METHOD 8270D

SEMIVOLATILE ORGANIC COMPOUNDS

BY GAS CHROMATOGRAPHY/MASS SPECTROMETRY (GC/MS)

1.0 SCOPE AND APPLICATION

1.1 Method 8270 is used to determine the concentration of semivolatile organic compounds in extracts prepared from many types of solid waste matrices, soils, air sampling media and water samples. Direct injection of a sample may be used in limited applications. The following compounds can be determined by this method:

Compounds	CAS No ${ }^{\text {a }}$	Appropriate Preparation Techniques ${ }^{\text {b }}$				
		3510	$\begin{gathered} 352 \\ 0 \end{gathered}$	$\begin{gathered} 3540 / \\ 3541 \end{gathered}$	$\begin{gathered} 355 \\ 0 \end{gathered}$	3580
Acenaphthene	83-32-9	X	X	X	X	X
Acenaphthylene	208-96-8	X	X	X	X	X
Acetophenone	98-86-2	X	ND	ND	ND	X
2-Acetylaminofluorene	53-96-3	X	ND	ND	ND	X
1-Acetyl-2-thiourea	591-08-2	LR	ND	ND	ND	LR
Aldrin	309-00-2	X	X	X	X	X
2-Aminoanthraquinone	117-79-3	X	ND	ND	ND	X
Aminoazobenzene	60-09-3	X	ND	ND	ND	X
4-Aminobiphenyl	92-67-1	X	ND	ND	ND	X
3-Amino-9-ethylcarbazole	132-32-1	X	X	ND	ND	ND
Anilazine	101-05-3	X	ND	ND	ND	X
Aniline	62-53-3	X	X	ND	X	X
o-Anisidine	90-04-0	X	ND	ND	ND	X
Anthracene	120-12-7	X	X	X	X	X
Aramite	140-57-8	HS(43)	ND	ND	ND	X
Aroclor 1016	12674-11-2	X	X	X	X	X
Aroclor 1221	11104-28-2	X	X	X	X	X
Aroclor 1232	11141-16-5	X	X	X	X	X
Aroclor 1242	53469-21-9	X	X	X	X	X
Aroclor 1248	12672-29-6	X	X	X	X	X
Aroclor 1254	11097-69-1	X	X	X	X	X
Aroclor 1260	11096-82-5	X	X	X	X	X
Azinphos-methyl	86-50-0	HS(62)	ND	ND	ND	X
Barban	101-27-9	LR	ND	ND	ND	LR
Benzidine	92-87-5	CP	CP	CP	CP	CP
Benzoic acid	65-85-0	X	X	ND	X	X

Compounds	CAS No ${ }^{\text {a }}$	Appropriate Preparation Techniques ${ }^{\text {b }}$				
		3510	$\begin{gathered} 352 \\ 0 \end{gathered}$	$\begin{gathered} 3540 / \\ 3541 \end{gathered}$	$\begin{gathered} 355 \\ 0 \end{gathered}$	3580
Benz(a)anthracene	56-55-3	X	X	X	X	X
Benzo(b)fluoranthene	205-99-2	X	X	X	X	X
Benzo(k)fluoranthene	207-08-9	X	X	X	X	X
Benzo(g,h,i)perylene	191-24-2	X	X	X	X	X
Benzo(a)pyrene	50-32-8	X	X	X	X	X
p-Benzoquinone	106-51-4	OE	ND	ND	ND	X
Benzyl alcohol	100-51-6	X	X	ND	X	X
$\alpha-\mathrm{BHC}$	319-84-6	X	X	X	X	X
β-BHC	319-85-7	X	X	X	X	X
δ-BHC	319-86-8	X	X	X	X	X
$\mathrm{\gamma}$-BHC (Lindane)	58-89-9	X	X	X	X	X
Bis(2-chloroethoxy)methane	111-91-1	X	X	X	X	X
Bis(2-chloroethyl) ether	111-44-4	X	X	X	X	X
Bis(2-chloroisopropyl) ether	108-60-1	X	X	X	X	X
Bis(2-ethylhexyl) phthalate	117-81-7	X	X	X	X	X
4-Bromophenyl phenyl ether	101-55-3	X	X	X	X	X
Bromoxynil	1689-84-5	X	ND	ND	ND	X
Butyl benzyl phthalate	85-68-7	X	X	X	X	X
Captafol	2425-06-1	HS(55)	ND	ND	ND	X
Captan	133-06-2	HS(40)	ND	ND	ND	X
Carbaryl	63-25-2	X	ND	ND	ND	X
Carbofuran	1563-66-2	X	ND	ND	ND	X
Carbophenothion	786-19-6	X	ND	ND	ND	X
Chlordane (NOS)	57-74-9	X	X	X	X	X
Chlorfenvinphos	470-90-6	X	ND	ND	ND	X
4-Chloroaniline	106-47-8	X	ND	ND	ND	X
Chlorobenzilate	510-15-6	X	ND	ND	ND	X
5-Chloro-2-methylaniline	95-79-4	X	ND	ND	ND	X
4-Chloro-3-methylphenol	59-50-7	X	X	X	X	X
3-(Chloromethyl)pyridine hydrochloride	6959-48-4	X	ND	ND	ND	X
1-Chloronaphthalene	90-13-1	X	X	X	X	X
2-Chloronaphthalene	91-58-7	X	X	X	X	X
2-Chlorophenol	95-57-8	X	X	X	X	X
4-Chloro-1,2-phenylenediamine	95-83-0	X	X	ND	ND	ND
4-Chloro-1,3-phenylenediamine	5131-60-2	X	X	ND	ND	ND
4-Chlorophenyl phenyl ether	7005-72-3	X	X	X	X	X

Compounds	CAS $\mathrm{No}^{\text {a }}$	Appropriate Preparation Techniques ${ }^{\text {b }}$				
		3510	$\begin{gathered} 352 \\ 0 \end{gathered}$	$\begin{aligned} & 3540 / \\ & 3541 \end{aligned}$	$\begin{gathered} 355 \\ 0 \end{gathered}$	3580
Chrysene	218-01-9	X	X	X	X	X
Coumaphos	56-72-4	X	ND	ND	ND	X
p-Cresidine	120-71-8	X	ND	ND	ND	X
Crotoxyphos	7700-17-6	X	ND	ND	ND	X
2-Cyclohexyl-4,6-dinitro-phenol	131-89-5	X	ND	ND	ND	LR
4,4'-DDD	72-54-8	X	X	X	X	X
4,4'-DDE	72-55-9	X	X	X	X	X
4,4'-DDT	50-29-3	X	X	X	X	X
Demeton-O	298-03-3	HS(68)	ND	ND	ND	X
Demeton-S	126-75-0	X	ND	ND	ND	X
Diallate (cis or trans)	2303-16-4	X	ND	ND	ND	X
2,4-Diaminotoluene	95-80-7	DC, $0 \mathrm{E}(42)$	ND	ND	ND	X
Dibenz(a,j)acridine	224-42-0	X	ND	ND	ND	X
Dibenz(a,h)anthracene	53-70-3	X	X	X	X	X
Dibenzofuran	132-64-9	X	X	ND	X	X
Dibenzo(a,e)pyrene	192-65-4	ND	ND	ND	ND	X
1,2-Dibromo-3-chloropropane	96-12-8	X	X	ND	ND	ND
Di-n-butyl phthalate	84-74-2	X	X	X	X	X
Dichlone	117-80-6	OE	ND	ND	ND	X
1,2-Dichlorobenzene	95-50-1	X	X	X	X	X
1,3-Dichlorobenzene	541-73-1	X	X	X	X	X
1,4-Dichlorobenzene	106-46-7	X	X	X	X	X
3,3'-Dichlorobenzidine	91-94-1	X	X	X	X	X
2,4-Dichlorophenol	120-83-2	X	X	X	X	X
2,6-Dichlorophenol	87-65-0	X	ND	ND	ND	X
Dichlorovos	62-73-7	X	ND	ND	ND	X
Dicrotophos	141-66-2	X	ND	ND	ND	X
Dieldrin	60-57-1	X	X	X	X	X
Diethyl phthalate	84-66-2	X	X	X	X	X
Diethylstilbestrol	56-53-1	$\underset{\text {) }}{\text { AW, } 0 \mathrm{~S}(67}$	ND	ND	ND	X
Diethyl sulfate	64-67-5	LR	ND	ND	ND	LR
Dimethoate	60-51-5	$\underset{\text {) }}{\mathrm{HE}, \mathrm{HS}(31}$	ND	ND	ND	X
3,3'-Dimethoxybenzidine	119-90-4	X	ND	ND	ND	LR
Dimethylaminoazobenzene	60-11-7	X	ND	ND	ND	X
7,12-Dimethylbenz(a)-anthracene	57-97-6	$\mathrm{CP}(45)$	ND	ND	ND	CP

Compounds	CAS $\mathrm{No}^{\text {a }}$	Appropriate Preparation Techniques ${ }^{\text {b }}$				
		3510	$\begin{gathered} 352 \\ 0 \end{gathered}$	$\begin{gathered} 3540 / \\ 3541 \end{gathered}$	$\begin{gathered} 355 \\ 0 \end{gathered}$	3580
3,3'-Dimethylbenzidine	119-93-7	X	ND	ND	ND	X
a, α-Dimethylphenethylamine	122-09-8	ND	ND	ND	ND	X
2,4-Dimethylphenol	105-67-9	X	X	X	X	X
Dimethyl phthalate	131-11-3	X	X	X	X	X
1,2-Dinitrobenzene	528-29-0	X	ND	ND	ND	X
1,3-Dinitrobenzene	99-65-0	X	ND	ND	ND	X
1,4-Dinitrobenzene	100-25-4	HE(14)	ND	ND	ND	X
4,6-Dinitro-2-methylphenol	534-52-1	X	X	X	X	X
2,4-Dinitrophenol	51-28-5	X	X	X	X	X
2,4-Dinitrotoluene	121-14-2	X	X	X	X	X
2,6-Dinitrotoluene	606-20-2	X	X	X	X	X
Dinocap	39300-45-3	$\underset{\text {) }}{\mathrm{CP}, \mathrm{HS}(28}$	ND	ND	ND	CP
Dinoseb	88-85-7	X	ND	ND	ND	X
Diphenylamine	122-39-4	X	X	X	X	X
5,5-Diphenylhydantoin	57-41-0	X	ND	ND	ND	X
1,2-Diphenylhydrazine	122-66-7	X	X	X	X	X
Di-n-octyl phthalate	117-84-0	X	X	X	X	X
Disulfoton	298-04-4	X	ND	ND	ND	X
Endosulfan I	959-98-8	X	X	X	X	X
Endosulfan II	33213-65-9	X	X	X	X	X
Endosulfan sulfate	1031-07-8	X	X	X	X	X
Endrin	72-20-8	X	X	X	X	X
Endrin aldehyde	7421-93-4	X	X	X	X	X
Endrin ketone	53494-70-5	X	X	ND	X	X
EPN	2104-64-5	X	ND	ND	ND	X
Ethion	563-12-2	X	ND	ND	ND	X
Ethyl carbamate	51-79-6	DC(28)	ND	ND	ND	X
Ethyl methanesulfonate	62-50-0	X	ND	ND	ND	X
Famphur	52-85-7	X	ND	ND	ND	X
Fensulfothion	115-90-2	X	ND	ND	ND	X
Fenthion	55-38-9	X	ND	ND	ND	X
Fluchloralin	33245-39-5	X	ND	ND	ND	X
Fluoranthene	206-44-0	X	X	X	X	X
Fluorene	86-73-7	X	X	X	X	X
2-Fluorobiphenyl (surr)	321-60-8	X	X	X	X	X
2-Fluorophenol (surr)	367-12-4	X	X	X	X	X

Compounds	CAS $\mathrm{No}^{\text {a }}$	Appropriate Preparation Techniques ${ }^{\text {b }}$				
		3510	$\begin{gathered} 352 \\ 0 \end{gathered}$	$\begin{aligned} & 3540 / \\ & 3541 \end{aligned}$	$\begin{gathered} 355 \\ 0 \end{gathered}$	3580
Heptachlor	76-44-8	X	X	X	X	X
Heptachlor epoxide	1024-57-3	X	X	X	X	X
Hexachlorobenzene	118-74-1	X	X	X	X	X
Hexachlorobutadiene	87-68-3	X	X	X	X	X
Hexachlorocyclopentadiene	77-47-4	X	X	X	X	X
Hexachloroethane	67-72-1	X	X	X	X	X
Hexachlorophene	70-30-4	$\underset{)}{\mathrm{AW}, \mathrm{CP}(62}$	ND	ND	ND	CP
Hexachloropropene	1888-71-7	X	ND	ND	ND	X
Hexamethylphosphoramide	680-31-9	X	ND	ND	ND	X
Hydroquinone	123-31-9	ND	ND	ND	ND	X
Indeno(1,2,3-cd)pyrene	193-39-5	X	X	X	X	X
Isodrin	465-73-6	X	ND	ND	ND	X
Isophorone	78-59-1	X	X	X	X	X
Isosafrole	120-58-1	DC(46)	ND	ND	ND	X
Kepone	143-50-0	X	ND	ND	ND	X
Leptophos	21609-90-5	X	ND	ND	ND	X
Malathion	121-75-5	HS(5)	ND	ND	ND	X
Maleic anhydride	108-31-6	HE	ND	ND	ND	X
Mestranol	72-33-3	X	ND	ND	ND	X
Methapyrilene	91-80-5	X	ND	ND	ND	X
Methoxychlor	72-43-5	X	ND	ND	ND	X
3-Methylcholanthrene	56-49-5	X	ND	ND	ND	X
4,4'-Methylenebis (2-chloroaniline)	101-14-4	OE,OS(0)	ND	ND	ND	LR
4,4'-Methylenebis(N,N-dimethylaniline)	101-61-1	X	X	ND	ND	ND
Methyl methanesulfonate	66-27-3	X	ND	ND	ND	X
2-MethyInaphthalene	91-57-6	X	X	ND	X	X
Methyl parathion	298-00-0	X	ND	ND	ND	X
2-Methylphenol	95-48-7	X	ND	ND	ND	X
3-Methylphenol	108-39-4	X	ND	ND	ND	X
4-Methylphenol	106-44-5	X	ND	ND	ND	X
Mevinphos	7786-34-7	X	ND	ND	ND	X
Mexacarbate	315-18-4	$\underset{)}{\mathrm{HE}, \mathrm{HS}(68}$	ND	ND	ND	X
Mirex	2385-85-5	X	ND	ND	ND	X
Monocrotophos	6923-22-4	HE	ND	ND	ND	X

Compounds	CAS $\mathrm{No}^{\text {a }}$	Appropriate Preparation Techniques ${ }^{\text {b }}$				
		3510	$\begin{gathered} 352 \\ 0 \end{gathered}$	$\begin{gathered} 3540 / \\ 3541 \end{gathered}$	$\begin{gathered} 355 \\ 0 \end{gathered}$	3580
Naled	300-76-5	X	ND	ND	ND	X
Naphthalene	91-20-3	X	X	X	X	X
1,4-Naphthoquinone	130-15-4	X	ND	ND	ND	X
1-Naphthylamine	134-32-7	OS(44)	ND	ND	ND	X
2-Naphthylamine	91-59-8	X	ND	ND	ND	X
Nicotine	54-11-5	DE(67)	ND	ND	ND	X
5-Nitroacenaphthene	602-87-9	X	ND	ND	ND	X
2-Nitroaniline	88-74-4	X	X	ND	X	X
3-Nitroaniline	99-09-2	X	X	ND	X	X
4-Nitroaniline	100-01-6	X	X	ND	X	X
5-Nitro-0-anisidine	99-59-2	X	ND	ND	ND	X
Nitrobenzene	98-95-3	X	X	X	X	X
4-Nitrobiphenyl	92-93-3	X	ND	ND	ND	X
Nitrofen	1836-75-5	X	ND	ND	ND	X
2-Nitrophenol	88-75-5	X	X	X	X	X
4-Nitrophenol	100-02-7	X	X	X	X	X
5-Nitro-o-toluidine	99-55-8	X	X	ND	ND	X
Nitroquinoline-1-oxide	56-57-5	X	ND	ND	ND	X
N-Nitrosodi-n-butylamine	924-16-3	X	ND	ND	ND	X
N-Nitrosodiethylamine	55-18-5	X	ND	ND	ND	X
N -Nitrosodimethylamine	62-75-9	X	X	X	X	X
N-Nitrosomethylethylamine	10595-95-6	X	ND	ND	ND	X
N-Nitrosodiphenylamine	86-30-6	X	X	X	X	X
N-Nitrosodi-n-propylamine	621-64-7	X	X	X	X	X
N-Nitrosomorpholine	59-89-2	ND	ND	ND	ND	X
N-Nitrosopiperidine	100-75-4	X	ND	ND	ND	X
N-Nitrosopyrrolidine	930-55-2	X	ND	ND	ND	X
Octamethyl pyrophosphoramide	152-16-9	LR	ND	ND	ND	LR
4,4'-Oxydianiline	101-80-4	X	ND	ND	ND	X
Parathion	56-38-2	X	X	ND	ND	X
Pentachlorobenzene	608-93-5	X	ND	ND	ND	X
Pentachloronitrobenzene	82-68-8	X	ND	ND	ND	X
Pentachlorophenol	87-86-5	X	X	X	X	X
Phenacetin	62-44-2	X	ND	ND	ND	X
Phenanthrene	85-01-8	X	X	X	X	X
Phenobarbital	50-06-6	X	ND	ND	ND	X
Phenol	108-95-2	DC(28)	X	X	X	X

