

LECTURE #10

SEDIMENT PROCESSES, PARAMETERS AND CALIBRATION

SOIL EROSION PROCESSES

Pervious Areas

Accumulation

Detachment

Transport

Scour

Impervious Areas

Accumulation

Transport

FLOW DIAGRAM FOR SEDMNT MODULE SECTION

QUA TERRA

SEDIMENT MODULE EQUATIONS -ACCUMULATION/ATTACHMENT

Accumulation/Attachment

DETS(t) = DETS(t-1) * (1.0 - AFFIX) + NVSI

- DETS Storage of detached sediment (tons/acre)
- AFFIX Fraction by which DETS decreases each day as a result of soil compaction
- **NVSI** Sediment deposition from the atmosphere (lb/acre/day) with a negative value representing removal

SEDIMENT MODULE EQUATIONS -DETACHMENT

Detachment

DET = DELT60*(1.0 - CR)*SMPF*KRER*(RAIN/DELT60)**JRER

- DET Sediment detachment from soil matrix by rainfall (tons\ac\interval)
- DELT60 Number of hours in interval
- **SMPF** Supporting management practice factor
- **KRER** Detachment coefficient, dependent on soil properties
- RAIN Rainfall (in/interval)
- **JRER** Detachment exponent, dependent on soil properties
- **CR** Fraction of the land covered by snow and other cover

Transport

STCAP = DELT60*KSER*((SURS + SURO)/DELT60)**JSER

STCAP

KSER SURS SURO JSER

- Capacity for removing detached sediment (tons/acre/interval)
 - Coefficient for transport of detached sediment
 - Surface water storage (inches)
 - Surface outflow of water (inch/interval)
 - Exponent for transport of detached sediment

IF STCAP >DETS, (SEDIMENT LIMITING) WSSD = DETS*SURO/(SURS + SURO) IF STCAP <DETS (TRANSPORT LIMITING) WSSD = STCAP*SURO/(SURS + SURO)

WSSD - Washoff of detached sediment (tons/acre/interval)

SEDIMENT MODULE EQUATIONS -SCOUR OF SOIL MATRIX

<u>Scour</u>

SCRSD = (SURO/(SURS + SURO))*DELT60*KGER* ((SURS + SURO)/DELT60)**JGER

KGER - Coefficient for scour of the matrix soil JGER - Exponent for scour of the matrix soil

FLOW DIAGRAM OF SOLIDS MODULE SECTION

SOLIDS MODULE EQUATIONS

Accumulation/Removal

SLDS = ACCSDP + SLDSS*(1.0 - REMSDP)

SLDS

SLDSS

- Solids in storage at end of day (tons/acre)
- ACCSDP Accumulation rate of the solids storage (tons/acre/day)
 - Solids in storage at start of day
- **REMSDP** Unit removal rate of solids storage (fraction removed per day)

SOLIDS MODULE EQUATIONS (continued)

Transport/Washoff

STCAP = DELT60*KEIM*((SURS + SURO)/DELT60)**JEIM

KEIM - Coefficient for transport of solids JEIM - Exponent for transport of solids

IF STCAP >SLDS (SEDIMENT LIMITING) SOSLD = SLDS*SURO/(SURS + SURO) IF STCAP <SLDS (TRANSPORT LIMITING) SOSLD = STCAP*SURO/(SURS + SURO) Where: SOSLD - Washoff of solids (tons/acre/interval)

11 of 24

SEDIMENT CALIBRATION - STEPS AND ISSUES

- Sediment Parameter Calibration Process
- Sediment Equilibrium/Balance
 Pertinent Parameters
 Fines Deposit
 Guidelines
- Transport Limiting versus Sediment Limiting
- Parameter Sensitivity Transport Parameters Fines Generation Parameters

FINES DEPOSIT VARIATION

 Establish Stable Pattern for Each Land Use Cropland - Sharp Increase During Tillage Periods Impervious - Cyclical Variation Depending on Weather and Activities
 Rural/Open/Grassland - Relatively Uniform or Slightly Cyclic

• Guidelines for Adjustment

SEDIMENT EQUILIBRIUM/BALANCE

Pertinent Parameters for Pervious and Impervious Areas

	<u>Fines Availability</u>	<u>Sediment Washoff</u>
Pervious Areas		
(SEDMNT)	COVER	KSER*
	KRER*	JSER
	AFFIX/NVSI	KGER*
	JRER	JGER
Impervious Area	S	
(SOLIDS)	ACCSDP*	KEIM*
	REMSDP	JEIM

* Primary calibration parameters

14 of 24

TRANSPORT LIMITING VS. SEDIMENT LIMITING

Transport Limiting - Transport parameters have <u>primary</u> impact

- Near beginning of major storms
- Periods following tillage or land disturbance
- Storms after an extended dry period, on impervious surfaces

Sediment Limiting - Fines generation and accumulation parameters have major impact

- Small events
- Near the middle/end of major storms
- Near the middle/end of growing season
- Occurs frequently on impervious surfaces

(HSPF allows output displays of STCAP, DETS, and SLDS. See Time Series Catalog in User Manual).

SENSITIVITY/EFFECTS OF TRANSPORT PARAMETERS

SENSITIVITY/EFFECTS OF FINES GENERATION PARAMETERS

United States

SUMMARY - PRIMARY CONSIDERATIONS IN SEDIMENT CALIBRATION

• Establish Sediment Equilibrium/Balance for Each PERLND, i.e.

