Wet FGD Cost Development Methodology

FINAL

August 2010 Project 12301-007 Perrin Quarles Associates, Inc.

Prepared by

Sargent & Lundy

55 East Monroe Street • Chicago, IL 60603 USA • 312-269-2000

LEGAL NOTICE

This analysis ("Deliverable") was prepared by Sargent & Lundy, L.L.C. ("S&L"), expressly for the sole use of Perrin Quarles Associates, Inc. ("Client") in accordance with the agreement between S&L and Client. This Deliverable was prepared using the degree of skill and care ordinarily exercised by engineers practicing under similar circumstances. Client acknowledges: (1) S&L prepared this Deliverable subject to the particular scope limitations, budgetary and time constraints, and business objectives of the Client; (2) information and data provided by others may not have been independently verified by S&L; and (3) the information and data contained in this Deliverable are time sensitive and changes in the data, applicable codes, standards, and acceptable engineering practices may invalidate the findings of this Deliverable. Any use or reliance upon this Deliverable by third parties shall be at their sole risk.

This work was funded and reviewed by the U.S. Environmental Protection Agency under the supervision of William A. Stevens, Senior Advisor – Power Technologies. Additional input and review was provided by Dr. Jim Staudt, President of Andover Technology Partners.

Project No. 12301-007 August 20, 2010

Wet FGD Cost Development Methodology - Final

Establishment of Cost Basis

The 2004 to 2006 industry cost estimates for wet FGD units from the "Analysis of MOG and Ladco's FGD and SCR Capacity and Cost Assumptions in the Evaluation of Proposed EGU 1 and EGU 2 Emission Controls" prepared for Midwest Ozone Group (MOG) were compared to the Sargent & Lundy LLC (S&L) in-house database. Agreement of the data was confirmed between the industry estimates and the S&L data.

The MOG and S&L cost data from 2004 to 2006 were converted to 2007 dollars based on the Chemical Engineering Plant Index (CEPI) data. Additional proprietary S&L in-house data from 2007 were included to confirm the index validity.

Cost data from the various sources showed similar trends versus generating capacity. Escalation based on the CEPI was deemed acceptable. All three data sources were combined so as to provide a representative wet FGD cost basis.

The 2004 through 2007 data were escalated to 2009 to represent market conditions.

The least squares curve fit of the data was defined as a "typical" wet FGD retrofit for removal of 98% of the inlet sulfur. It should be noted that the lowest available SO_2 emission guarantees, from the original equipment manufactures of wet FGD systems, are 0.04 lb/MMBtu. The typical wet FGD retrofit was based on:

- Retrofit Difficulty =1 (Average retrofit difficulty);
- Gross Heat Rate = 9500 Btu/kWh;
- SO_2 Rate = 3.0 lb/MMBtu;
- Type of Coal = Bituminous;
- Project Execution = Multiple lump sum contracts; and
- Recommended SO₂ emission floor = 98% removal efficiency or 0.06 lb/MMBtu.

Units below 100 MW will typically not install a wet FGD system. Sulfur reductions for the small units would be accomplished by; treating smaller units at a single site with one wet FGD system, switching to a lower sulfur coal, repowering with natural gas, dry sorbent injection, and/or a reduction in operating hours. Capital costs of approximately \$750/kW may be used for units below 100 MW under the premise that these will be combined.

Project No. 12301-007 August 20, 2010

Wet FGD Cost Development Methodology - Final

Methodology

Inputs

Several input variables are required in order to predict future retrofit costs. The gross unit size in MW (equivalent acfm) and sulfur content of the fuel are the major variables for the capital estimation. A retrofit factor that equates to difficulty in construction of the system must be defined. The costs herein could increase significantly for congested sites. The gross unit heat rate will factor into the amount of flue gas generated and ultimately the size of the absorber, reagent preparation, waste handling, and balance of plant costs. The SO₂ rate will have the greatest influence on the reagent handling and waste handling facilities. The type of fuel (Bituminous, PRB, or Lignite) will influence the flue gas quantities as a result of the different typical heating values.

The evaluation includes a user selected option for a wastewater treatment facility. The base capital cost includes minor physical and chemical wastewater treatment. However, in the future more extensive wastewater handling may be required. Although an option for wastewater treatment is provided, no logic has been developed to accommodate the additional wastewater treatment costs.

Outputs

Total Project Costs (TPC)

First the base installed costs are calculated for each required module (BM_). The base installed costs include:

- All equipment;
- Installation;
- Buildings;
- Foundations;
- Electrical;
- Minor physical and chemical wastewater treatment (WWT); and
- Average retrofit difficulty.

The modules are:

BMR =	Base absorber island cost
BMF =	Base reagent preparation cost
BMW =	Base waste handling cost
BMB =	Base balance of plan costs including: ID or booster fans, new wet chimney, piping, ductwork, minor WWT, etc.
BMWW =	Base wastewater treatment facility for future use.
BM =	BMR + BMF + BMW + BMB

Project No. 12301-007 August 20, 2010

Wet FGD Cost Development Methodology – Final

The total base installed cost (BM) is then increased by:

- Engineering and construction management costs at 10% of the BM cost;
- Labor adjustment for 6 x 10 hour shift premium, per diem, etc., at 10% of the BM cost; and
- Contractor profit and fees at 10% of the BM cost.

A capital, engineering, and construction cost subtotal (CECC) is established as the sum of the BM and the additional engineering and construction fees.