Compounds	CAS $\mathrm{No}^{\text {a }}$	Appropriate Preparation Techniques ${ }^{\text {b }}$				
		3510	$\begin{gathered} 352 \\ 0 \end{gathered}$	$\begin{aligned} & 3540 / \\ & 3541 \end{aligned}$	$\begin{gathered} 355 \\ 0 \end{gathered}$	3580
1,4-Phenylenediamine	106-50-3	X	ND	ND	ND	X
Phorate	298-02-2	X	ND	ND	ND	X
Phosalone	2310-17-0	HS(65)	ND	ND	ND	X
Phosmet	732-11-6	HS(15)	ND	ND	ND	X
Phosphamidon	13171-21-6	HE(63)	ND	ND	ND	X
Phthalic anhydride	85-44-9	CP,HE(1)	ND	ND	ND	CP
2-Picoline (2-Methylpyridine)	109-06-8	X	X	ND	ND	ND
Piperonyl sulfoxide	120-62-7	X	ND	ND	ND	X
Pronamide	23950-58-5	X	ND	ND	ND	X
Propylthiouracil	51-52-5	LR	ND	ND	ND	LR
Pyrene	129-00-0	X	X	X	X	X
Resorcinol	108-46-3	$\underset{\text {) }}{\mathrm{DC}, \mathrm{OE}(10}$	ND	ND	ND	X
Safrole	94-59-7	X	ND	ND	ND	X
Strychnine	57-24-9	$\underset{\text {) }}{\mathrm{AW}, 0 \mathrm{~S}(55}$	ND	ND	ND	X
Sulfallate	95-06-7	X	ND	ND	ND	X
Terbufos	13071-79-9	X	ND	ND	ND	X
1,2,4,5-Tetrachlorobenzene	95-94-3	X	ND	ND	ND	X
2,3,4,6-Tetrachlorophenol	58-90-2	X	ND	ND	ND	X
Tetrachlorvinphos	961-11-5	X	ND	ND	ND	X
Tetraethyl dithiopyrophosphate	3689-24-5	X	X	ND	ND	ND
Tetraethyl pyrophosphate	107-49-3	X	ND	ND	ND	X
Thionazine	297-97-2	X	ND	ND	ND	X
Thiophenol (Benzenethiol)	108-98-5	X	ND	ND	ND	X
Toluene diisocyanate	584-84-9	HE(6)	ND	ND	ND	X
o-Toluidine	95-53-4	X	ND	ND	ND	X
Toxaphene	8001-35-2	X	X	X	X	X
1,2,4-Trichlorobenzene	120-82-1	X	X	X	X	X
2,4,5-Trichlorophenol	95-95-4	X	X	ND	X	X
2,4,6-Trichlorophenol	88-06-2	X	X	X	X	X
Trifluralin	1582-09-8	X	ND	ND	ND	X
2,4,5-Trimethylaniline	137-17-7	X	ND	ND	ND	X
Trimethyl phosphate	512-56-1	HE(60)	ND	ND	ND	X
1,3,5-Trinitrobenzene	99-35-4	X	ND	ND	ND	X
Tris(2,3-dibromopropyl) phosphate	126-72-7	X	ND	ND	ND	LR

		Appropriate Preparation Techniques $^{\text {b }}$					
			$3540 /$				
Compounds	CAS No		3510	352	3541	355	3580
			0		0		
Tri-p-tolyl phosphate	$78-32-0$	X	ND	ND	ND	X	
O,O,O-Triethyl phosphorothioate	$126-68-1$		X	ND	ND	ND	X

${ }^{\text {a }}$ Chemical Abstract Service Registry Number
${ }^{\mathrm{b}}$ See Sec. 1.2 for other acceptable preparation methods.

KEY TO ANALYTE LIST

```
AW = Adsorption to walls of glassware during extraction and storage.
    CP = Nonreproducible chromatographic performance.
    DC = Unfavorable distribution coefficient (number in parenthesis is percent recovery).
    HE = Hydrolysis during extraction accelerated by acidic or basic conditions (number in
    parenthesis is percent recovery).
    HS = Hydrolysis during storage (number in parenthesis is percent stability).
    LR = Low response.
    ND = Not determined.
    OE = Oxidation during extraction accelerated by basic conditions (number in parenthesis is
        percent recovery).
    OS = Oxidation during storage (number in parenthesis is percent stability).
    X = Greater than 70 percent recovery by this technique.
```

1.2 In addition to the sample preparation methods listed in the above analyte list, Method 3535 describes a solid-phase extraction procedure that may be applied to the extraction of semivolatiles from TCLP leachates (Tables 16 and 17 contain performance data). Method 3542 describes sample preparation for semivolatile organic compounds in air sampled by Method 0010 (Table 11 contains surrogate performance data), Method 3545 describes an automated solvent extraction device for semivolatiles in solids (Table 12 contains performance data), and Method 3561 describes a supercritical fluid device for the extraction of PAHs from solids (see Tables 13, 14, and 15 for performance data).
1.3 Method 8270 can be used to quantitate most neutral, acidic, and basic organic compounds that are soluble in methylene chloride and capable of being eluted, without derivatization, as sharp peaks from a gas chromatographic fused-silica capillary column coated with a slightly polar silicone. Such compounds include polynuclear aromatic hydrocarbons, chlorinated hydrocarbons and pesticides, phthalate esters, organophosphate esters, nitrosamines, haloethers, aldehydes, ethers, ketones, anilines, pyridines, quinolines, aromatic nitro compounds, and phenols, including nitrophenols. See Table 1 for a list of compounds and their characteristic ions that have been evaluated.

In most cases, Method 8270 is not appropriate for the quantitation of multicomponent analytes, e.g., Aroclors, Toxaphene, Chlordane, etc., because of limited sensitivity for those analytes. When these analytes have been identified by another technique, Method 8270 may be appropriate for confirmation of the identification of these analytes when concentration in the extract
permits. Refer to Sec. 7.0 of Methods 8081 and 8082 for guidance on calibration and quantitation of multicomponent analytes such as the Aroclors, Toxaphene, and Chlordane.
1.4 The following compounds may require special treatment when being determined by this method:
1.4.1 Benzidine may be subject to oxidative losses during solvent concentration and its chromatographic behavior is poor.
1.4.2 Under the alkaline conditions of the extraction step from aqueous matrices, $\alpha-\mathrm{BHC}, ~ \gamma-\mathrm{BHC}$, Endosulfan I and II, and Endrin are subject to decomposition. Neutral extraction should be performed if these compounds are expected.
1.4.3 Hexachlorocyclopentadiene is subject to thermal decomposition in the inlet of the gas chromatograph, chemical reaction in acetone solution, and photochemical decomposition.
1.4.4 N -nitrosodimethylamine is difficult to separate from the solvent under the chromatographic conditions described.
1.4.5 $\quad \mathrm{N}$-nitrosodiphenylamine decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine.
1.4.6 Pentachlorophenol, 2,4-dinitrophenol, 4-nitrophenol, benzoic acid, 4,6-dinitro-2-methylphenol, 4-chloro-3-methylphenol, 2-nitroaniline, 3-nitroaniline, 4-chloroaniline, and benzyl alcohol are subject to erratic chromatographic behavior, especially if the GC system is contaminated with high boiling material.
1.4.7 Pyridine may perform poorly at the GC injection port temperatures listed in the method. Lowering the injection port temperature may reduce the amount of degradation. However, the analyst must use caution in modifying the injection port temperature, as the performance of other analytes may be adversely affected. Therefore, if pyridine is to be determined in addition to other target analytes, it may be necessary to perform separate analyses. In addition, pyridine may be lost during the evaporative concentration of the sample extract. As a result, many of the extraction methods listed above may yield low recoveries unless great care is exercised during the concentration steps. For this reason, analysts may wish to consider the use of extraction techniques such as pressurized fluid extraction (Method 3545) or supercritical fluid extraction, which involve smaller extract volumes, thereby reducing or eliminating the need for evaporative concentration techniques for many applications.
1.4.8 Toluene diisocyanate rapidly hydrolyses in water (half-life of less then 30 min.). Therefore, recoveries of this compound from aqueous matrices should not be expected. In addition, in solid matrices, toluene diisocyanate often reacts with alcohols and amines to produce urethane and ureas and consequently cannot usually coexist in a solution containing these materials.
1.4.9 In addition, analytes in the list provided above are flagged when there are limitations caused by sample preparation and/or chromatographic problems.
1.5 The estimated quantitation limit (EQL) of Method 8270 for determining an individual compound is approximately $660 \mu \mathrm{~g} / \mathrm{kg}$ (wet weight) for soil/sediment samples, $1-200 \mathrm{mg} / \mathrm{kg}$ for
wastes (dependent on matrix and method of preparation), and $10 \mu \mathrm{~g} / \mathrm{L}$ for ground water samples (see Table 2). EQLs will be proportionately higher for sample extracts that require dilution to avoid saturation of the detector.
1.6 This method is restricted to use by or under the supervision of analysts experienced in the use of gas chromatograph/mass spectrometers and skilled in the interpretation of mass spectra. Each analyst must demonstrate the ability to generate acceptable results with this method.

2.0 SUMMARY OF METHOD

2.1 The samples are prepared for analysis by gas chromatography/mass spectrometry (GC/MS) using the appropriate sample preparation (refer to Method 3500) and, if necessary, sample cleanup procedures (refer to Method 3600).
2.2 The semivolatile compounds are introduced into the GC/MS by injecting the sample extract into a gas chromatograph (GC) with a narrow-bore fused-silica capillary column. The GC column is temperature-programmed to separate the analytes, which are then detected with a mass spectrometer (MS) connected to the gas chromatograph.
2.3 Analytes eluted from the capillary column are introduced into the mass spectrometer via a jet separator or a direct connection. Identification of target analytes is accomplished by comparing their mass spectra with the electron impact (or electron impact-like) spectra of authentic standards. Quantitation is accomplished by comparing the response of a major (quantitation) ion relative to an internal standard using a five-point calibration curve.
2.4 The method includes specific calibration and quality control steps that supersede the general requirements provided in Method 8000.

3.0 INTERFERENCES

3.1 Raw GC/MS data from all blanks, samples, and spikes must be evaluated for interferences. Determine if the source of interference is in the preparation and/or cleanup of the samples and take corrective action to eliminate the problem.
3.2 Contamination by carryover can occur whenever high-concentration and low-concentration samples are sequentially analyzed. To reduce carryover, the sample syringe must be rinsed with solvent between sample injections. Whenever an unusually concentrated sample is encountered, it should be followed by the analysis of solvent to check for crosscontamination.

4.0 APPARATUS AND MATERIALS

4.1 Gas chromatograph/mass spectrometer system

4.1.1 Gas chromatograph - An analytical system complete with a temperature-programmable gas chromatograph suitable for splitless injection and all required accessories, including syringes, analytical columns, and gases. The capillary column should be directly coupled to the source.
4.1.2 Column - $30-\mathrm{m} \times 0.25-\mathrm{mm}$ ID (or $0.32-\mathrm{mm}$ ID) $1-\mu \mathrm{m}$ film thickness silicone-coated fused-silica capillary column (J\&W Scientific DB-5 or equivalent).

4.1.3 Mass spectrometer

4.1.3.1 Capable of scanning from 35 to 500 amu every 1 sec or less, using 70 volts (nominal) electron energy in the electron impact ionization mode. The mass spectrometer must be capable of producing a mass spectrum for decafluorotriphenylphosphine (DFTPP) which meets the criteria in Table 3 when $1 \mu \mathrm{~L}$ of the GC/MS tuning standard is injected through the GC (50 ng of DFTPP).
4.1.3.2 An ion trap mass spectrometer may be used if it is capable of axial modulation to reduce ion-molecule reactions and can produce electron impact-like spectra that match those in the EPA/NIST Library. The mass spectrometer must be capable of producing a mass spectrum for DFTPP which meets the criteria in Table 3 when 5 or 50 ng are introduced.
4.1.4 GC/MS interface - Any GC-to-MS interface may be used that gives acceptable calibration points at 50 ng per injection for each compound of interest and achieves acceptable tuning performance criteria. For a narrow-bore capillary column, the interface is usually capillary-direct into the mass spectrometer source.
4.1.5 Data system - A computer system should be interfaced to the mass spectrometer. The system must allow the continuous acquisition and storage on machine-readable media of all mass spectra obtained throughout the duration of the chromatographic program. The computer should have software that can search any GC/MS data file for ions of a specific mass and that can plot such ion abundances versus time or scan number. This type of plot is defined as an Extracted Ion Current Profile (EICP). Software should also be available that allows integrating the abundances in any EICP between specified time or scan-number limits. The most recent version of the EPA/NIST Mass Spectral Library should also be available.
4.1.6 Guard column (optional) - (J\&W deactivated fused-silica, $0.25-\mathrm{mm}$ ID $\times 6-\mathrm{m}$, or equivalent) between the injection port and the analytical column joined with column joiners (Hewlett-Packard Catalog No. 5062-3556, or equivalent).
4.2 Syringe $-10-\mu \mathrm{L}$.
4.3 Volumetric flasks, Class A - Appropriate sizes with ground-glass stoppers.
4.4 Balance - Analytical, capable of weighing 0.0001 g .
4.5 Bottles - glass with polytetrafluoroethylene (PTFE)-lined screw caps or crimp tops.

5.0 REAGENTS

5.1 Reagent grade inorganic chemicals shall be used in all tests. Unless otherwise indicated, it is intended that all reagents shall conform to the specifications of the Committee on Analytical Reagents of the American Chemical Society, where such specifications are available.

Other grades may be used, provided it is first ascertained that the reagent is of sufficiently high purity to permit its use without lessening the accuracy of the determination.
5.2 Organic-free reagent water-All references to water in this method refer to organic-free reagent water, as defined in Chapter One.
5.3 Stock standard solutions ($1000 \mathrm{mg} / \mathrm{L}$) - Standard solutions can be prepared from pure standard materials or purchased as certified solutions.
5.3.1 Prepare stock standard solutions by accurately weighing about 0.0100 g of pure material. Dissolve the material in pesticide quality acetone or other suitable solvent and dilute to volume in a $10-\mathrm{mL}$ volumetric flask. Larger volumes can be used at the convenience of the analyst. When compound purity is assayed to be 96% or greater, the weight may be used without correction to calculate the concentration of the stock standard. Commerciallyprepared stock standards may be used at any concentration if they are certified by the manufacturer or by an independent source.
5.3.2 Transfer the stock standard solutions into bottles with PTFE-lined screw-caps. Store, protected from light, at $-10^{\circ} \mathrm{C}$ or less or as recommended by the standard manufacturer. Stock standard solutions should be checked frequently for signs of degradation or evaporation, especially just prior to preparing calibration standards from them.
5.3.3 Stock standard solutions must be replaced after 1 year or sooner if comparison with quality control check samples indicates a problem.
5.3.4 It is recommended that nitrosamine compounds be placed together in a separate calibration mix and not combined with other calibration mixes. When using a premixed certified standard, consult the manufacturer's instructions for additional guidance.
5.3.5 Mixes with hydrochloride salts may contain hydrochloric acid, which can cause analytical difficulties. When using a premixed certified standard, consult the manufacturer's instructions for additional guidance.
5.4 Internal standard solutions - The internal standards recommended are 1,4-dichloro-benzene- d_{4}, naphthalene- d_{8}, acenaphthene- d_{10}, phenanthrene- d_{10}, chrysene- d_{12}, and perylene- d_{12} (see Table 5). Other compounds may be used as internal standards as long as the specifications in Sec. 7.3.2 are met.
5.4.1 Dissolve 0.200 g of each compound with a small volume of carbon disulfide. Transfer to a 50 mL volumetric flask and dilute to volume with methylene chloride so that the final solvent is approximately 20% carbon disulfide. Most of the compounds are also soluble in small volumes of methanol, acetone, or toluene, except for perylene- d_{12}. The resulting solution will contain each standard at a concentration of $4,000 \mathrm{ng} / \mu \mathrm{L}$. Each $1-\mathrm{mL}$ sample extract undergoing analysis should be spiked with $10 \mu \mathrm{~L}$ of the internal standard solution, resulting in a concentration of $40 \mathrm{ng} / \mu \mathrm{L}$ of each internal standard. Store at $-10^{\circ} \mathrm{C}$ or less when not in use. When using premixed certified solutions, store according to the manufacturer's documented holding time and storage temperature recommendations.
5.4.2 If a more sensitive mass spectrometer is employed to achieve lower detection levels, a more dilute internal standard solution may be required. Area counts of the
internal standard peaks should be between 50-200\% of the area of the target analytes in the mid-point calibration analysis.
5.5 GC/MS tuning standard - A methylene chloride solution containing $50 \mathrm{ng} / \mu \mathrm{L}$ of decafluorotriphenylphosphine (DFTPP) should be prepared. The standard should also contain 50 $\mathrm{ng} / \mu \mathrm{L}$ each of $4,4^{\prime}-\mathrm{DDT}$, pentachlorophenol, and benzidine to verify injection port inertness and GC column performance. Store at $-10^{\circ} \mathrm{C}$ or less when not in use. If a more sensitive mass spectrometer is employed to achieve lower detection levels, a more dilute tuning solution may be necessary. When using premixed certified solutions, store according to the manufacturer's documented holding time and storage temperature recommendations.
5.6 Calibration standards - A minimum of five calibration standards should be prepared at five different concentrations. At least one of the calibration standards should correspond to a sample concentration at or below that necessary to meet the data quality objectives of the project. The remaining standards should correspond to the range of concentrations found in actual samples but should not exceed the working range of the GC/MS system. Each standard should contain each analyte for detection by this method.
5.6.1 It is the intent of EPA that all target analytes for a particular analysis be included in the calibration standard(s). These target analytes may not include the entire list of analytes (Sec. 1.1) for which the method has been demonstrated. However, the laboratory shall not report a quantitative result for a target analyte that was not included in the calibration standard(s).
5.6.2 Each 1-mL aliquot of calibration standard should be spiked with $10 \mu \mathrm{~L}$ of the internal standard solution prior to analysis. All standards should be stored at $-10^{\circ} \mathrm{C}$ or less, and should be freshly prepared once a year, or sooner if check standards indicate a problem. The calibration verification standard should be prepared weekly and stored at $4^{\circ} \mathrm{C}$. When using premixed certified solutions, store according to the manufacturer's documented holding time and storage temperature recommendations.
5.7 Surrogate standards - The recommended surrogates are phenol-d ${ }_{6}$, 2-fluorophenol, 2,4,6-tribromophenol, nitrobenzene-d ${ }_{5}$, 2-fluorobiphenyl, and p-terphenyl-d ${ }_{14}$. See Method 3500 for instructions on preparing the surrogate solutions.
5.7.1 Surrogate standard check - Determine what the appropriate concentration should be for the blank extracts after all extraction, cleanup, and concentration steps. Inject this concentration into the GC/MS to determine recovery of surrogate standards. It is recommended that this check be done whenever a new surrogate spiking solution is prepared.