 Be Aware of Transport Limiting Versus Sediment Limiting Conditions

RANGES OF TYPICAL SEDMNT PARAMETER VALUES

	KRER JRER KSER, KEIM JSER, JEIM KGER	 0.14 - 0.45 Estimate USLE erodibility factor, K 1.5 - 3.0 0.1 - 5.0 Key calibration factor 1.5 - 2.5 0.01 - 0.5 Gully erosion, not often simulated 				
	JGER	1.0 - 2.0 Gully erosion, not often simulated				
	COVER					
	Forest	0.85 - 0.98				
	Pasture	0.80 - 0.90				
	Conventional					
	Conservation	0.0 - 0.95 Crop dependent				
1		0.20 - 0.05 Cran dependent				
3	Hav					
	Urban	0.80 - 0.95				
1	DETS (through SPECIAL ACTIONS)					
1		Tons/ac tonnes/ha				
	moldboard plow	3.0 - 5.0 6.7 - 11.2				
	disk (oultivator	1.5 - 3.0 $3.4 - 6.7$				
	min till planter	$2.0 - 4.0 \qquad 4.5 - 9.0$ 05 - 15 11 - 34				
		0.0 1.0 1.1 - 0.4				
	AFFIX	0.03 - 0.10				
	NVSI	0.0 - 5.0 lbs/ac/day				
		uu = bb kos/na/nav				

HSPF SEDMNT PARAMETERS AND TYPICAL/POSSIBLE VALUE RANGES

			RANGE OF VALUES			UES		
NAME	DEFINITION	UNITS	TYPICAL		POSSIBLE		FUNCTION OF	COMMENT
			MIN	MAX	MIN	MAX		
PERLI	ND							
SED - PA	RM2							
SMPF	Management Practice (P) factor from USLE	none	0.0	1.0	0.0	1.0	Land use, Ag practices	Use P factor from USLE
KRER	Coefficient in the soil detachment equation	complex	0.15	0.45	0.05	0.75	Soils	Estimate from soil erodibility factor (K) in USLE
JRER	Exponent in the soil detachment equation	none	1.5	2.5	1.0	3.0	Soils, climate	Usually start with value of 2.0
AFFIX	Daily reduction in detached sediment	per day	0.03	0.10	0.01	0.50	Soils, compaction, ag operations	Reduces fine sediments following tillage
COVER	Fraction land surface protected from rainfall	none	0.0	0.90	0.0	0.98	Vegetal cover, land use	Seasonal/monthly values often used
NVSI	Atmospheric additions to sediment storage	lb/ac-dy	0.0	5.0	0.0	20.0	Deposition, activities, etc.	Can be positive or negative
SED - PA	RM3							
KSER	Coefficient in the sediment washoff equation	complex	0.5	5.0	0.1	10.0	Soils, surface conditions	Primary sediment Calibration parameter
JSER	Exponent in the sediment washoff equation	none	1.5	2.5	1.0	3.0	Soils, surface conditions	Usually use value of about 2.0
KGER	Coefficient in soil matrix scour equation	complex	0.0	0.5	0.0	10.0	Soils, evidence of gullies	Calibration, only used if there is evidence of gullies
JGER	Exponent in soil matrix scour equation	none	1.0	3.0	1.0	5.0	Soils, evidence of gullies	Usually use value of about 2.5
IMPLN	IMPLND							
SLD – PARM2								
KEIM	Coefficient in the solids washoff equation	complex	0.5	5.0	0.1	10.0	Surface conditions, solids charac.	Primary solids Calibration parameter
JEIM	Exponent in the solids washoff equation	none	1.0	2.0	1.0	3.0	Surface conditions, solids charac.	Usually use value of about 1.8
ACCSDP	Solids accumulation rate on the land surface	lb/ac-dy	0.0	2.0	0.0	30.0	Land use, traffic, human activities	Calibration, primary source of solids from impervious areas
REMSDP	Fraction of solids removed per day	per day	0.03	0.2	0.01	1.0	Street sweeping, wind, traffic	Usually start with value of about 0.05, and calibrate
	20 of 24							

COVER PATTERN FOR CONVENTIONAL TILLAGE

Percent Coverage - Conventional Tillage Juniata Segment 100

AQUA TERRA CONSULTANTS

Time (Months)

COVER PATTERN FOR CONSERVATION TILLAGE

Percent Coverage - Conservation Tillage Juniata Segment 100

RRA

Time (Months)

TYPICAL RANGES OF EXPECTED EROSION RATES

	Tons/ac/yr	Tonnes/ha/yr
Forest	0.05 - 0.4	0.1 - 0.9
Pasture	0.3 - 1.5	0.7 - 3.4
Conventional Tillage	1.0 - 7.0	2.2 - 15.7 (crop dependent)
Conservation Tillage	0.5 - 4.0	1.1 - 9.0 (crop dependent)
Hay	0.3 - 1.8	0.7 - 4.0
Urban	0.2 - 1.0	0.4 - 2.2
Highly Erodible Land	> ~ 15.0	>~ 33.6

SEDIMENT DELIVERY RATIO VERSUS SIZE OF DRAINAGE AREA

