

CHP in the United States

Neeharika Naik-Dhungel US EPA Combined Heat and Power Partnership December 14, 2011

Presentation Overview

- EPA and Clean Energy
- CHP Capacity Existing and Potential
 - District Energy and CHP
- Market Incentives and Challenges
- Case Studies

EPA & Clean Energy

- EPA's regulatory & non-regulatory efforts are helping transform markets for cleaner sources of energy
- EPA is using flexibility in the regulatory process to support the use of clean energy options as part of an overall GHG reduction strategy
- EPA has many active programs supporting clean energy
 - CHP Partnership
 - Green Power Partnership
 - ENERGY STAR Program
 - State and Local Climate Energy Program
 - Re-Powering America's Lands
 - Global Methane Initiative

EPA & CHP

- CHP's unique role in:
 - Protecting public health and welfare
 - Addressing climate change
- CHP is a key supply-side energy efficiency resource
- Advances will help address key challenges:
 - Lowering the cost of reducing GHG emissions and other air pollutants
 - Increasing clean energy generation
 - Improving electricity system reliability

CHP is an Important Domestic Resource

Source: ICF CHP Installation Database, 2011

- 82 GW of installed CHP at almost 4,000 industrial and commercial facilities (2011)
- Avoids more than 1.8 quadrillion
 Btus of fuel consumption annually
- Avoids 241 million metric tons of CO₂ as compared to traditional separate production
- CO₂ reduction equivalent to eliminating forty 1,000 MW coal power plants

Potential for Additional CHP Is Nationwide

CHP Technical Potential

- LBNL (2005): (unconventional CHP)
- EEA (2006):
- HR Report 110-304 (2007):
- McKinsey (2007):
- DOE/ORNL (2008)

135 GW 60 – 90 GW 175 - 200 GW 170 – 250 GW

95 GW

Source: EEA/ICF International

20% CHP Could Reduce Projected CO₂ Emissions Increase by More than 60%

US Carbon Dioxide Emissions 2006 and 2030 (MMT)

CHP Value Proposition

			10 MW Natural
Category	10 MW CHP	10 MW Wind	Gas Combined
			Cycle
Annual Capacity	85%	34%	70%
Factor			
Annual Electricity	74,446 MWh	29,784 MWh	61,320 MWh
Annual Useful Heat	103,417 MWh	None	None
Footprint Required	6,000 sq ft	76,000 sq ft	N/A
Capital Cost	\$20 million	\$24.4 million	\$9.8 million
Cost of Power	7.6 ¢/kWh	7.5 ¢/kWh	6.1 ¢/kWh
Annual Energy	316,218 MMBtu	306,871 MMBtu	163,724 MMBtu
Savings			
Annual CO ₂ Savings	42,506 Tons	27,546 Tons	28,233 Tons
Annual NOx Savings	87.8 Tons	36.4 Tons	61.9 Tons
Source: ICF International, prepared for the EPA CHP Partnership			

SEPA

COMBINED HEAT AND POWER PARTNERSHIP

District Energy & CHP

- EPA & IEA recognize district energy is a key to increased CHP use
 - District energy can support increased
 CHP and increased renewables
 - biomass, geothermal, and concentrating solar
 - Low-carbon electricity & heat
 - Offers an opportunity to reduce the carbon content from thermal energy production
- Reduces the cost of GHG reductions from generation of both electricity and thermal energy

U.S. Policy Environment

- Lacking comprehensive federal climate & energy policies
 - No price on carbon
- EPA is addressing GHG emissions
 - Regulatory & non-regulatory means
- States and regional efforts continuing
 - Electric utility portfolio standards for RE and EE
 - Regional carbon cap and trading programs
- Evolving playing field for new electricity generation
 - Natural gas reserves
 - Biomass emissions permitting

Current Market Conditions

- Most activity in states with favorable regulatory treatment and/or specific incentives
- Natural gas CHP in areas with supportable spark spread (Northeast, Texas, California)
- Biomass and opportunity fuels in Southeast, Midwest and Mountain
- "Hot" applications: universities, hospitals, waste water treatment, other institutional applications
- Growing interest in waste heat to power applications
- Project inquiries increasing

Incentives to System Adoption

- Developing standard interconnection rules.
- Implementing reasonable utility rates such as standby rates, backup rates, and exit fees.
- Developing incentive programs for CHP in clean energy funds.
- Include CHP/waste heat recovery in renewable portfolio standards and energy efficiency portfolio standards.
- Establishing output-based emission regulations and incorporating other efficiency measures into state implementation plans.

Continuing Challenges to CHP Adoption

- Capital requirements
- Project and operational risks
- Lack of awareness and limited management support
- Pricing distortions
 - Interconnection requirements
 - Standby rates and exit fees
- Site permitting and environmental regulations

Case Study: Industrial Application

Calpine Corpus Christi Energy Center, Texas

Calpine Corpus Christi Energy Center System Background

- Plant Location: Corpus Christi, Texas
- Operation Commenced: 2002
- System Location Statistics:
 - Footprint: nine-acre Brownfield site
- System Operating Features-
 - Natural gas fired systems
 - 500 MW combined cycle CT facility
 - Large multi-fuel duct firing capacity
 - Shared services from multiple hosts: 20 year power and steam sales agreements in place
 - Saltwater cooling tower
 - Incremental peaking capability
- More details can be found at: http://www.calpine.com/power/

Case Study: Commercial/Institutional Application

Burrstone Energy Center Plant System Background

- Plant Location: Utica, NY
- Operation Commenced: 2009
- System Statistics:
 - \$15 million plant that provides annual \$800,000 energy savings
 - Co-operative effort by Faxton-St. Luke's Healthcare and Utica College.
- System Operating Features-
 - Natural gas fired systems
 - 3.6 MW four engine generators
 - Each engine includes a heat recovery steam generator (HRSG) as well as heat exchangers to transfer heat from the engine jacket water to meet hot water loads in the hospital.
 - Steam from the HRSG offsets boiler steam loads, including summertime loads for a steam-driven absorption chiller.
- More details available with: Jim Moynihan (jmoynihan@cogenpowertechnologies.com)

Case Study: District Energy Application

District Energy St Paul

District Energy St Paul System Background

- Plant Location: St Paul, MN
- Operation Commenced: 2003 (CHP system)
- System Statistics:
 - Serves more than 80 percent of the downtown area over 31 million sq. ft
 - CHP integration shifted fuel use for system away from fossil fuels to primarily renewable fuels
 - A public/private partnership among the City of Saint Paul, State of Minnesota, U.S. Department of Energy and the downtown business community
- System Operating Features-
 - Wood residue, natural gas, low-sulfur Eastern coal, and fuel oil
 - A CHP plant adjacent to District Energy produces 25 MW of electricity for the local utility and 65 megawatts of thermal energy for customers.
 - Greenhouse gas CO₂ reduced by 280,000 tons per year
- More details available at: http://www.districtenergy.com/services/heatingfacts.htm

CHP Partnership Contact Information

CHPP Website : www.epa.gov/chp

Neeharika Naik-Dhungel: Naik-Dhungel.Neeharika@epa.gov

Gary McNeil: McNeil.Gary@epa.gov CHPP Help Line: 703/373-3108