NOTE: Method 3561 (SFE Extraction of PAHs) recommends the use of bromobenzene and p-quaterphenyl to better cover the range of PAHs listed in the method.
5.7.2 If a more sensitive mass spectrometer is employed to achieve lower detection levels, a more dilute surrogate solution may be necessary.
5.8 Matrix spike and laboratory control standards - See Method 3500 for instructions on preparing the matrix spike standard. The same standard may be used as the laboratory control standard (LCS).
5.8.1 Matrix spike check - Determine what concentration should be in the blank extracts after all extraction, cleanup, and concentration steps. Inject this concentration into the GC/MS to determine recovery. It is recommended that this check be done whenever a new matrix spiking solution is prepared.
5.8.2 If a more sensitive mass spectrometer is employed to achieve lower detection levels, a more dilute matrix and LCS spiking solution may be necessary.
5.8.3 Some projects may require the spiking of the specific compounds of interest, since the spiking compounds listed in Method 3500 would not be representative of the compounds of interest required for the project. When this occurs, the matrix and LCS spiking standards should be prepared in methanol, with each compound present at a concentration appropriate for the project.
5.9 Solvents - Acetone, hexane, methylene chloride, isooctane, carbon disulfide, toluene, and other appropriate solvents. All solvents should be pesticide quality or equivalent.

6.0 SAMPLE COLLECTION, PRESERVATION, AND HANDLING

6.1 See the introductory material to this chapter, Organic Analytes, Sec. 4.1.
6.2 Store the sample extracts at $-10^{\circ} \mathrm{C}$, protected from light, in sealed vials (e.g., screwcap vials or crimp-capped vials) equipped with unpierced PTFE-lined septa.

7.0 PROCEDURE

7.1 Sample preparation

7.1.1 Samples are normally prepared by one of the following methods prior to GC/MS analysis.

Matrix

Air (particulates and sorbent resin)
Water (including TCLP leachates)
Soil/sediment
Waste

Methods

3542
3510, 3520, 3535
3540, 3541, 3545, 3550, 3560, 3561
3540, 3541, 3545, 3550, 3560, 3561, 3580
7.1.2 In very limited applications, direct injection of the sample into the GC/MS system with a $10-\mu \mathrm{L}$ syringe may be appropriate. The detection limit is very high (approximately $10,000 \mu \mathrm{~g} / \mathrm{L}$). Therefore, it is only permitted where concentrations in excess of $10,000 \mu \mathrm{~g} / \mathrm{L}$ are expected.
7.2 Extract cleanup - Extracts may be cleaned up by any of the following methods prior to GC/MS analysis.

Analytes of interest
Aniline \& aniline derivatives
Phenols
Phthalate esters
Nitrosamines
Organochlorine pesticides \& PCBs
Nitroaromatics and cyclic ketones
Polynuclear aromatic hydrocarbons
Haloethers
Chlorinated hydrocarbons
Organophosphorus pesticides
Petroleum waste
All base, neutral, and acid priority pollutants

Methods
3620
3630, 3640, $8041^{\text {a }}$
3610, 3620, 3640
3610, 3620, 3640
3610, 3620, 3630, 3660, 3665
3620, 3640
3611, 3630, 3640
3620, 3640
3620, 3640
3620
3611, 3650
3640
${ }^{\text {a }}$ Method 8041 includes a derivatization technique and a GC/ECD analysis, if interferences are encountered on GC/FID.

7.3 Initial calibration

Establish the GC/MS operating conditions, using the following recommendations as guidance.

Mass range:
Scan time:
Initial temperature:
Temperature program:
Final temperature: Injector temperature: Transfer line temperature:
Source temperature: Injector:
Injection volume:
Carrier gas:
Ion trap only:

35-500 amu
$1 \mathrm{sec} /$ scan
$40^{\circ} \mathrm{C}$, hold for 4 minutes
$40-270^{\circ} \mathrm{C}$ at $10^{\circ} \mathrm{C} / \mathrm{min}$
$270^{\circ} \mathrm{C}$, hold until benzo[g, h, i]perylene elutes
$250-300^{\circ} \mathrm{C}$
$250-300^{\circ} \mathrm{C}$
According to manufacturer's specifications
Grob-type, splitless
1-2 $\mu \mathrm{L}$
Hydrogen at $50 \mathrm{~cm} / \mathrm{sec}$ or helium at $30 \mathrm{~cm} / \mathrm{sec}$
Set axial modulation, manifold temperature, and emission current to manufacturer's recommendations

Split injection is allowed if the sensitivity of the mass spectrometer is sufficient.
7.3.1 The GC/MS system must be hardware-tuned using a $50-\mathrm{ng}$ injection of DFTPP. Analyses must not begin until the tuning criteria are met.
7.3.1.1 In the absence of specific recommendations on how to acquire the mass spectrum of DFTPP from the instrument manufacturer, the following approach has been shown to be useful: Three scans (the peak apex scan and the scans immediately preceding and following the apex) are acquired and averaged. Background subtraction is required, and must be accomplished using a single scan acquired no more than 20 scans prior to the elution of DFTPP. The background
subtraction should be designed only to eliminate column bleed or instrument background ions. Do not subtract part of the DFTPP peak.
7.3.1.2 Use the DFTPP mass intensity criteria in Table 3 as tuning acceptance criteria. Alternatively, other documented tuning criteria may be used (e.g. CLP, Method 525, or manufacturer's instructions), provided that method performance is not adversely affected.

NOTE: All subsequent standards, samples, MS/MSDs, and blanks associated with a DFTPP analysis must use the identical mass spectrometer instrument conditions.
7.3.1.3 The GC/MS tuning standard solution should also be used to assess GC column performance and injection port inertness. Degradation of DDT to DDE and DDD should not exceed 20\%. (See Sec. 8.0 of Method 8081 for the percent breakdown calculation). Benzidine and pentachlorophenol should be present at their normal responses, and no peak tailing should be visible.
7.3.1.4 If degradation is excessive and/or poor chromatography is noted, the injection port may require cleaning. It may also be necessary to break off the first $6-12$ in. of the capillary column. The use of a guard column (Sec. 4.1.6) between the injection port and the analytical column may help prolong analytical column performance.
7.3.2 The internal standards selected in Sec. 5.4 should permit most of the components of interest in a chromatogram to have retention times of 0.80-1.20 relative to one of the internal standards. Use the base peak ion from the specific internal standard as the primary ion for quantitation (see Table 1). If interferences are noted, use the next most intense ion as the quantitation ion (i.e. for 1,4 -dichlorobenzene- d_{4}, use $152 \mathrm{~m} / \mathrm{z}$ for quantitation).
7.3.3 Analyze 1-2 $\mu \mathrm{L}$ of each calibration standard (containing internal standards) and tabulate the area of the primary characteristic ion against concentration for each target analyte (as indicated in Table 1). A set of at least five calibration standards is necessary (see Sec. 5.6 and Method 8000). The injection volume must be the same for all standards and sample extracts. Figure 1 shows a chromatogram of a calibration standard containing base/neutral and acid analytes.

Calculate response factors (RFs) for each target analyte relative to one of the internal standards as follows:

$$
R F=\frac{A_{s} \times C_{i s}}{A_{i s} \times C_{s}}
$$

where:

$$
A_{s}=\text { Peak area (or height) of the analyte or surrogate. }
$$

$\mathrm{A}_{\text {is }}=$ Peak area (or height) of the internal standard.
$C_{s}=$ Concentration of the analyte or surrogate, in $\mu \mathrm{g} / \mathrm{L}$.
$\mathrm{C}_{\text {is }}=$ Concentration of the internal standard, in $\mu \mathrm{g} / \mathrm{L}$.

7.3.4 System performance check compounds (SPCCs)

7.3.4.1 A system performance check must be performed to ensure that minimum average RFs are met before the calibration curve is used. For semivolatiles, the System performance check compounds (SPCCs) are: N-nitroso-di-n-propylamine; hexachlorocyclopentadiene; 2,4-dinitrophenol; and 4-nitrophenol.
7.3.4.2 The minimum acceptable average RF for these compounds is 0.050 . These SPCCs typically have very low RFs ($0.1-0.2$) and tend to decrease in response as the chromatographic system begins to deteriorate or the standard material begins to deteriorate. They are usually the first to show poor performance. Therefore, they must meet the minimum requirement when the system is calibrated.
7.3.4.3 If the minimum response factors are not met, the system must be evaluated, and corrective action must be taken before sample analysis begins. Possible problems include standard mixture degradation, injection port inlet contamination, contamination at the front end of the analytical column, and active sites in the column or chromatographic system. This check must be met before sample analysis begins.

7.3.5 Calibration check compounds (CCCs)

7.3.5.1 The purpose of the CCCs are to evaluate the calibration from the standpoint of the integrity of the system. High variability for these compounds may be indicative of system leaks or reactive sites on the column. Meeting the CCC criteria is not a substitute for successful calibration of the target analytes using one of the approaches described in Sec. 7.0 of Method 8000.
7.3.5.2 Calculate the mean response factor and the relative standard deviation (RSD) of the response factors for each target analyte. The RSD should be less than or equal to 15% for each target analyte. However, the RSD for each individual CCC (see Table 4) must be less than or equal to 30%.

$$
\text { mean } R F=\overline{R F}=\frac{\sum_{i=1}^{n} R F_{i}}{n}
$$

$S D=\sqrt{\frac{\sum_{i=1}^{n}\left(R F_{i}-\overline{R F}\right)^{2}}{n-1}}$

$$
R S D=\frac{S D}{\overline{R F}} \times 100
$$

7.3.5.3 If the RSD of any CCC is greater than 30%, then the chromatographic system is too reactive for analysis to begin. Clean or replace the injector liner and/or capillary column, then repeat the calibration procedure beginning with Sec. 7.3.
7.3.5.4 If the CCCs are not included in the list of analytes for a project, and therefore not included in the calibration standards, then refer to Sec. 7.0 of Method 8000.
7.3.6 Evaluation of retention times - The relative retention time (RRT) of each target analyte in each calibration standard should agree within 0.06 RRT units. Late-eluting target analytes usually have much better agreement.

$$
\text { RRT }=\frac{\text { Retention time of the analyte }}{\text { Retention time of the internal standard }}
$$

7.3.7 Linearity of target analytes - If the RSD of any target analytes is 15% or less, then the relative response factor is assumed to be constant over the calibration range, and the average relative response factor may be used for quantitation (Sec. 7.6.2).
7.3.7.1 If the RSD of any target analyte is greater than 15%, refer to Sec. 7.0 in Method 8000 for additional calibration options. One of the options must be applied to GC/MS calibration in this situation, or a new initial calibration must be performed.

NOTE: Method 8000 designates a linearity criterion of 20% RSD. That criterion pertains to GC and HPLC methods other than GC/MS. Method 8270 requires 15% RSD as evidence of sufficient linearity to employ an average response factor.
7.3.7.2 When the RSD exceeds 15%, the plotting and visual inspection of a calibration curve can be a useful diagnostic tool. The inspection may indicate analytical problems, including errors in standard preparation, the presence of active sites in the chromatographic system, analytes that exhibit poor chromatographic behavior, etc.
7.4 GC/MS calibration verification - Calibration verification consists of three steps that are performed at the beginning of each 12-hour analytical shift.
7.4.1 Prior to the analysis of samples or calibration standards, inject 50 ng of the DFTPP standard into the GC/MS system. The resultant mass spectrum for DFTPP must meet the criteria given in Table 3 before sample analysis begins. These criteria must be demonstrated each 12-hour shift during which samples are analyzed.
7.4.2 The initial calibration (Sec. 7.3) for each compound of interest should be verified once every 12 hours prior to sample analysis, using the introduction technique and conditions used for samples. This is accomplished by analyzing a calibration standard at a concentration near the midpoint concentration for the calibrating range of the GC/MS. The
results from the calibration standard analysis should meet the verification acceptance criteria provided in Secs. 7.4.4 through 7.4.7.

NOTE: The DFTPP and calibration verification standard may be combined into a single standard as long as both tuning and calibration verification acceptance criteria for the project can be met without interferences.
7.4.3 A method blank should be analyzed either after the calibration standard, or at any other time during the analytical shift, to ensure that the total system (introduction device, transfer lines and GC/MS system) is free of contaminants. If the method blank indicates contamination, then it may be appropriate to analyze a solvent blank to demonstrate that the contamination is not a result of carryover from standards or samples. See Sec. 8.0 of Method 8000B for method blank performance criteria.

7.4.4 System performance check compounds (SPCCs)

7.4.4.1 A system performance check must be made during every 12-hour analytical shift. Each SPCC in the calibration verification standard must meet a minimum response factor of 0.050 . This is the same check that is applied during the initial calibration.
7.4.4.2 If the minimum response factors are not met, the system must be evaluated, and corrective action must be taken before sample analysis begins. Possible problems include standard mixture degradation, injection port inlet contamination, contamination at the front end of the analytical column, and active sites in the column or chromatographic system. This check must be met before sample analysis begins.

7.4.5 Calibration check compounds (CCCs)

7.4.5.1 After the system performance check is met, the CCCs listed in Table 4 are used to check the validity of the initial calibration. Use percent difference when performing the average response factor model calibration. Use percent drift when calibrating using a regression fit model. Refer to Sec. 7.0 of Method 8000 for guidance on calculating percent difference and drift.
7.4.5.2 If the percent difference for each CCC is less than or equal to 20%, then the initial calibration is assumed to be valid. If the criterion is not met (i.e., greater than 20% difference or drift) for any one CCC, then corrective action must be taken prior to the analysis of samples. If the CCCs are not included in the list of analytes for a project, and therefore not included in the calibration standards, then all analytes must meet the 20% difference or drift criterion.
7.4.5.3 Problems similar to those listed under SPCCs could affect the CCCs. If the problem cannot be corrected by other measures, a new initial calibration must be generated. The CCC criteria must be met before sample analysis begins.
7.4.6 Internal standard retention time - The retention times of the internal standards in the calibration verification standard must be evaluated immediately after or during data acquisition. If the retention time for any internal standard changes by more than 30 seconds from that in the mid-point standard level of the most recent initial calibration
sequence, then the chromatographic system must be inspected for malfunctions and corrections must be made, as required. When corrections are made, reanalysis of samples analyzed while the system was malfunctioning is required.
7.4.7 Internal standard response - If the EICP area for any of the internal standards in the calibration verification standard changes by a factor of two (-50% to $+100 \%$) from that in the mid-point standard level of the most recent initial calibration sequence, the mass spectrometer must be inspected for malfunctions and corrections must be made, as appropriate. When corrections are made, reanalysis of samples analyzed while the system was malfunctioning is required.

7.5 GC/MS analysis of samples

7.5.1 It is highly recommended that sample extracts be screened on a GC/FID or GC/PID using the same type of capillary column used in the GC/MS system. This will minimize contamination of the GC/MS system from unexpectedly high concentrations of organic compounds.
7.5.2 Allow the sample extract to warm to room temperature. Just prior to analysis, add $10 \mu \mathrm{~L}$ of the internal standard solution to the $1-\mathrm{mL}$ concentrated sample extract obtained from sample preparation.
7.5.3 Inject a 1-2 $\mu \mathrm{L}$ aliquot of the sample extract into the GC/MS system, using the same operating conditions that were used for the calibration (Sec. 7.3). The volume to be injected should contain 100 ng of base/neutral and 200 ng of acid surrogates (assuming 100% recovery), unless a more sensitive GC/MS system is being used and the surrogate solution is less concentrated then that listed in Sec. 5.7. The injection volume must be the same volume used for the calibration standards.
7.5.4 If the response for any quantitation ion exceeds the initial calibration range of the GC/MS system, the sample extract must be diluted and reanalyzed. Additional internal standard solution must be added to the diluted extract to maintain the same concentration as in the calibration standards ($40 \mathrm{ng} / \mu \mathrm{L}$, unless a more sensitive $\mathrm{GC} / \mathrm{MS}$ system is being used). Secondary ion quantitation should be used only when there are sample interferences with the primary ion.

