.04, 0.004	2.0
Commercial/industrial	2.9 - 3.9	0.08	0.055, 0.005	2.7
Forest and Wetland	0.65 - 0.85	0.02	0.005, 0.001	0.25
Pasture	1.2 - 1.6	0.025	0.015, 0.001	0.7
Idle agricultural land	0.8 - 1.05	0.015	0.01, 0.001	0.4

^{* -} seasonal range

^{** -} first value isnterflow second value is groundwater

IMPERVIOUS IQUAL PARAMETER VALUES FROM THE PATUXENT STUDY

LAND USE	NO_3	NH ₄	PO_4	BOD
	ACCUMU	JLATION RA	TES (lb/ac/day	- ACQOP
Low density resid.	0.005	0.01	0.002	0.2
Med/high density resid.	0.02	0.05	0.003	0.4
Commercial/industrial	0.04	0.08	0.005	0.6
Roads	0.002	0.005	0.001	0.1
	ACCUM	JLATION LIM	IIT (lb/ac) -	SQOLIM
All Land Uses	0.25	0.07	0.03	7.5
	WASHO	FF FACTOR (i	in/hr) - WSQ	OP
All Land Uses	0.50	0.50	0.50	0.50
	CALCUL	ATED REMC	OVAL RATES	(/day)*
Low density resid.	0.02	0.14	0.067	0.027
Med/high density resid.	0.08	0.71	0.10	0.053
Commercial/industrial	0.16	1.1	0.17	0.080
Roads	0.008	0.071	0.033	0.013
CALCULA	TED ACCU	JMULATION	LIMIT IN DA	YS (days)**
Low density resid.	50.0	7.1	14.9	37.0
Med/high density resid.	12.5	1.4	10.0	18.9
Commercial/industrial	6.2	0.9	5.9	12.5
Roads	125.0	14.1	30.3	76.9

^{* -} REMOVAL RATE = ACQOP/SQOLIM

^{** -} LIMIT, days = SQOLIM/ACQOP

PSTEMP (SOIL TEMPERATURE) SIMULATION - SURFACE LAYER

SURFACE LAYER- linear regression with air temperature

SLTMP = ASLT + BSLT * AIRTC

where:

SLTMP = surface layer temperature, °C

ASLT = Y - intercept

BSLT = slope

AIRTC = air temperature, °C

PSTEMP (SOIL TEMPERATURE) SIMULATION - SUBSURFACE LAYER, TSOPFG=1

SUBSURFACE LAYERS - Two Options

TSOPFG = 1

UPPER ZONE LAYER -

- Linear regression with air temperature
- Same equation as for surface layer with different parameters for the upper soil zone

LOWER/GROUNDWATER LAYERS -

- User-defined annual or monthly values
- Same values for both Lower Zone and Groundwater Zone

PSTEMP (SOIL TEMPERATURE) SIMULATION - SUBSURFACE LAYER, TSOPFG=0

SUBSURFACE LAYERS - Two Options

TSOPFG = 0

- Mean departure from air temperature plus smoothing factor
- Same equation used for Upper Zone and Lower/Groundwater Zone, with different parameters
- Same values for both Lower Zone and Groundwater Zone

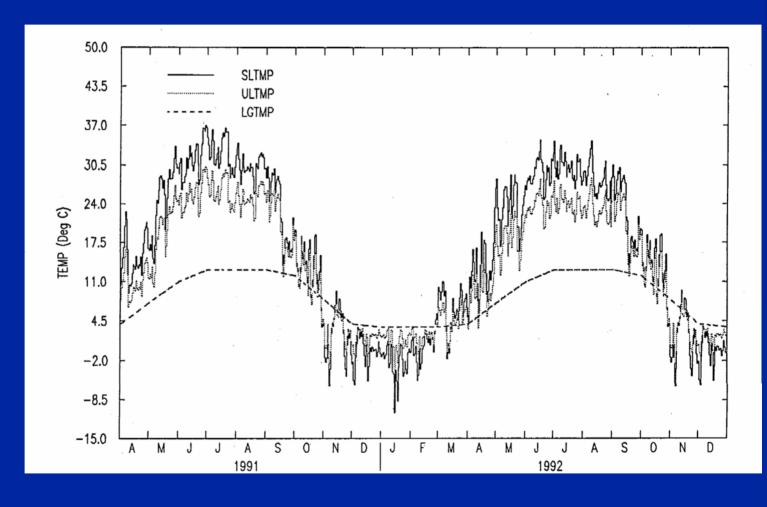
```
TMP = TMPS + SMO*(AIRTCS+ TDIF - TMPS)
```

where:

TMP = soil layer temperature for current interval, °C

TMPS = soil layer temperature for previous interval,

SMO = smoothing factor (user-defined parameter)


AIRTCS = air temperature during current interval, °C

TDIF = mean difference between air and soil temperatures, °C (user-defined parameter)

SOIL TEMPERATURE RESULTS FOR WALNUT CREEK, IA

PWTGAS/IWTGAS SIMULATION AND CALIBRATION

1. Estimate All Dissolved Gas Parameters

PWTGAS - ELEV, IDOXP, ICO2P, ADOXP, ACO2P IWTGAS - ELEV, AWTF, BWTF

ELEV - Model Segment Elevation
 IDOXP & ICO2P - Interflow Concentrations
 ADOXP & ACO2P - Baseflow Concentrations
 AWTF & BWTF - Regression Parameters for Impervious Surface
 Runoff Temperature

- 2. Adjust Temperatures (Simulated or Input) to Modify Gas Saturation Concentrations in Overland Flow
- 3. For PWTGAS, Adjust Interflow and Groundwater Gas Concentrations, if necessary