NOTE: It may be a useful diagnostic tool to monitor internal standard retention times and responses (area counts) in all samples, spikes, blanks, and standards to effectively check drifting method performance, poor injection execution, and anticipate the need for system inspection and/or maintenance.
7.5.4.1 When ions from a compound in the sample saturate the detector, this analysis must be followed by the analysis of an instrument blank consisting of clean solvent. If the blank analysis is not free of interferences, then the system must be decontaminated. Sample analysis may not resume until the blank analysis is demonstrated to be free of interferences.
7.5.4.2 All dilutions should keep the response of the major constituents (previously saturated peaks) in the upper half of the linear range of the curve.
7.5.5 The use of selected ion monitoring (SIM) is acceptable for applications requiring detection limits below the normal range of electron impact mass spectrometry. However, SIM may provide a lesser degree of confidence in the compound identification unless multiple ions are monitored for each compound.

7.6 Qualitative analysis

7.6.1 The qualitative identification of compounds determined by this method is based on retention time and on comparison of the sample mass spectrum, after background correction, with characteristic ions in a reference mass spectrum. The reference mass spectrum must be generated by the laboratory using the conditions of this method. The characteristic ions from the reference mass spectrum are defined as the three ions of greatest relative intensity, or any ions over 30% relative intensity, if less than three such ions occur in the reference spectrum. Compounds are identified when the following criteria are met.
7.6.1.1 The intensities of the characteristic ions of a compound must maximize in the same scan or within one scan of each other. Selection of a peak by a data system target compound search routine where the search is based on the presence of a target chromatographic peak containing ions specific for the target compound at a compound-specific retention time will be accepted as meeting this criterion.
7.6.1.2 The RRT of the sample component is within ± 0.06 RRT units of the RRT of the standard component.
7.6.1.3 The relative intensities of the characteristic ions agree within 30\% of the relative intensities of these ions in the reference spectrum. (Example: For an ion with an abundance of 50% in the reference spectrum, the corresponding abundance in a sample spectrum can range between 20% and 80%.)
7.6.1.4 Structural isomers that produce very similar mass spectra should be identified as individual isomers if they have sufficiently different GC retention times. Sufficient GC resolution is achieved if the height of the valley between two isomer peaks is less than 25% of the sum of the two peak heights. Otherwise, structural isomers are identified as isomeric pairs. Diastereomeric pairs (e.g., Aramite and Isosafrol) that may be separable by the GC should be identified, quantitated and reported as the sum of both compounds by the GC.
7.6.1.5 Identification is hampered when sample components are not resolved chromatographically and produce mass spectra containing ions contributed by more than one analyte. When gas chromatographic peaks obviously represent more than one sample component (i.e., a broadened peak with shoulder(s) or a valley between two or more maxima), appropriate selection of analyte spectra and background spectra is important.
7.6.1.6 Examination of extracted ion current profiles of appropriate ions can aid in the selection of spectra and in qualitative identification of compounds. When analytes coelute (i.e., only one chromatographic peak is apparent), the identification criteria may be met, but each analyte spectrum will contain extraneous ions contributed by the coeluting compound.
7.6.2 For samples containing components not associated with the calibration standards, a library search may be made for the purpose of tentative identification. The necessity to perform this type of identification will be determined by the purpose of the analyses being conducted. Data system library search routines should not use normalization routines that would misrepresent the library or unknown spectra when compared to each other.

For example, the RCRA permit or waste delisting requirements may require the reporting of non-target analytes. Only after visual comparison of sample spectra with the nearest library searches may the analyst assign a tentative identification. Guidelines for tentative identification are:
(1) Relative intensities of major ions in the reference spectrum (ions $>10 \%$ of the most abundant ion) should be present in the sample spectrum.
(2) The relative intensities of the major ions should agree within $\pm 20 \%$. (Example: For an ion with an abundance of 50% in the standard spectrum, the corresponding sample ion abundance must be between 30 and 70%.)
(3) Molecular ions present in the reference spectrum should be present in the sample spectrum.
(4) lons present in the sample spectrum but not in the reference spectrum should be reviewed for possible background contamination or presence of coeluting compounds.
(5) lons present in the reference spectrum but not in the sample spectrum should be reviewed for possible subtraction from the sample spectrum because of background contamination or coeluting peaks. Data system library reduction programs can sometimes create these discrepancies.

7.7 Quantitative analysis

7.7.1 Once a compound has been identified, the quantitation of that compound will be based on the integrated abundance of the primary characteristic ion from the EICP.
7.7.2 If the RSD of a compound's response factor is 15% or less, then the concentration in the extract may be determined using the average response factor (RF) from initial calibration data (Sec. 7.3.5). See Method 8000, Sec. 7.0, for the equations describing internal standard calibration and either linear or non-linear calibrations.
7.7.3 Where applicable, the concentration of any non-target analytes identified in the sample (Sec. 7.6.2) should be estimated. The same formulae should be used with the following modifications: The areas A_{x} and $A_{i s}$ should be from the total ion chromatograms, and the RF for the compound should be assumed to be 1 .
7.7.4 The resulting concentration should be reported indicating: (1) that the value is an estimate, and (2) which internal standard was used to determine concentration. Use the nearest internal standard free of interferences.
7.7.5 Quantitation of multicomponent compounds (e.g., Toxaphene, Aroclors, etc.) is beyond the scope of Method 8270. Normally, quantitation is performed using a GC/ECD, by Methods 8081 or 8082 . However, Method 8270 may be used to confirm the identification of these compounds, when the concentrations are at least $10 \mathrm{ng} / \mu \mathrm{L}$ in the concentrated sample extract.
7.7.6 Structural isomers that produce very similar mass spectra should be quantitated as individual isomers if they have sufficiently different GC retention times. Sufficient GC resolution is achieved if the height of the valley between two isomer peaks is less than 25% of the sum of the two peak heights. Otherwise, structural isomers are quantitated as isomeric pairs. Diastereomeric pairs (e.g., Aramite and Isosafrol) that may be separable by the GC should be summed and reported as the sum of both compounds.

8.0 QUALITY CONTROL

8.1 Refer to Chapter One and Method 8000 for specific quality control (QC) procedures. Quality control procedures to ensure the proper operation of the various sample preparation and/or sample introduction techniques can be found in Method 3500. Each laboratory should maintain a formal quality assurance program. The laboratory should also maintain records to document the quality of the data generated.
8.2 Quality control procedures necessary to evaluate the GC system operation are found in Sec. 7.0 of Method 8000 and include calibration verification and chromatographic analysis of samples. In addition, instrument QC requirements may be found in the following sections of Method 8270:
8.2.1 The GC/MS system must be tuned to meet the DFTPP criteria discussed in Secs. 7.3.1 and 7.4.1.
8.2.2 There must be an initial calibration of the GC/MS system as described in Sec. 7.3.
8.2.3 The GC/MS system must meet the calibration verification acceptance criteria in Sec. 7.4, each 12 hours.
8.2.4 The RRT of the sample component must fall within the RRT window of the standard component provided in Sec. 7.6.1.
8.3 Initial demonstration of proficiency - Each laboratory must demonstrate initial proficiency with each sample preparation and determinative method combination it utilizes, by generating data of acceptable accuracy and precision for target analytes in a clean matrix. The laboratory must also repeat the following operations whenever new staff are trained or significant changes in instrumentation are made. See Method 8000, Sec. 8.0 for information on how to accomplish this demonstration.
8.4 Sample quality control for preparation and analysis - The laboratory must also have procedures for documenting the effect of the matrix on method performance (precision, accuracy, and detection limit). At a minimum, this includes the analysis of QC samples including a method blank, matrix spike, a duplicate, and a laboratory control sample (LCS) in each analytical batch and the addition of surrogates to each field sample and QC sample.
8.4.1 Before processing any samples, the analyst should demonstrate, through the analysis of a method blank, that interferences from the analytical system, glassware, and reagents are under control. Each time a set of samples is analyzed or there is a change in reagents, a method blank should be analyzed as a safeguard against chronic laboratory contamination. The blanks should be carried through all stages of sample preparation and measurement.
8.4.2 Documenting the effect of the matrix should include the analysis of at least one matrix spike and one duplicate unspiked sample or one matrix spike/matrix spike duplicate pair. The decision on whether to prepare and analyze duplicate samples or a matrix spike/matrix spike duplicate must be based on a knowledge of the samples in the sample batch. If samples are expected to contain target analytes, then laboratories may use one matrix spike and a duplicate analysis of an unspiked field sample. If samples are not expected to contain target analytes, laboratories should use a matrix spike and matrix spike duplicate pair.
8.4.3 A laboratory control sample (LCS) should be included with each analytical batch. The LCS consists of an aliquot of a clean (control) matrix similar to the sample matrix and of the same weight or volume. The LCS is spiked with the same analytes at the same concentrations as the matrix spike. When the results of the matrix spike analysis indicate a potential problem due to the sample matrix itself, the LCS results are used to verify that the laboratory can perform the analysis in a clean matrix.
8.4.4 See Method 8000 , Sec. 8.0 for the details on carrying out sample quality control procedures for preparation and analysis.
8.5 Surrogate recoveries - The laboratory must evaluate surrogate recovery data from individual samples versus the surrogate control limits developed by the laboratory. See Method 8000, Sec. 8.0 for information on evaluating surrogate data and developing and updating surrogate limits.
8.6 The experience of the analyst performing GC/MS analyses is invaluable to the success of the methods. Each day that analysis is performed, the calibration verification standard should be evaluated to determine if the chromatographic system is operating properly. Questions that should be asked are: Do the peaks look normal? Is the response obtained comparable to the response from previous calibrations? Careful examination of the standard chromatogram can indicate whether the column is still performing acceptably, the injector is leaking, the injector septum needs replacing, etc. If any changes are made to the system (e.g., the column changed, a septum is changed), see the guidance in Sec 8.2 of Method 8000 regarding whether recalibration of the system must take place.
8.7 It is recommended that the laboratory adopt additional quality assurance practices for use with this method. The specific practices that are most productive depend upon the needs of the laboratory and the nature of the samples. Whenever possible, the laboratory should analyze standard reference materials and participate in relevant performance evaluation studies.

9.0 METHOD PERFORMANCE

9.1 Method 8250 (the packed column version of Method 8270) was tested by 15 laboratories using organic-free reagent water, drinking water, surface water, and industrial
wastewaters spiked at six concentrations ranging from 5 to $1,300 \mu \mathrm{~g} / \mathrm{L}$. Single operator accuracy and precision, and method accuracy were found to be directly related to the concentration of the analyte and essentially independent of the sample matrix. Linear equations to describe these relationships are presented in Table 7. These values are presented as guidance only and are not intended as absolute acceptance criteria. Laboratories should generate their own acceptance criteria for capillary column method performance. (See Method 8000.)
9.2 Chromatograms from calibration standards analyzed with Day 0 and Day 7 samples were compared to detect possible deterioration of GC performance. These recoveries (using Method 3510 extraction) are presented in Table 8.
9.3 Method performance data using Method 3541 (automated Soxhlet extraction) are presented in Table 9. Single laboratory accuracy and precision data were obtained for semivolatile organics in a clay soil by spiking at a concentration of $6 \mathrm{mg} / \mathrm{kg}$ for each compound. The spiking solution was mixed into the soil during addition and then allowed to equilibrate for approximately 1 hour prior to extraction. The spiked samples were then extracted by Method 3541 (Automated Soxhlet). Three extractions were performed and each extract was analyzed by gas chromatography/mass spectrometry following Method 8270. The low recovery of the more volatile compounds is probably due to volatilization losses during equilibration. These data are listed in Table 10 and were taken from Reference 7.
9.4 Surrogate precision and accuracy data are presented in Table 11 from a field dynamic spiking study based on air sampling by Method 0010. The trapping media were prepared for analysis by Method 3542 and subsequently analyzed by Method 8270.
9.5 Single laboratory precision and bias data using Method 3545 (pressurized fluid extraction) for semivolatile organic compounds are presented in Table 12. The samples were conditioned spiked samples prepared and certified by a commercial supplier that contained 57 semivolatile organics at three concentrations (250,2500 , and $12,500 \mu \mathrm{~g} / \mathrm{kg}$) on three types of soil (clay, loam and sand). Spiked samples were extracted both by the Dionex Accelerated Solvent Extraction system and by the Perstorp Environmental Soxtec ${ }^{\text {™ }}$ (automated Soxhlet). The data in Table 12 represent seven replicate extractions and analyses for each individual sample and were taken from reference 9. The average recoveries from the three matrices for all analytes and all replicates relative to the automated Soxhlet data are as follows: clay 96.8%, loam 98.7% and sand 102.1%. The average recoveries from the three concentrations also relative to the automated Soxhlet data are as follows: low-101.2\%, mid-97.2\% and high-99.2\%.
9.6 Single laboratory precision and bias data using Method 3561 (SFE extraction of PAHs with a variable restrictor and solid trapping material) were obtained for the method analytes by the extraction of two certified reference materials (EC-1, a lake sediment from Environment Canada and HS-3, a marine sediment from the National Science and Engineering Research Council of Canada, both naturally-contaminated with PAHs). The SFE instrument used for these extractions was a Hewlett-Packard Model 7680. Analysis was by GC/MS. Average recoveries from six replicate extractions range from 85 to 148% (overall average of 100\%) based on the certified value (or a Soxhlet value if a certified value was unavailable for a specific analyte) for the lake sediment. Average recoveries from three replicate extractions range from 73 to 133% (overall average of 92%) based on the certified value for the marine sediment. The data are found in Tables 13 and 14 and were taken from Reference 10.
9.7 Single laboratory precision and accuracy data using Method 3561 (SFE extraction of PAHs with a fixed restrictor and liquid trapping) were obtained for twelve of the method analytes
by the extraction of a certified reference material (a soil naturally contaminated with PAHs). The SFE instrument used for these extractions was a Dionex Model 703-M. Analysis was by GC/MS. Average recoveries from four replicate extractions range from 60 to 122% (overall average of 89%) based on the certified value. Following are the instrument conditions that were utilized to extract a 3.4 g sample: Pressure - 300 atm ; Time - 60 min .; Extraction fluid - CO_{2}; Modifier - 10\% 1:1 (v/v) methanol/methylene chloride; Oven temperature $-80^{\circ} \mathrm{C}$; Restrictor temperature $-120^{\circ} \mathrm{C}$; and, Trapping fluid - chloroform (methylene chloride has also been used). The data are found in Table 15 and were taken from Reference 11.
9.8 Tables 16 and 17 contain single-laboratory precision and accuracy data for solidphase extraction of TCLP buffer solutions spiked at two levels and extracted using Method 3535.
9.9 Table 18 contains multiple-laboratory data for solid-phase extraction of spiked TCLP soil leachates extracted using Method 3535.

10.0 REFERENCES

1. Eichelberger, J.W., Harris, L.E., and Budde, W.L., "Reference Compound to Calibrate Ion Abundance Measurement in Gas Chromatography-Mass Spectrometry Systems", Analytical Chemistry, 47, 995-1000, 1975.
2. "Method Detection Limit for Methods 624 and 625", Olynyk, P., Budde, W.L., and Eichelberger, J.W., unpublished report, October 1980.
3. "Interlaboratory Method Study for EPA Method 625-Base/Neutrals, Acids, and Pesticides", Final Report for EPA Contract 68-03-3102.
4. Burke, J.A., "Gas Chromatography for Pesticide Residue Analysis: Some Practical Aspects", Journal of the Association of Official Analytical Chemists (AOAC), 48, 1037, 1965.
5. Lucas, S.V., Kornfeld, R.A., "GC-MS Suitability Testing of RCRA Appendix VIII and Michigan List Analytes ", U.S. Environmental Protection Agency, Environmental Monitoring and Support Laboratory, Cincinnati, OH 45268, February 20, 1987, Contract No. 68-03-3224.
6. Engel, T.M., Kornfeld, R.A., Warner, J.S., and Andrews, K.D., "Screening of Semivolatile Organic Compounds for Extractability and Aqueous Stability by SW-846, Method 3510", U.S. Environmental Protection Agency, Environmental Monitoring and Support Laboratory, Cincinnati, OH 45268, June 5, 1987, Contract 68-03-3224.
7. Lopez-Avila, V. (W. Beckert, Project Officer); "Development of a Soxtec Extraction Procedure for Extraction of Organic Compounds from Soils and Sediments"; U.S. Environmental Protection Agency, Environmental Monitoring and Support Laboratory, Las Vegas, NV, October 1991; EPA 600/X-91/140.
8. Bursey, J., Merrill, R., McAllister, R., and McGaughey, J., "Laboratory Validation of VOST and SemiVOST for Halogenated Hydrocarbons from the Clean Air Act Amendments List", Vol. 1 and 2, U.S. Environmental Protection Agency, EPA 600/R-93/123a and b, (NTIS PB 93227163 and 93-27171), Research Triangle Park, NC, July 1993.
9. Richter, B., Ezzell, J., and Felix, D., "Single Laboratory Method Validation Report: Extraction of Target Compound List/Priority Pollutant List BNAs and Pesticides using Accelerated Solvent Extraction (ASE) with Analytical Validation by GC/MS and GC/ECD", Document 101124, Dionex Corporation, Salt Lake City, UT, June 16, 1994.
10. Lee, H.B., Peart, T.E., Hong-You, R.L., and Gere, D.R., "Supercritical Carbon Dioxide Extraction of Polycyclic Aromatic Hydrocarbons from Sediments", J. Chromatography, A 653 83-91 (1993).
11. Warner, S., "SFE Extraction of PNAs from Solid Matrices Using the Dionex 703M SFE Extractor and a Liquid Trap," EPA Region III, Central Regional Laboratory, 839 Bestgate Road, Annapolis, MD 21401, December 12, 1994.
12. Markell, C., "3M Data Submission to EPA," letter to B. Lesnik, June 27, 1995.

TABLE 1

CHARACTERISTIC IONS FOR SEMIVOLATILE COMPOUNDS

| | Retention | |
| :--- | :---: | ---: | :--- |
| Compound | Primary
 Time (min) | Secondary lon(s) |
| Ion | | |

TABLE 1 (continued)

	Retention Time (min)	Primary lon	Secondary lon(s)
Compound	12.67	105	$71,51,120$
Acetophenone	12.82	107	$108,77,79,90$
4-Methylphenol	12.85	196	198,200
2,4,6-Trichlorophenol	12.87	106	$107,77,51,79$
o-Toluidine	12.93	107	$108,77,79,90$
3-Methylphenol	13.30	162	127,164
2-Chloronaphthalene	13.55	114	$42,55,56,41$
N-Nitrosopiperidine	13.62	108	$80,53,54,52$
1,4-Phenylenediamine	$13.65^{\text {a }}$	162	127,164
1-Chloronaphthalene	13.75	65	92,138
2-Nitroaniline	14.28	106	$141,140,77,89$
5-Chloro-2-methylaniline	14.48	163	194,164
Dimethyl phthalate	14.57	152	151,153
Acenaphthylene	14.62	165	63,89
2,6-Dinitrotoluene	14.62	104	$76,50,148$
Phthalic anhydride	15.00	108	$80,123,52$
o-Anisidine	15.02	138	108,92
3-Nitroaniline	15.05	164	162,160
Acenaphthene-d	15.13	154	153,152
Acenaphthene	15.13	184	63,154
2,4-Dinitrophenol	15.35	162	$164,126,98,63$
2,6-Dinitrophenol	15.50	127	$129,65,92$
4-Chloroaniline	15.60	162	$131,104,77,51$
Isosafrole	15.63	168	139
Dibenzofuran	15.78	121	$122,94,77,104$
2,4-Diaminotoluene	15.80	165	63,89
2,4-Dinitrotoluene	15.80	139	109,65
4-Nitrophenol	$16.00^{\text {a }}$	143	115,116
2-Naphthylamine	16.23	158	$104,102,76,50,130$
1,4-Naphthoquinone	16.45	122	$94,137,77,93$
p-Cresidine	16.48	109	$185,79,145$
Dichlorovos	16.70	149	177,150
Diethyl phthalate	16.70	166	165,167
Fluorene	16.70	120	$135,134,91,77$
2,4,5-Trimethylaniline	16.73	84	$57,41,116,158$
N-Nitrosodi-n-butylamine	16.78	204	206,141
4-Chlorophenyl phenyl ether	16.93	110	$81,53,55$
Hydroquinone	17.05	198	51,105
4,6-Dinitro-2-methylphenol	17.13	110	$81,82,53,69$
Resorcinol	169	168,167	
N-Nitrosodiphenylamine	162	$104,77,103,135$	
Safrole	135	$44,179,92,42$	
Hexamethyl phosphoramide			

TABLE 1 (continued)

Compound	Retention Time (min)	Primary lon	Secondary lon(s)
3-(Chloromethyl)pyridine hydrochloride	17.50	92	$127,129,65,39$
Diphenylamine	$17.54^{\text {a }}$	169	168,167
1,2,4,5-Tetrachlorobenzene	17.97	216	$214,179,108,143,218$
1-Naphthylamine	18.20	143	$115,89,63$
1-Acetyl-2-thiourea	18.22	118	$43,42,76$
4-Bromophenyl phenyl ether	18.27	248	250,141
Toluene diisocyanate	18.42	174	$145,173,146,132,91$
2,4,5-Trichlorophenol	18.47	196	$198,97,132,99$
Hexachlorobenzene	18.65	284	142,249
Nicotine	18.70	84	$133,161,162$
Pentachlorophenol	19.25	266	264,268
5-Nitro-o-toluidine	19.27	152	$77,79,106,94$
Thionazine	19.35	107	$96,97,143,79,68$
4-Nitroaniline	19.37	138	$65,108,92,80,39$
Phenanthrene-d ${ }_{10}$ (IS)	19.55	188	94,80
Phenanthrene	19.62	178	179,176
Anthracene	19.77	178	176,179
1,4-Dinitrobenzene	19.83	168	$75,50,76,92,122$
Mevinphos	19.90	127	$192,109,67,164$
Naled	20.03	109	$145,147,301,79,189$
1,3-Dinitrobenzene	20.18	168	$76,50,75,92,122$
Diallate (cis or trans)	20.57	86	$234,43,70$
1,2-Dinitrobenzene	20.58	168	$50,63,74$
Diallate (trans or cis)	20.78	86	$234,43,70$
Pentachlorobenzene	21.35	250	$252,108,248,215,254$
5-Nitro-o-anisidine	21.50	168	$79,52,138,153,77$
Pentachloronitrobenzene	21.72	237	$142,214,249,295,265$
4-Nitroquinoline-1-oxide	21.73	174	$101,128,75,116$
Di-n-butyl phthalate	21.78	149	150,104
2,3,4,6-Tetrachlorophenol	21.88	232	$131,230,166,234,168$
Dihydrosaffrole	22.42	135	64,77
Demeton-O	22.72	88	$89,60,61,115,171$
Fluoranthene	23.33	202	101,203
1,3,5-Trinitrobenzene	23.68	75	$74,213,120,91,63$
Dicrotophos	23.82	127	$67,72,109,193,237$
Benzidine	23.87	184	92,185
Trifluralin	23.88	306	$43,264,41,290$
Bromoxynil	23.90	277	$279,88,275,168$
Pyrene	24.02	202	200,203
Monocrotophos	24.08	127	$192,67,97,109$
Phorate	24.10	75	$121,97,93,260$
Sulfallate	24.23	188	$88,72,60,44$

TABLE 1 (continued)

	Retention Time (min)	Primary Ion	Secondary lon(s)
Compound	24.30	88	$60,81,89,114,115$
Demeton-S	24.33	108	$180,179,109,137,80$
Phenacetin	24.70	87	$93,125,143,229$
Dimethoate	24.70	204	$117,232,146,161$
Phenobarbital	24.90	164	$149,131,122$
Carbofuran	24.95	135	$44,199,286,153,243$
Octamethyl pyrophosphoramide	25.08	169	$168,170,115$
4-Aminobiphenyl	25.25	97	$125,270,153$
Dioxathion	25.35	231	$57,97,153,103$
Terbufos	25.43	58	$91,65,134,42$
a,a-Dimethylphenylamine	25.48	173	$175,145,109,147$
Pronamide	25.72	197	$92,120,65,77$
Aminoazobenzene	25.77	191	$163,226,228,135,193$
Dichlone	25.83	211	$163,147,11,240$
Dinoseb	25.83	88	$97,89,142,186$
Disulfoton	25.88	306	$63,326,328,264,65$
Fluchloralin	26.02	165	$150,134,164,222$
Mexacarbate	26.08	200	$108,171,80,65$
4,4'-Oxydianiline	26.43	149	91,206
Butyl benzyl phthalate	26.55	199	$152,141,169,151$
4-Nitrobiphenyl	26.85	127	$264,72,109,138$
Phosphamidon	26.87	231	$185,41,193,266$
2-Cyclohexyl-4,6-Dinitrophenol	27.03	109	$125,263,79,93$
Methyl parathion	27.17	144	$115,116,201$
Carbaryl	27.50	225	$120,77,105,148,42$
Dimethylaminoazobenzene	27.68	170	$142,114,83$
Propylthiouracil	27.83	228	229,226
Benz(a)anthracene	27.88	240	120,236
Chrysene-d	27.88	252	254,126
3,3'-Dichlorobenzidine	27.97	228	226,229
Chrysene	28.08	173	$125,127,93,158$
Malathion	28.18	272	$274,237,178,143,270$
Kepone	28.37	278	$125,109,169,153$
Fenthion	28.40	109	$97,291,139,155$
Parathion	28.47	239	$241,143,178,89$
Anilazine	28.47	149	167,279
Bis(2-ethylhexyl) phthalate	28.55	212	$106,196,180$
3,3'-Dimethylbenzidine	28.58	157	$97,121,342,159,199$
Carbophenothion	28.73	199	$152,169,141,115$
5-Nitroacenaphthene	28.77	97	$50,191,71$
Methapyrilene	28.95	193	$66,195,263,265,147$
Isodrin	79	$149,77,119,117$	
Captan			

TABLE 1 (continued)

Compound	Retention Time (min)	Primary Ion	Secondary Ion(s)
Chlorfenvinphos	29.53	267	269,323,325,295
Crotoxyphos	29.73	127	105,193,166
Phosmet	30.03	160	77,93,317,76
EPN	30.11	157	169,185,141,323
Tetrachlorvinphos	30.27	329	109,331,79,333
Di-n-octyl phthalate	30.48	149	167,43
2-Aminoanthraquinone	30.63	223	167,195
Barban	30.83	222	51,87,224,257,153
Aramite	30.92	185	191,319,334,197,321
Benzo(b)fluoranthene	31.45	252	253,125
Nitrofen	31.48	283	285,202,139,253
Benzo(k)fluoranthene	31.55	252	253,125
Chlorobenzilate	31.77	251	139,253,111,141
Fensulfothion	31.87	293	97,308,125,292
Ethion	32.08	231	97,153,125,121
Diethylstilbestrol	32.15	268	145,107,239,121,159
Famphur	32.67	218	125,93,109,217
Tri-p-tolyl phosphate ${ }^{\text {b }}$	32.75	368	367,107,165,198
Benzo(a)pyrene	32.80	252	253,125
Perylene-d ${ }_{12}$ (IS)	33.05	264	260,265
7,12-Dimethylbenz(a)anthracene	33.25	256	241,239,120
5,5-Diphenylhydantoin	33.40	180	104,252,223,209
Captafol	33.47	79	77,80,107
Dinocap	33.47	69	41,39
Methoxychlor	33.55	227	228,152,114,274,212
2-Acetylaminofluorene	33.58	181	180,223,152
4,4'-Methylenebis(2-chloroaniline)	34.38	231	266,268,140,195
3,3'-Dimethoxybenzidine	34.47	244	201,229
3-Methylcholanthrene	35.07	268	252,253,126,134,113
Phosalone	35.23	182	184,367,121,379
Azinphos-methyl	35.25	160	132,93,104,105
Leptophos	35.28	171	377,375,77,155,379
Mirex	35.43	272	237,274,270,239,235
Tris(2,3-dibromopropyl) phosphate	35.68	201	137,119,217,219,199
Dibenz(a,j)acridine	36.40	279	280,277,250
Mestranol	36.48	277	310,174,147,242
Coumaphos	37.08	362	226,210,364,97,109
Indeno(1,2,3-cd)pyrene	39.52	276	138,227
Dibenz(a,h)anthracene	39.82	278	139,279
Benzo(g,h,i)perylene	41.43	276	138,277
1,2:4,5-Dibenzopyrene	41.60	302	151,150,300
Strychnine	45.15	334	334,335,333

TABLE 1 (continued)

Compound	Retention Time (min)	Primary Ion	Secondary Ion(s)
Piperonyl sulfoxide	46.43	162	135,105,77
Hexachlorophene	47.98	196	198,209,211,406,408
Aldrin	--	66	263,220
Aroclor 1016	--	222	260,292
Aroclor 1221	--	190	224,260
Aroclor 1232	--	190	224,260
Aroclor 1242	--	222	256,292
Aroclor 1248	--	292	362,326
Aroclor 1254	--	292	362,326
Aroclor 1260	--	360	362,394
$\alpha-\mathrm{BHC}$	--	183	181,109
β-BHC	--	181	183,109
$\delta-\mathrm{BHC}$	--	183	181,109
$\mathrm{\gamma}$-BHC (Lindane)	--	183	181,109
4,4'-DDD	--	235	237,165
4,4'-DDE	--	246	248,176
4,4'-DDT	--	235	237,165
Dieldrin	--	79	263,279
1,2-Diphenylhydrazine	--	77	105,182
Endosulfan I	--	195	339,341
Endosulfan II	--	337	339,341
Endosulfan sulfate	--	272	387,422
Endrin	--	263	82,81
Endrin aldehyde	--	67	345,250
Endrin ketone	--	317	67,319
2-Fluorobiphenyl (surr)	--	172	171
2-Fluorophenol (surr)	--	112	64
Heptachlor	--	100	272,274
Heptachlor epoxide	--	353	355,351
Nitrobenzene-d ${ }_{5}$ (surr)	--	82	128,54
N-Nitrosodimethylamine	--	42	74,44
Phenol-d ${ }_{6}$ (surr)	--	99	42,71
Terphenyl-d ${ }_{14}$ (surr)	--	244	122,212
2,4,6-Tribromophenol (surr)	--	330	332,141
Toxaphene	--	159	231,233

IS = internal standard
surr = surrogate
${ }^{\text {a }}$ Estimated retention times
${ }^{\text {b }}$ Substitute for the non-specific mixture, tricresyl phosphate

TABLE 2
ESTIMATED QUANTITATION LIMITS (EQLs) FOR SEMIVOLATILE ORGANICS

TABLE 2
(Continued)

Compound	Estimated Quantitation Limits ${ }^{\text {a }}$	
	Ground water ($\mu \mathrm{g} / \mathrm{L}$)	Low Soil/Sediment ${ }^{\text {b }}$ ($\mu \mathrm{g} / \mathrm{kg}$)
5-Chloro-2-methylaniline	10	ND
4-Chloro-3-methylphenol	20	1300
3-(Chloromethyl)pyridine hydrochloride	100	ND
2-Chloronaphthalene	10	660
2-Chlorophenol	10	660
4-Chlorophenyl phenyl ether	10	660
Chrysene	10	660
Coumaphos	40	ND
p -Cresidine	10	ND
Crotoxyphos	20	ND
2-Cyclohexyl-4,6-dinitrophenol	100	ND
Demeton-O	10	ND
Demeton-S	10	ND
Diallate (cis or trans)	10	ND
Diallate (trans or cis)	10	ND
2,4-Diaminotoluene	20	ND
Dibenz(a,j)acridine	10	ND
Dibenz(a,h)anthracene	10	660
Dibenzofuran	10	660
Dibenzo(a,e)pyrene	10	ND
Di-n-butyl phthalate	10	ND
Dichlone	NA	ND
1,2-Dichlorobenzene	10	660
1,3-Dichlorobenzene	10	660
1,4-Dichlorobenzene	10	660
3,3'-Dichlorobenzidine	20	1300
2,4-Dichlorophenol	10	660
2,6-Dichlorophenol	10	ND
Dichlorovos	10	ND
Dicrotophos	10	ND
Diethyl phthalate	10	660
Diethylstilbestrol	20	ND
Diethyl sulfate	100	ND
Dimethoate	20	ND
3,3'-Dimethoxybenzidine	100	ND
Dimethylaminoazobenzene	10	ND
7,12-Dimethylbenz(a)anthracene	10	ND
CD-ROM	-35	Revisi January

TABLE 2
(Continued)

Compound	Estimated Quantitation Limits ${ }^{\text {a }}$	
	Ground water ($\mu \mathrm{g} / \mathrm{L}$)	Low Soil/Sediment ${ }^{\text {b }}$ ($\mu \mathrm{g} / \mathrm{kg}$)
3,3'-Dimethylbenzidine	10	ND
2,4-Dimethylphenol	10	660
Dimethyl phthalate	10	660
1,2-Dinitrobenzene	40	ND
1,3-Dinitrobenzene	20	ND
1,4-Dinitrobenzene	40	ND
4,6-Dinitro-2-methylphenol	50	3300
2,4-Dinitrophenol	50	3300
2,4-Dinitrotoluene	10	660
2,6-Dinitrotoluene	10	660
Dinocap	100	ND
Dinoseb	20	ND
5,5-Diphenylhydantoin	20	ND
Di-n-octyl phthalate	10	660
Disulfoton	10	ND
EPN	10	ND
Ethion	10	ND
Ethyl carbamate	50	ND
Bis(2-ethylhexyl) phthalate	10	660
Ethyl methanesulfonate	20	ND
Famphur	20	ND
Fensulfothion	40	ND
Fenthion	10	ND
Fluchloralin	20	ND
Fluoranthene	10	660
Fluorene	10	660
Hexachlorobenzene	10	660
Hexachlorobutadiene	10	660
Hexachlorocyclopentadiene	10	660
Hexachloroethane	10	660
Hexachlorophene	50	ND
Hexachloropropene	10	ND
Hexamethylphosphoramide	20	ND
Indeno(1,2,3-cd)pyrene	10	660
Isodrin	20	ND
Isophorone	10	660
Isosafrole	10	ND
CD-ROM	-36	Revisi January

TABLE 2
(Continued)

Compound	Estimated Quantitation Limits ${ }^{\text {a }}$	
	Ground water ($\mu \mathrm{g} / \mathrm{L}$)	Low Soil/Sediment ${ }^{\text {b }}$ ($\mu \mathrm{g} / \mathrm{kg}$)
Kepone	20	ND
Leptophos	10	ND
Malathion	50	ND
Mestranol	20	ND
Methapyrilene	100	ND
Methoxychlor	10	ND
3-Methylcholanthrene	10	ND
Methyl methanesulfonate	10	ND
2-Methylnaphthalene	10	660
Methyl parathion	10	ND
2-Methylphenol	10	660
3-Methylphenol	10	ND
4-Methylphenol	10	660
Mevinphos	10	ND
Mexacarbate	20	ND
Mirex	10	ND
Monocrotophos	40	ND
Naled	20	ND
Naphthalene	10	660
1,4-Naphthoquinone	10	ND
1-Naphthylamine	10	ND
2-Naphthylamine	10	ND
Nicotine	20	ND
5-Nitroacenaphthene	10	ND
2-Nitroaniline	50	3300
3-Nitroaniline	50	3300
4-Nitroaniline	20	ND
5-Nitro-o-anisidine	10	ND
Nitrobenzene	10	660
4-Nitrobiphenyl	10	ND
Nitrofen	20	ND
2-Nitrophenol	10	660
4-Nitrophenol	50	3300
5-Nitro-o-toluidine	10	ND
4-Nitroquinoline-1-oxide	40	ND
N-Nitrosodi-n-butylamine	10	ND
N -Nitrosodiethylamine	20	ND
CD-ROM	-37	Revisi January

TABLE 2
(Continued)

	${ }^{\text {Estimated Quantitation Limits }}{ }^{\text {a }}$	

TABLE 2 (Continued)

Compound	Estimated Quantitation Limits ${ }^{\text {a }}$	
	Ground water ($\mu \mathrm{g} / \mathrm{L}$)	Low Soil/Sediment ${ }^{\text {b }}$ ($\mu \mathrm{g} / \mathrm{kg}$)
1,2,4-Trichlorobenzene	10	660
2,4,5-Trichlorophenol	10	660
2,4,6-Trichlorophenol	10	660
Trifluralin	10	ND
2,4,5-Trimethylaniline	10	ND
Trimethyl phosphate	10	ND
1,3,5-Trinitrobenzene	10	ND
Tris(2,3-dibromopropyl) phosphate	200	ND
Tri-p-tolyl phosphate(h)	10	ND

${ }^{\text {a }}$ Sample EQLs are highly matrix-dependent. The EQLs listed here are provided for guidance and may not always be achievable.
${ }^{\text {b }}$ EQLs listed for soil/sediment are based on wet weight. Normally, data are reported on a dry weight basis, therefore, EQLs will be higher based on the \% dry weight of each sample. These EQLs are based on a $30-\mathrm{g}$ sample and gel permeation chromatography cleanup.

ND = Not Determined
NA = Not Applicable

Other Matrices

Factor $^{\text {c }}$
High-concentration soil and sludges by ultrasonic extractor 7.5
Non-water miscible waste 75
${ }^{c} E Q L=(E Q L$ for Low Soil/Sediment given above in Table 2) \times (Factor)

TABLE 3
DFTPP KEY IONS AND ION ABUNDANCE CRITERIA ${ }^{\text {a,b }}$

Mass	lon Abundance Criteria
51	$30-60 \%$ of mass 198
68	$<2 \%$ of mass 69
70	$<2 \%$ of mass 69
127	$40-60 \%$ of mass 198
197	$<1 \%$ of mass 198
198	Base peak, 100\% relative
	abundance
199	$5-9 \%$ of mass 198
275	$10-30 \%$ of mass 198
365	$>1 \%$ of mass 198
441	Present but less than mass 443
442	$>40 \%$ of mass 198
443	$17-23 \%$ of mass 442

${ }^{\text {a }}$ Data taken from Reference 3.
${ }^{\mathrm{b}}$ Alternate tuning criteria may be employed, (e.g., CLP, Method 525, or manufacturers' instructions), provided that method performance is not adversely affected.

TABLE 4
CALIBRATION CHECK COMPOUNDS (CCC)

Base/Neutral Fraction	Acid Fraction
Acenaphthene	4-Chloro-3-methylphenol
1,4-Dichlorobenzene	2,4-Dichlorophenol
Hexachlorobutadiene	2-Nitrophenol
Diphenylamine	Phenol
Di-n-octyl phthalate	Pentachlorophenol
Fluoranthene	2,4,6-Trichlorophenol
Benzo(a)pyrene	

TABLE 5
SEMIVOLATILE INTERNAL STANDARDS WITH CORRESPONDING ANALYTES ASSIGNED FOR QUANTITATION

1,4-Dichlorobenzene-d ${ }_{4}$	Naphthalene-d ${ }_{8}$	Acenaphthene- d_{10}
Aniline	Acetophenone	Acenaphthene
Benzyl alcohol	Benzoic acid	Acenaphthylene
Bis(2-chloroethyl) ether	Bis(2-chloroethoxy)methane	1-Chloronaphthalene
Bis(2-chloroisopropyl) ether	4-Chloroaniline	2-Chloronaphthalene
2-Chlorophenol	4-Chloro-3-methylphenol	4-Chlorophenyl phenyl ether
1,3-Dichlorobenzene	2,4-Dichlorophenol	Dibenzofuran
1,4-Dichlorobenzene	2,6-Dichlorophenol	Diethyl phthalate
1,2-Dichlorobenzene	α, α-Dimethyl-	Dimethyl phthalate
Ethyl methanesulfonate	phenethylamine	2,4-Dinitrophenol
2-Fluorophenol (surr)	2,4-Dimethylphenol	2,4-Dinitrotoluene
Hexachloroethane	Hexachlorobutadiene	2,6-Dinitrotoluene
Methyl methanesulfonate	Isophorone	Fluorene
2-Methylphenol	2-Methylnaphthalene	2-Fluorobiphenyl (surr)
4-Methylphenol	Naphthalene	Hexachlorocyclopentadiene
N-Nitrosodimethylamine	Nitrobenzene	1-Naphthylamine
N-Nitroso-di-n-propylamine	Nitrobenzene-d ${ }_{8}$ (surr)	2-Naphthylamine
Phenol	2-Nitrophenol	2-Nitroaniline
Phenol-d ${ }_{6}$ (surr)	N-Nitrosodi-n-butylamine	3-Nitroaniline
2-Picoline	N-Nitrosopiperidine	4-Nitroaniline
	1,2,4-Trichlorobenzene	4-Nitrophenol
		Pentachlorobenzene
		1,2,4,5-Tetrachlorobenzene
		2,3,4,6-Tetrachlorophenol
		2,4,6-Tribromophenol (surr)
		2,4,6-Trichlorophenol
		2,4,5-Trichlorophenol

TABLE 5 (continued)

Phenanthrene-d d $_{10}$	Chrysene-d ${ }_{12}$	Perylene-d ${ }_{12}$
4-Aminobiphenyl	Benzidine	Benzo(b)fluoranthene
Anthracene	Benzo(a)anthracene	Benzo(k)fluoranthene
4-Bromophenyl phenyl ether	Bis(2-ethylhexyl) phthalate	Benzo(g,h,i)perylene
Di-n-butyl phthalate	Butyl benzyl phthalate	Benzo(a)pyrene
4,6-Dinitro-2-methylphenol	Chrysene	Dibenz(a,j)acridine
Diphenylamine	3,3'-Dichlorobenzidine	Dibenz(a,h)anthracene
Fluoranthene	p-Dimethyl aminoazobenzene	
Hexachlorobenzene	Pyrene	
N-Nitrosodiphenylamine	Terphenyl-d ${ }_{14}$ (surr)	
Pentachlorophenol	7,12-Dimethylbenz(a)	
anthracene		
Pentachloronitrobenzene	Di-n-octyl phthalate	
Phenacetin	Indeno(1,2,3-cd) pyrene	
Phenanthrene	3-Methylcholanthrene	
Pronamide		

(surr) = surrogate

TABLE 6
MULTILABORATORY PERFORMANCE DATA ${ }^{a}$

Compound	Test conc. ($\mu \mathrm{g} / \mathrm{L}$)	Limit for $\mathrm{s}(\mu \mathrm{g} / \mathrm{L})$	Range for \bar{x} ($\mu \mathrm{g} / \mathrm{L}$)	Range $\mathrm{p}, \mathrm{p}_{\mathrm{s}(\%)}$
Acenaphthene	100	27.6	60.1-132.3	47-145
Acenaphthylene	100	40.2	53.5-126.0	33-145
Aldrin	100	39.0	7.2-152.2	D-166
Anthracene	100	32.0	43.4-118.0	27-133
Benz(a)anthracene	100	27.6	41.8-133.0	33-143
Benzo(b)fluoranthene	100	38.8	42.0-140.4	24-159
Benzo(k)fluoranthene	100	32.3	25.2-145.7	11-162
Benzo(a)pyrene	100	39.0	31.7-148.0	17-163
Benzo(g,h,i)perylene	100	58.9	D-195.0	D-219
Benzyl butyl phthalate	100	23.4	D-139.9	D-152
β-BHC	100	31.5	41.5-130.6	24-149
ठ-BHC	100	21.6	D-100.0	D-110
Bis(2-chloroethyl) ether	100	55.0	42.9-126.0	12-158
Bis(2-chloroethoxy)methane	100	34.5	49.2-164.7	33-184
Bis(2-chloroisopropyl) ether	100	46.3	62.8-138.6	36-166
Bis(2-ethylhexyl) phthalate	100	41.1	28.9-136.8	8-158
4-Bromophenyl phenyl ether	100	23.0	64.9-114.4	53-127
2-Chloronaphthalene	100	13.0	64.5-113.5	60-118
4-Chlorophenyl phenyl ether	100	33.4	38.4-144.7	25-158
Chrysene	100	48.3	44.1-139.9	17-168
4,4'-DDD	100	31.0	D-134.5	D-145
4,4'-DDE	100	32.0	19.2-119.7	4-136
4,4'-DDT	100	61.6	D-170.6	D-203
Dibenzo(a,h)anthracene	100	70.0	D-199.7	D-227
Di-n-butyl phthalate	100	16.7	8.4-111.0	1-118
1,2-Dichlorobenzene	100	30.9	48.6-112.0	32-129
1,3-Dichlorobenzene	100	41.7	16.7-153.9	D-172
1,4-Dichlorobenzene	100	32.1	37.3-105.7	20-124
3,3'-Dichlorobenzidine	100	71.4	8.2-212.5	D-262
Dieldrin	100	30.7	44.3-119.3	29-136
Diethyl phthalate	100	26.5	D-100.0	D-114
Dimethyl phthalate	100	23.2	D-100.0	D-112
2,4-Dinitrotoluene	100	21.8	47.5-126.9	39-139
2,6-Dinitrotoluene	100	29.6	68.1-136.7	50-158
Di-n-octyl phthalate	100	31.4	18.6-131.8	4-146
Endosulfan sulfate	100	16.7	D-103.5	D-107
Endrin aldehyde	100	32.5	D-188.8	D-209
Fluoranthene	100	32.8	42.9-121.3	26-137
CD-ROM		D-43		Revision 4 January 1998

TABLE 6
(continued)

	Test conc. $(\mu \mathrm{g} / \mathrm{L})$	Limit for $\mathrm{s}(\mu \mathrm{g} / \mathrm{L})$	Range for $\overline{\mathrm{x}}$ $(\mu \mathrm{g} / \mathrm{L})$	Range $\mathrm{p}, \mathrm{p}_{\mathrm{s}(\%)}$
Compound	100	20.7	$71.6-108.4$	$59-121$
Fluorene	100	37.2	$\mathrm{D}-172.2$	$\mathrm{D}-192$
Heptachlor	100	54.7	$70.9-109.4$	26.155
Heptachlor epoxide	100	24.9	$7.8-141.5$	$\mathrm{D}-152$
Hexachlorobenzene	100	26.3	$37.8-102.2$	$24-116$
Hexachlorobutadiene	100	24.5	$55.2-100.0$	$40-113$
Hexachloroethane	100	44.6	$\mathrm{D}-150.9$	$\mathrm{D}-171$
Indeno(1,2,3-cd)pyrene	100	63.3	$46.6-180.2$	$21-196$
Isophorone	100	30.1	$35.6-119.6$	$21-133$
Naphthalene	100	39.3	$54.3-157.6$	$35-180$
Nitrobenzene	100	55.4	$13.6-197.9$	$\mathrm{D}-230$
N-Nitrosodi-n-propylamine	100	54.2	$19.3-121.0$	$\mathrm{D}-164$
Aroclor 1260	100	20.6	$65.2-108.7$	$54-120$
Phenanthrene	100	25.2	$69.6-100.0$	$52-115$
Pyrene	100	28.1	$57.3-129.2$	$44-142$
1,2,4-Trichlorobenzene	100	37.2	$40.8-127.9$	$22-147$
4-Chloro-3-methylphenol	100	28.7	$36.2-120.4$	$23-134$
2-Chlorophenol	100	26.4	$52.5-121.7$	$39-135$
2,4-Chlorophenol	100	26.1	$41.8-109.0$	$32-119$
2,4-Dimethylphenol	100	49.8	$\mathrm{D}-172.9$	$\mathrm{D}-191$
2,4-Dinitrophenol	100	93.2	$53.0-100.0$	$\mathrm{D}-181$
2-Methyl-4,6-dinitrophenol	100	35.2	$45.0-166.7$	$29-182$
2-Nitrophenol	100	47.2	$13.0-106.5$	$\mathrm{D}-132$
4-Nitrophenol	100	48.9	$38.1-151.8$	$14-176$
Pentachlorophenol	100	22.6	$16.6-100.0$	$5-112$
Phenol	31.7	$52.4-129.2$	$37-144$	
2,4,6-Trichlorophenol	100			

$\mathrm{s}=$ Standard deviation of four recovery measurements, in $\mu \mathrm{g} / \mathrm{L}$
$\bar{x}=$ Average recovery for four recovery measurements, in $\mu \mathrm{g} / \mathrm{L}$
$\mathrm{p}, \mathrm{p}_{\mathrm{s}}=$ Measured percent recovery
D = Detected; result must be greater than zero
a Criteria from 40 CFR Part 136 for Method 625, using a packed GC column. These criteria are based directly on the method performance data in Table 7. Where necessary, the limits for recovery have been broadened to assure applicability of the limits to concentrations below those used to develop Table 7. These values are for guidance only. Appropriate derivation of acceptance criteria for capillary columns should result in much narrower ranges. See Method 8000 for information on developing and updating acceptance criteria for method performance.

TABLE 7

METHOD ACCURACY AND PRECISION AS FUNCTIONS OF CONCENTRATION ${ }^{\text {a }}$

Compound	Accuracy, as recovery, $x^{\prime}(\mu \mathrm{g} / \mathrm{L})$	Single analyst precision, $\mathrm{s}_{\mathrm{r}}{ }^{\prime}(\mu \mathrm{g} / \mathrm{L})$	Overall precision, S' ($\mu \mathrm{g} / \mathrm{L}$)
Acenaphthene	0.96C+0.19	$0.15 \bar{x}-0.12$	$0.21 \overline{\mathrm{x}}$-0.67
Acenaphthylene	$0.89 \mathrm{C}+0.74$	$0.24 \bar{x}-1.06$	$0.26 \bar{x}-0.54$
Aldrin	$0.78 \mathrm{C}+1.66$	$0.27 \bar{x}-1.28$	$0.43 \bar{x}+1.13$
Anthracene	$0.80 \mathrm{C}+0.68$	$0.21 \bar{x}-0.32$	$0.27 \bar{x}-0.64$
Benz(a)anthracene	0.88C-0.60	$0.15 \bar{x}+0.93$	$0.26 \bar{x}-0.21$
Benzo(b)fluoranthene	0.93C-1.80	$0.22 \bar{x}+0.43$	$0.29 \bar{x}+0.96$
Benzo(k)fluoranthene	0.87C-1.56	$0.19 \bar{x}+1.03$	$0.35 \bar{x}+0.40$
Benzo(a)pyrene	0.90C-0.13	$0.22 \bar{x}+0.48$	$0.32 \bar{x}+1.35$
Benzo(g,h,i)perylene	0.98C-0.86	$0.29 \bar{x}+2.40$	$0.51 \bar{x}-0.44$
Benzyl butyl phthalate	0.66C-1.68	$0.18 \bar{x}+0.94$	$0.53 \bar{x}+0.92$
β-BHC	0.87C-0.94	$0.20 \bar{x}-0.58$	$0.30 \bar{x}+1.94$
δ-BHC	0.29C-1.09	$0.34 \overline{\mathrm{x}}+0.86$	$0.93 \bar{x}-0.17$
Bis(2-chloroethyl) ether	0.86C-1.54	$0.35 \bar{x}-0.99$	$0.35 \bar{x}+0.10$
Bis(2chloroethoxy)methane	1.12C-5.04	$0.16 \bar{x}+1.34$	$0.26 \bar{x}+2.01$
Bis(2-chloroisopropyl) ether	1.03C-2.31	$0.24 \overline{\mathrm{x}}+0.28$	$0.25 \bar{x}+1.04$
Bis(2-ethylhexyl) phthalate	0.84C-1.18	$0.26 \bar{x}+0.73$	$0.36 \bar{x}+0.67$
4-Bromophenyl phenyl ether	0.91C-1.34	$0.13 \bar{x}+0.66$	$0.16 \bar{x}+0.66$
2-Chloronaphthalene	0.89C+0.01	$0.07 \overline{\bar{x}}+0.52$	$0.13 \bar{x}+0.34$
4-Chlorophenyl phenyl ether	$0.91 \mathrm{C}+0.53$	$0.20 \overline{\mathrm{x}}$-0.94	$0.30 \bar{x}-0.46$
Chrysene	0.93C-1.00	$0.28 \overline{\mathrm{x}}+0.13$	$0.33 \bar{x}-0.09$
4,4'-DDD	0.56C-0.40	$0.29 \bar{x}-0.32$	$0.66 \overline{\mathrm{x}}$-0.96
4,4'-DDE	0.70C-0.54	$0.26 \bar{x}-1.17$	$0.39 \bar{x}-1.04$
4,4'-DDT	0.79C-3.28	$0.42 \bar{x}+0.19$	$0.65 \bar{x}-0.58$
Dibenzo(a,h)anthracene	$0.88 \mathrm{C}+4.72$	$0.30 \bar{x}+8.51$	$0.59 \bar{x}+0.25$
Di-n-butyl phthalate	$0.59 C+0.71$	$0.13 \bar{x}+1.16$	$0.39 \overline{\mathrm{x}}+0.60$
1,2-Dichlorobenzene	$0.80 \mathrm{C}+0.28$	$0.20 \bar{x}+0.47$	$0.24 \overline{\mathrm{x}}+0.39$
1,3-Dichlorobenzene	0.86C-0.70	$0.25 \bar{x}+0.68$	$0.41 \bar{x}+0.11$
1,4-Dichlorobenzene	0.73C-1.47	$0.24 \overline{\mathrm{x}}+0.23$	$0.29 \bar{x}+0.36$
3,3'-Dichlorobenzidine	1.23C-12.65	$0.28 \overline{\mathrm{x}}+7.33$	$0.47 \bar{x}+3.45$
Dieldrin	0.82C-0.16	$0.20 \bar{x}-0.16$	$0.26 \bar{x}-0.07$
Diethyl phthalate	$0.43 \mathrm{C}+1.00$	$0.28 \bar{x}+1.44$	$0.52 \bar{x}+0.22$
Dimethyl phthalate	$0.20 \mathrm{C}+1.03$	$0.54 \overline{\mathrm{x}}+0.19$	$1.05 \bar{x}-0.92$
2,4-Dinitrotoluene	0.92C-4.81	$0.12 \bar{x}+1.06$	$0.21 \bar{x}+1.50$
2,6-Dinitrotoluene	1.06C-3.60	$0.14 \bar{x}+1.26$	$0.19 \bar{x}+0.35$
Di-n-octyl phthalate	0.76C-0.79	$0.21 \bar{x}+1.19$	$0.37 \bar{x}+1.19$
Endosulfan sulfate	$0.39 \mathrm{C}+0.41$	$0.12 \bar{x}+2.47$	$0.63 \bar{x}-1.03$
Endrin aldehyde	0.76C-3.86	$0.18 \overline{\mathrm{x}}+3.91$	$0.73 \overline{\mathrm{x}}$-0.62

TABLE 7
(Continued)

Compound	Accuracy, as recovery, $x^{\prime}(\mu \mathrm{g} / \mathrm{L})$	Single analyst precision, $\mathrm{s}_{\mathrm{r}}{ }^{\prime}(\mu \mathrm{g} / \mathrm{L})$	Overall precision, S' ($\mu \mathrm{g} / \mathrm{L}$)
Fluoranthene	0.81C+1.10	$0.22 \overline{\mathrm{x}}$-0.73	$0.28 \overline{\mathrm{x}}$-0.60
Fluorene	0.90C-0.00	$0.12 \bar{x}+0.26$	$0.13 \bar{x}+0.61$
Heptachlor	0.87C-2.97	$0.24 \bar{x}-0.56$	$0.50 \bar{x}-0.23$
Heptachlor epoxide	0.92C-1.87	$0.33 \bar{x}-0.46$	$0.28 \overline{\mathrm{x}}+0.64$
Hexachlorobenzene	$0.74 \mathrm{C}+0.66$	$0.18 \bar{x}-0.10$	$0.43 \bar{x}-0.52$
Hexachlorobutadiene	0.71C-1.01	$0.19 \bar{x}+0.92$	$0.26 \bar{x}+0.49$
Hexachloroethane	0.73C-0.83	$0.17 \bar{x}+0.67$	$0.17 \bar{x}+0.80$
Indeno(1,2,3-cd)pyrene	0.78C-3.10	$0.29 \bar{x}+1.46$	$0.50 \bar{x}-0.44$
Isophorone	$1.12 \mathrm{C}+1.41$	$0.27 \bar{x}+0.77$	$0.33 \bar{x}+0.26$
Naphthalene	$0.76 \mathrm{C}+1.58$	$0.21 \bar{x}-0.41$	$0.30 \bar{x}-0.68$
Nitrobenzene	1.09C-3.05	$0.19 \bar{x}+0.92$	$0.27 \bar{x}+0.21$
N-Nitrosodi-n-propylamine	1.12C-6.22	$0.27 \bar{x}+0.68$	$0.44 \bar{x}+0.47$
Aroclor 1260	0.81C-10.86	$0.35 \bar{x}+3.61$	$0.43 \bar{x}+1.82$
Phenanthrene	0.87C+0.06	$0.12 \bar{x}+0.57$	$0.15 \bar{x}+0.25$
Pyrene	0.84C-0.16	$0.16 \bar{x}+0.06$	$0.15 \bar{x}+0.31$
1,2,4-Trichlorobenzene	0.94C-0.79	$0.15 \bar{x}+0.85$	$0.21 \bar{x}+0.39$
4-Chloro-3-methylphenol	$0.84 \mathrm{C}+0.35$	$0.23 \bar{x}+0.75$	$0.29 \bar{x}+1.31$
2-Chlorophenol	$0.78 \mathrm{C}+0.29$	$0.18 \bar{x}+1.46$	$0.28 \bar{x}+0.97$
2,4-Dichlorophenol	0.87C-0.13	$0.15 \bar{x}+1.25$	$0.21 \bar{x}+1.28$
2,4-Dimethylphenol	0.71C+4.41	$0.16 \bar{x}+1.21$	$0.22 \bar{x}+1.31$
2,4-Dinitrophenol	0.81C-18.04	$0.38 \bar{x}+2.36$	$0.42 \bar{x}+26.29$
2-Methyl-4,6-dinitrophenol	1.04C-28.04	$0.10 \bar{x}+42.29$	$0.26 \bar{x}+23.10$
2-Nitrophenol	0.07C-1.15	$0.16 \bar{x}+1.94$	$0.27 \bar{x}+2.60$
4-Nitrophenol	0.61C-1.22	$0.38 \overline{\mathrm{x}}+2.57$	$0.44 \overline{\mathrm{x}}+3.24$
Pentachlorophenol	$0.93 \mathrm{C}+1.99$	$0.24 \overline{\mathrm{x}}+3.03$	$0.30 \bar{x}+4.33$
Phenol	$0.43 C+1.26$	$0.26 \bar{x}+0.73$	$0.35 \bar{x}+0.58$
2,4,6-Trichlorophenol	0.91C-0.18	$0.16 \bar{x}+2.22$	$0.22 \bar{x}+1.81$

$x^{\prime}=$ Expected recovery for one or more measurements of a sample containing a concentration of C , in $\mu \mathrm{g} / \mathrm{L}$.
$\mathrm{s}_{\mathrm{r}}{ }^{\prime}=$ Expected single analyst standard deviation of measurements at an average concentration of \bar{x}, in $\mu \mathrm{g} / \mathrm{L}$.
$S^{\prime}=$ Expected interlaboratory standard deviation of measurements at an average concentration found of \bar{x}, in $\mu \mathrm{g} / \mathrm{L}$.
$C=$ True value for the concentration, in $\mu \mathrm{g} / \mathrm{L}$.
$\bar{x}=$ Average recovery found for measurements of samples containing a concentration of C, in $\mu \mathrm{g} / \mathrm{L}$.
a Criteria from 40 CFR Part 136 for Method 625, using a packed GC column. These criteria are based directly on the method performance data in Table 7. These values are for guidance only. Appropriate derivation of acceptance criteria for capillary columns should result in much narrower ranges. See Method 8000 for information on developing and updating acceptance criteria for method performance.

TABLE 8

EXTRACTION EFFICIENCY AND AQUEOUS STABILITY RESULTS

	Percent Recovery, Day 0		Percent Recovery, Day 7	
Compound	Mean	RSD	Mean	RSD
3-Amino-9-ethylcarbazole	80	8	73	3
4-Chloro-1,2-phenylenediamine	91	1	108	4
4-Chloro-1,3-phenylenediamine	84	3	70	3
1,2-Dibromo-3-chloropropane	97	2	98	5
Dinoseb	99	3	97	6
Parathion	100	2	103	4
4,4'-Methylenebis(N,N-	108	4	90	4
dimethylaniline)	99	10	93	4
5-Nitro-o-toluidine	80	4	83	4
2-Picoline	92	7	70	1
Tetraethyl dithiopyrophosphate				

Data taken from Reference 6.

MEAN PERCENT RECOVERIES AND PERCENT RSD VALUES FOR SEMIVOLATILE ORGANICS FROM SPIKED CLAY SOIL AND TOPSOIL BY AUTOMATED SOXHLET EXTRACTION (METHOD 3541) WITH HEXANE-ACETONE (1:1) ${ }^{\text {a }}$

	Clay Soil			Topsoil	
Compound	Mean Recovery	RSD	Mean Recovery	RSD	
1,3-Dichlorobenzene	0	--	0	--	
1,2-Dichlorobenzene	0	--	0	--	
Nitrobenzene	0	--	0	--	
Benzal chloride	0	--	0	--	
Benzotrichloride	0	--	0	--	
4-Chloro-2-nitrotoluene	0	--	0	--	
Hexachlorocyclopentadiene	4.1	15	7.8	23	
2,4-Dichloronitrobenzene	35.2	7.6	21.2	15	
3,4-Dichloronitrobenzene	34.9	15	20.4	11	
Pentachlorobenzene	13.7	7.3	14.8	13	
2,3,4,5-Tetrachloronitrobenzene	55.9	6.7	50.4	6.0	
Benefin	62.6	4.8	62.7	2.9	
alpha-BHC	58.2	7.3	54.8	4.8	
Hexachlorobenzene	26.9	13	25.1	5.7	
delta-BHC	95.8	4.6	99.2	1.3	
Heptachlor	46.9	9.2	49.1	6.3	
Aldrin	97.7	12	102	7.4	
Isopropalin	102	4.3	105	2.3	
Heptachlor epoxide	90.4	4.4	93.6	2.4	
trans-Chlordane	90.1	4.5	95.0	2.3	
Endosulfan I	96.3	4.4	101	2.2	
Dieldrin	129	4.7	104	1.9	
2,5-Dichlorophenyl-4-nitrophenyl ether	110	4.1	112	2.1	
Endrin	102	4.5	106	3.7	
Endosulfan II	104	4.1	105	0.4	
p,p'-DDT	134	2.1	111	2.0	
2,3,6-Trichlorophenyl-4'-nitrophenyl ether	110	4.8	110	2.8	
2,3,4-Trichlorophenyl-4'-nitrophenyl ether	112	4.4	112	3.3	
Mirex	104	5.3	108	2.2	

a The operating conditions for the Soxtec apparatus were as follows: immersion time 45 min ; extraction time 45 min ; the sample size was 10 g ; the spiking concentration was $500 \mathrm{ng} / \mathrm{g}$, except for the surrogate compounds at $1000 \mathrm{ng} / \mathrm{g}, 2,5$-Dichlorophenyl-4-nitrophenyl ether, 2,3,6-Trichlorophenyl-4-nitrophenyl ether, and 2,3,4-Trichlorophenyl-4-nitrophenyl ether at $1500 \mathrm{ng} / \mathrm{g}$, Nitrobenzene at $2000 \mathrm{ng} / \mathrm{g}$, and 1,3-Dichlorobenzene and 1,2-Dichlorobenzene at $5000 \mathrm{ng} / \mathrm{g}$.

TABLE 10
SINGLE LABORATORY ACCURACY AND PRECISION DATA FOR THE EXTRACTION OF SEMIVOLATILE ORGANICS FROM SPIKED CLAY BY AUTOMATED SOXHLET (METHOD 3541)a

Compound	Mean Recovery	RSD
Phenol	47.8	5.6
Bis(2-chloroethyl)ether	25.4	13
2-Chlorophenol	42.7	4.3
Benzyl alcohol	55.9	7.2
2-Methylphenol	17.6	6.6
Bis(2-chloroisopropyl)ether	15.0	15
4-Methylphenol	23.4	6.7
N-Nitroso-di-n-propylamine	41.4	6.2
Nitrobenzene	28.2	7.7
Isophorone	56.1	4.2
2-Nitrophenol	36.0	6.5
2,4-Dimethylphenol	50.1	5.7
Benzoic acid	40.6	7.7
Bis(2-chloroethoxy)methane	44.1	3.0
2,4-Dichlorophenol	55.6	4.6
1,2,4-Trichlorobenzene	18.1	31
Naphthalene	26.2	15
4-Chloroaniline	55.7	12
4-Chloro-3-methylphenol	65.1	5.1
2-Methylnaphthalene	47.0	8.6
Hexachlorocyclopentadiene	19.3	19
2,4,6-Trichlorophenol	70.2	6.3
2,4,5-Trichlorophenol	26.8	2.9
2-Chloronaphthalene	61.2	6.0
2-Nitroaniline	73.8	6.0
Dimethyl phthalate	74.6	5.2
Acenaphthylene	71.6	5.7
3-Nitroaniline	77.6	5.3
Acenaphthene	79.2	4.0
2,4-Dinitrophenol	91.9	8.9
4-Nitrophenol	62.9	16
Dibenzofuran	82.1	5.9
2,4-Dinitrotoluene	84.2	5.4
2,6-Dinitrotoluene	68.3	5.8
Diethyl phthalate	74.9	5.4
4-Chlorophenyl-phenyl ether	67.2	3.2

TABLE 10
(continued)

Compound	Mean Recovery	RSD
Fluorene	82.1	3.4
4-Nitroaniline	79.0	7.9
4,6-Dinitro-2-methylphenol	63.4	6.8
N-Nitrosodiphenylamine	77.0	3.4
4-Bromophenyl-phenyl ether	62.4	3.0
Hexachlorobenzene	72.6	3.7
Pentachlorophenol	62.7	6.1
Phenanthrene	83.9	5.4
Anthracene	96.3	3.9
Di-n-butyl phthalate	78.3	40
Fluoranthene	87.7	6.9
Pyrene	102	0.8
Butyl benzyl phthalate	66.3	5.2
3,3'-Dichlorobenzidine	25.2	11
Benzo(a)anthracene	73.4	3.8
Bis(2-ethylhexyl) phthalate	77.2	4.8
Chrysene	76.2	4.4
Di-n-octyl phthalate	83.1	4.8
Benzo(b)fluoranthene	82.7	5.0
Benzo(k)fluoranthene	71.7	4.1
Benzo(a)pyrene	71.7	4.1
Indeno(1,2,3-cd)pyrene	72.2	4.3
Dibenzo(a,h)anthracene	66.7	6.3
Benzo(g,h,i)perylene	63.9	8.0
1,2-Dichlorobenzene	0	--
1,3-Dichlorobenzene	0	--
1,4-Dichlorobenzene	0	--
Hexachloroethane	0	--
Hexachlorobutadiene	0	--

a Number of determinations was three. The operating conditions for the Soxtec apparatus were as follows: immersion time 45 min ; extraction time 45 min ; the sample size was 10 g clay soil; the spike concentration was $6 \mathrm{mg} / \mathrm{kg}$ per compound. The sample was allowed to equilibrate 1 hour after spiking.

Data taken from Reference 7.

TABLE 11
PRECISION AND BIAS VALUES FOR METHOD 3542^{1}

Compound	Mean Recovery	Standard Deviation	\% RSD
2-Fluorophenol	74.6	28.6	38.3
Phenol-d $_{5}$	77.8	27.7	35.6
Nitrobenzene-d $_{5}$	65.6	32.5	49.6
2-Fluorobiphenyl	75.9	30.3	39.9
2,4,6-Tribromophenol	67.0	34.0	50.7
Terphenyl-d $_{14}$	78.6	32.4	41.3

${ }^{1}$ The surrogate values shown in Table 11 represent mean recoveries for surrogates in all Method 0010 matrices in a field dynamic spiking study.

ACCELERATED SOLVENT EXTRACTION (METHOD 3545) RECOVERY VALUES AS PERCENT OF SOXTEC ${ }^{\text {TM }}$

Compound	Clay			Loam			Sand			Mean Rec.
	Low	Mid	High	Low	Mid	High	Low	Mid	High	
Phenol	93.3	78.7	135.9	73.9	82.8	124.6	108.8	130.6	89.7	102.0
Bis(2-chloroethyl) ether	102.1	85.1	109.1	96.0	88.0	103.6	122.3	119.9	90.8	101.9
2-Chlorophenol	100.8	82.6	115.0	93.8	88.9	111.1	115.0	115.3	91.9	101.6
1,3-Dichlorobenzene	127.7	129.7	110.0	*364.2	129.9	119.0	*241.3	*163.7	107.1	120.6
1,4-Dichlorobenzene	127.9	127.0	110.5	*365.9	127.8	116.4	*309.6	*164.1	105.8	119.2
1,2-Dichlorobenzene	116.8	115.8	101.3	*159.2	113.4	105.5	*189.3	134.0	100.4	112.5
2-Methylphenol	98.9	82.1	119.7	87.6	89.4	111.0	133.2	128.0	92.1	104.7
Bis(2-chloroisopropyl)ether	109.4	71.5	108.0	81.8	81.0	88.6	118.1	148.3	94.8	100.2
o-Toluidine	100.0	89.7	117.2	100.0	*152.5	120.3	100.0	*199.5	102.7	110.3
N-Nitroso-di-n-propylamine	103.0	79.1	107.7	83.9	88.1	96.2	109.9	123.3	91.4	98.1
Hexachloroethane	97.1	125.1	111.0	*245.4	117.1	128.1	*566.7	147.9	103.7	118.6
Nitrobenzene	104.8	82.4	106.6	86.8	84.6	101.7	119.7	122.1	93.3	100.2
Isophorone	100.0	86.4	98.2	87.1	87.5	109.7	135.5	118.4	92.7	101.7
2,4-Dimethylphenol	100.0	104.5	140.0	100.0	114.4	123.1	100.0	*180.6	96.3	109.8
2-Nitrophenol	80.7	80.5	107.9	91.4	86.7	103.2	122.1	107.1	87.0	96.3
Bis(chloroethoxy)methane	94.4	80.6	94.7	86.5	84.4	99.6	130.6	110.7	93.2	97.2
2,4-Dichlorophenol	88.9	87.8	111.4	85.9	87.6	103.5	123.3	107.0	92.1	98.6
1,2,4-Trichlorobenzene	98.0	97.8	98.8	123.0	93.7	94.5	137.0	99.4	95.3	104.2
Naphthalene	101.7	97.2	123.6	113.2	102.9	129.5	*174.5	114.0	89.8	106.1
4-Chloroaniline	100.0	*150.2	*162.4	100.0	125.5	*263.6	100.0	*250.8	114.9	108.1
Hexachlorobutadiene	101.1	98.7	102.2	124.1	90.3	98.0	134.9	96.1	96.8	104.7
4-Chloro-3-methylphenol	90.4	80.2	114.7	79.0	85.2	109.8	131.6	116.2	90.1	99.7
2-Methylnaphthalene	93.2	89.9	94.6	104.1	92.2	105.9	146.2	99.1	93.3	102.1
Hexachlorocyclopentadien e	100.0	100.0	0.0	100.0	100.0	6.8	100.0	100.0	*238.3	75.8
2,4,6-Trichlorophenol	94.6	90.0	112.0	84.2	91.2	103.6	101.6	95.9	89.8	95.9
2,4,5-Trichlorophenol	84.4	91.9	109.6	96.1	80.7	103.6	108.9	83.9	87.9	94.1
2-Chloronaphthalene	100.0	91.3	93.6	97.6	93.4	98.3	106.8	93.0	92.0	96.2
2-Nitroaniline	90.0	83.4	97.4	71.3	88.4	89.9	112.1	113.3	87.7	92.6
2,6-Dinitrotoluene	83.1	90.6	91.6	86.4	90.6	90.3	104.3	84.7	90.9	90.3
Acenaphthylene	104.9	95.9	100.5	99.0	97.9	108.8	118.5	97.8	92.0	101.7
3-Nitroaniline	*224.0	115.6	97.6	100.0	111.8	107.8	0.0	111.7	99.0	92.9
Acenaphthene	102.1	92.6	97.6	97.2	96.9	104.4	114.2	92.0	89.0	98.4
4-Nitrophenol	0.0	93.2	121.5	18.1	87.1	116.6	69.1	90.5	84.5	75.6
2,4-Dinitrotoluene	73.9	91.9	100.2	84.7	93.8	98.9	100.9	84.3	87.3	90.7

Revision 4 January 1998

TABLE 12
(continued)

Compound	Clay			Loam			Sand			Mean Rec.
	Low	Mid	High	Low	Mid	High	Low	Mid	High	
Dibenzofuran	89.5	91.7	109.3	98.5	92.2	111.4	113.8	92.7	90.4	98.8
4-Chlorophenyl phenyl ether	83.0	94.5	98.7	95.7	94.3	94.2	111.4	87.7	90.3	94.4
Fluorene	85.2	94.9	89.2	102.0	95.5	93.8	121.3	85.7	90.9	95.4
4-Nitroaniline	77.8	114.8	94.5	129.6	103.6	95.4	*154.1	89.3	87.5	99.1
N-Nitrosodiphenylamine	82.6	96.7	93.8	92.9	93.4	116.4	97.5	110.9	86.7	96.8
4-Bromophenyl phenyl ether	85.6	92.9	92.8	91.1	107.6	89.4	118.0	97.5	87.1	95.8
Hexachlorobenzene	95.4	91.7	92.3	95.4	93.6	83.7	106.8	94.3	90.0	93.7
Pentachlorophenol	68.2	85.9	107.7	53.2	89.8	88.1	96.6	59.8	81.3	81.2
Phenanthrene	92.1	93.7	93.3	100.0	97.8	113.3	124.4	101.0	89.9	100.6
Anthracene	101.6	95.0	93.5	92.5	101.8	118.4	123.0	94.5	90.6	101.2
Carbazole	94.4	99.3	96.6	105.5	96.7	111.4	115.7	83.2	88.9	99.1
Fluoranthene	109.9	101.4	94.3	111.6	96.6	109.6	123.2	85.4	92.7	102.7
Pyrene	106.5	105.8	107.6	116.7	90.7	127.5	103.4	95.5	93.2	105.2
3,3'-Dichlorobenzidine	100.0	*492.3	131.4	100.0	*217.6	*167.6	100.0	*748.8	100.0	116.5
Benzo(a)anthracene	98.1	107.0	98.4	119.3	98.6	104.0	105.0	93.4	89.3	101.5
Chrysene	100.0	108.5	100.2	116.8	93.0	117.0	106.7	93.6	90.2	102.9
Benzo(b)fluoranthene	106.6	109.9	75.6	121.7	100.7	93.9	106.9	81.9	93.6	99.0
Benzo(k)fluoranthene	102.4	105.2	88.4	125.5	99.4	95.1	144.7	89.2	78.1	103.1
Benzo(a)pyrene	107.9	105.5	80.8	122.3	97.7	104.6	101.7	86.2	92.0	99.9
Indeno(1,2,3-cd)pyrene	95.1	105.7	93.8	126.0	105.2	90.4	133.6	82.6	91.9	102.7
Dibenz(a,h)anthracene	85.0	102.6	82.0	118.8	100.7	91.9	142.3	71.0	93.1	98.6
Benzo(g,h,i)perylene	98.0	0.0	81.2	0.0	33.6	78.6	128.7	83.0	94.2	66.4
Mean	95.1	94.3	101.0	95.5	96.5	104.1	113.0	100.9	92.5	

* Values greater than 150% were not used to determine the averages, but the 0% values were used.

TABLE 13
SINGLE LABORATORY ACCURACY AND PRECISION FOR THE EXTRACTION OF PAHs FROM A CERTIFIED REFERENCE SEDIMENT EC-1, USING METHOD 3561 (SFE - SOLID TRAP)

	Certified Value $(\mathrm{mg} / \mathrm{kg})$	SFE Value $(\mathrm{mg} / \mathrm{kg})$	Percent of Certified Value	SFE RSD
Compound	$(27.9)^{\mathrm{b}}$	41.3 ± 3.6	(148)	8.7
Acenaphthylene	(0.8)	0.9 ± 0.1	(112)	11.1
Acenaphthene	(0.2)	0.2 ± 0.01	(100)	0.05
Fluorene	(15.3)	15.6 ± 1.8	(102)	11.5
Phenanthrene	15.8 ± 1.2	16.1 ± 1.8	102	11.2
Anthracene	(1.3)	1.1 ± 0.2	(88)	18.2
Fluoranthene	23.2 ± 2.0	24.1 ± 2.1	104	8.7
Pyrene	16.7 ± 2.0	17.2 ± 1.9	103	11.0
Benz(a)anthracene	8.7 ± 0.8	8.8 ± 1.0	101	11.4
Chrysene	(9.2)	7.9 ± 0.9	(86)	11.4
Benzo(b)fluoranthene	7.9 ± 0.9	8.5 ± 1.1	108	12.9
Benzo(k)fluoranthene	4.4 ± 0.5	4.1 ± 0.5	91	12.2
Benzo(a)pyrene	5.3 ± 0.7	5.1 ± 0.6	96	11.8
Indeno(1,2,3-cd)pyrene	5.7 ± 0.6	5.2 ± 0.6	91	11.5
Benzo(g,h,i)perylene	4.9 ± 0.7	4.3 ± 0.5	88	11.6
Dibenz(a,h)anthracene	(1.3)	1.1 ± 0.2	(85)	18.2

a Relative standard deviations for the SFE values are based on six replicate extractions.
b Values in parentheses were obtained from, or compared to, Soxhlet extraction results which were not certified.

Data are taken from Reference 10.

TABLE 14
SINGLE LABORATORY ACCURACY AND PRECISION FOR THE EXTRACTION OF PAHs FROM A CERTIFIED REFERENCE SEDIMENT HS-3, USING METHOD 3561 (SFE - SOLID TRAP)

Compound	Certified Value $(\mathrm{mg} / \mathrm{kg})$	SFE Value $(\mathrm{mg} / \mathrm{kg})$	Percent of Certified Value	SFE RSD
Naphthalene	9.0 ± 0.7	7.4 ± 0.6	82	8.1
Acenaphthylene	0.3 ± 0.1	0.4 ± 0.1	133	25.0
Acenaphthene	4.5 ± 1.5	3.3 ± 0.3	73	9.0
Fluorene	13.6 ± 3.1	10.4 ± 1.3	77	12.5
Phenanthrene	85.0 ± 20.0	86.2 ± 9.5	101	11.0
Anthracene	13.4 ± 0.5	12.1 ± 1.5	90	12.4
Fluoranthene	60.0 ± 9.0	54.0 ± 6.1	90	11.3
Pyrene	39.0 ± 9.0	32.7 ± 3.7	84	11.3
Benz(a)anthracene	14.6 ± 2.0	12.1 ± 1.3	83	10.7
Chrysene	14.1 ± 2.0	12.0 ± 1.3	85	10.8
Benzo(b)fluoranthene	7.7 ± 1.2	8.4 ± 0.9	109	10.7
Benzo(k)fluoranthene	2.8 ± 2.0	3.2 ± 0.5	114	15.6
Benzo(a)pyrene	7.4 ± 3.6	6.6 ± 0.8	89	12.1
Indeno(1,2,3-cd)pyrene	5.0 ± 2.0	4.5 ± 0.6	90	13.3
Benzo(g,h,i)perylene	5.4 ± 1.3	4.4 ± 0.6	82	13.6
Dibenz(a,h)anthracene	1.3 ± 0.5	1.1 ± 0.3	85	27.3

a Relative standard deviations for the SFE values are based on three replicate extractions.
Data are taken from Reference 10.

SINGLE LABORATORY ACCURACY AND PRECISION FOR THE EXTRACTION OF PAHs FROM A CERTIFIED REFERENCE SOIL SRS103-100, USING METHOD 3561
(SFE - LIQUID TRAP)

	Certified Value $(\mathrm{mg} / \mathrm{kg})$	SFE Value $(\mathrm{mg} / \mathrm{kg})$	Percent of Certified Value	SFE RSD
Naphthalene	32.4 ± 8.2	29.55	91	10.5
2-Methylnaphthalene	62.1 ± 11.5	76.13	122	2.0
Acenaphthene	632 ± 105	577.28	91	2.9
Dibenzofuran	307 ± 49	302.25	98	4.1
Fluorene	492 ± 78	427.15	87	3.0
Phenanthrene	1618 ± 340	1278.03	79	3.4
Anthracene	422 ± 49	400.80	95	2.6
Fluoranthene	1280 ± 220	1019.13	80	4.5
Pyrene	1033 ± 285	911.82	88	3.1
Benz(a)anthracene	252 ± 8	225.50	89	4.8
Chrysene	297 ± 26	283.00	95	3.8
Benzo(a)pyrene	97.2 ± 17.1	58.28	60	6.5
Benzo(b)fluoranthene +	153 ± 22	130.88	86	10.7
Benzo(k)fluoranthene				

${ }^{\text {a }}$ Relative standard deviations for the SFE values are based on four replicate extractions.
Data are taken from Reference 11.

TABLE 16
SINGLE LABORATORY RECOVERY DATA FOR SOLID-PHASE EXTRACTION OF BASE/NEUTRAL/ACID EXTRACTABLES FROM SPIKED TCLP BUFFERS LOW SPIKE LEVEL

	Spike Level $(\mu \mathrm{g} / \mathrm{L})$	Buffer 1 $(\mathrm{pH}=2.886)$		Buffer 2 $(\mathrm{pH}=4.937)$	
Analyte		RSD	Recovery (\%)	RSD	
1,4-Dichlorobenzene	3,750	63	10	63	9
Hexachloroethane	1,500	55	6	77	4
Nitrobenzene	1,000	82	10	100	5
Hexachlorobutadiene	250	65	3	56	4
2,4-Dinitrotoluene	65	89	4	101	5
Hexachlorobenzene	65	98	5	95	6
o-Cresol	100,000	83	10	85	5
m-Cresol*	100,000	86	8	85	3
p-Cresol*	$*$	$*$	$*$	$*$	
2,4,6-Trichlorophenol	1,000	84	12	95	12
2,4,5-Trichlorophenol	200,000	83	11	88	3
Pentachlorophenol	50,000	82	9	78	9

Results from seven replicate spiked buffer samples.

* In this study, m-cresol and p-cresol co-eluted and were quantitated as a mixture of both isomers.

Data from Reference 12.

TABLE 17
SINGLE LABORATORY RECOVERY DATA FOR SOLID-PHASE EXTRACTION OF BASE/NEUTRAL/ACID EXTRACTABLES FROM SPIKED TCLP BUFFERS HIGH SPIKE LEVEL

Analyte	Spike Level ($\mu \mathrm{g} / \mathrm{L}$)	Buffer 1 (pH = 2.886)		Buffer 2 (pH = 4.937)	
		Recovery (\%)	RSD	Recovery (\%)	RSD
1,4-Dichlorobenzene	15,000	63	10	63	9
Hexachloroethane	6,000	54	7	46	7
Nitrobenzene	4,000	81	4	81	13
Hexachlorobutadiene	1,000	81	5	70	11
2,4-Dinitrotoluene	260	99	8	98	3
Hexachlorobenzene	260	89	8	91	9
o-Cresol*	400,000	92	15	90	4
m-Cresol*	400,000	95	8	82	6
p-Cresol*	400,000	82	14	84	7
2,4,6-Trichlorophenol	4,000	93	12	104	12
2,4,5-Trichlorophenol	800,000	93	14	97	23
Pentachlorophenol	200,000	84	9	73	8

Results from seven replicate spiked buffer samples.

* In this study, recoveries of these compounds were determined from triplicate spikes of the individual compounds into separate buffer solutions.

Data from Reference 12.

TABLE 18
RECOVERY DATA FROM THREE LABORATORIES FOR SOLID-PHASE EXTRACTION OF BASE/NEUTRAL/ACID EXTRACTABLES FROM SPIKED TCLP LEACHATES FROM SOIL SAMPLES

(continued)

TABLE 18
(continued)

Buffer 2 pH $=4.937$		Lab 1			Lab 2			Lab 3		
Analyte	Spike Level ($\mu \mathrm{g} / \mathrm{L})^{*}$	\%R	RSD	n	\%R	RSD	n	\%R	RSD	n
o-Cresol	200,00	97	13	7	37.8	4.5	3	6.1	24	3
m-Cresol**	--	83	4	7	--	--	--	6.0	25	3
p-Cresol**	--	--	--	--	--	--	--	--	--	--
2,4,6-Trichlorophenol	2,000	104	4	7	91.7	8.0	3	37.7	25	3
2,4,5-Trichlorophenol	400,000	94	4	7	85.2	0.4	3	64.4	10	3
Pentachlorophenol	100,000	109	11	7	41.9	28.2	3	36.6	32	3
1,4-Dichlorobenzene	7,500	50	5	7	79.7	1.0	3	26.5	68	3
Hexachloroethane	3,000	51	3	7	64.9	2.0	3	20.3	90	3
Nitrobenzene	2,000	80	4	7	79.0	2.3	3	59.4	6	3
Hexachlorobutadiene	500	57	5	7	60	3.3	3	16.6	107	3
2,4-Dinitrotoluene	130	86	6	7	38.5	5.2	3	62.2	6	3
Hexachlorobenzene	130	86	7	7	91.3	0.9	3	75.5	5	3

* 250-mL aliquots of leachate were spiked. Lab 1 spiked at one-half these levels.
** m-Cresol and p-Cresol coelute. Lab 1 and Lab 3 reported o-Cresol and the sum of m - and p-Cresol. Lab 2 reported the sum of all three isomers of Cresol.

Data from Reference 12.

CD-ROM
8270D - 60
Revision 4 January 1998

FIGURE 1
GAS CHROMATOGRAM OF BASE/NEUTRAL AND ACID CALIBRATION STANDARD