Additional costs and financing expenditures for the project are computed based on the CECC. Financing and additional project costs include:

- Owner's home office costs (owner's engineering, management, and procurement) at 5% of the CECC; and
- Allowance for Funds Used During Construction (AFUDC) at 10% of the CECC and owner's costs. The AFUDC is based on a three-year engineering and construction cycle.

The total project cost is based on a multiple lump sum contract approach. Should a turnkey engineering procurement construction (EPC) contract be executed, the total project cost could be 10 to 15% higher than what is currently estimated.

Escalation is not included in the estimate. The total project cost (TPC) is the sum of the CECC and the additional costs and financing expenditures. Table 1 contains an example capital cost estimation.

Project No. 12301-007 August 20, 2010

Wet FGD Cost Development Methodology – Final

Table 1. Example Capital Cost Estimate for the Wet FGD System (Costs are all based on 2009 dollars)

Variable	Designation	Units	Value	Calculation
Wastewater Treatment		Minor physical/che	mical 🗨	
Unit Size (Gross)	A	(MW)	500	< User Input (Greater than 100 MW)
Retrofit Factor	В		1	< User Input (An "average" retrofit has a factor = 1.0)
Gross Heat Rate	С	(Btu/kWh)	9500	< User Input
SO2 Rate	D	(lb/MMBtu)	3	< User Input
Type of Coal	E		Bituminuous 🔻	< User Input
Coal Factor	F		1	Bit=1, PRB=1.05, Lig=1.07
Heat Rate Factor	G		0.95	C/10000
Heat Input	Н	(Btu/hr)	4.75E+09	A*C*1000

Example

Comments

Canital	Coet	Calculation
Capital	COSL	Calculation

Includes - Equipment, installation, buildings, foundations, electrical, minor physical/chemical wastewater treatment and retrofit difficulty

	includes - Equ	inpriment, installation, buildings, loundations, electrical, minor physical/chemical	wastewater treat	ment and retront o	inicuity
	BMR (\$) =	550000*(B)*((F*G)^0.6)*((D/2)^0.02)*(A^0.716)	\$	46,024,000	Base absorber island cost
	BMF (\$) =	190000*(B)*((D*G)^0.3)*(A^0.716)	\$	22,267,000	Base reagent preparation cost
	BMW (\$) =	100000*(B)*((D*G)^0.45)*(A^0.716)	\$	13,713,000	Base waste handling cost
	BMB (\$) =	1010000*(B)*((F*G)^0.4)*(A^0.716)	\$	84,698,000	Base balance of plan costs including: ID or booster fans, new wet chimney, piping, ductwork, minor WWT, etc
	BMWW (\$) =		\$	-	Base wastewater treatment facility, beyond minor physical/chemical treatment
	BM (\$) = BM (\$/KW) =	BMR + BMF + BMW + BMB + BMWW	\$	166,702,000 333	Total base cost including retrofit factor Base cost per kW
Tot	al Project Cost				
	A1 = 10% of B		\$	16,670,000	Engineering and Construction Management costs
	A2 = 10% of B	3M	\$	16,670,000	Labor adjustment for 6 x 10 hour shift premium, per diem, etc
	A3 = 10% of B		\$	16,670,000	Contractor profit and fees
		ccludes Owner's Costs = BM+A1+A2+A3 - Excludes Owner's Costs =	\$	216,712,000 433	Capital, engineering and construciton cost subtotal Capital, engineering and construciton cost subtotal per kW
	B1 = 5% of CE	ECC	\$	10,836,000	Owners costs including all "home office" costs (owners engineering, management, and procurement activities)
	()	ludes Owner's Costs = CECC + B1 Includes Owner's Costs =	\$	227,548,000 455	Total project cost without AFUDC Total project cost per kW without AFUDC
	B2 = 10% of (CECC + B1)	\$	22,755,000	AFUDC (Based on a 3 year engineering and construction cycle)
		udes Owner's Costs and AFUDC = CECC + B1 + B2 Includes Owner's Costs and AFUDC =	\$	250,303,000 501	Total project cost Total project cost per kW

Project No. 12301-007 August 20, 2010

Wet FGD Cost Development Methodology – Final

Fixed O&M (FOM)

The fixed operating and maintenance (O&M) cost is a function of the additional operations staff (FOMO), maintenance labor and materials (FOMM), and administrative labor (FOMA) associated with the wet FGD installation. A future fixed O&M cost category is included to account for an extensive wastewater treatment facility. At this time, the wastewater treatment fixed O&M (FOMWW) is not estimated and is included at zero dollars. The FOM is the sum of the FOMO, FOMM, FOMA, and FOMWW.

The following factors and assumptions underlie calculations of the FOM:

- All of the FOM costs were tabulated on a per kilowatt-year (kW yr) basis.
- In general, 12 additional operators are required for a 500 MW or smaller installation. Units larger than 500 MW require a total of 16 additional operators. The FOMO was based on the number of additional operations staff required as a function of generating capacity.
- The fixed maintenance materials and labor is a direct function of the process capital cost (BM).
- The administrative labor is a function of the FOMO and FOMM.

Variable O&M (VOM)

Variable O&M is a function of:

- Reagent use and unit costs;
- Waste production and unit disposal costs;
- Additional power required and unit power cost; and
- Makeup water required and unit water cost.

Project No. 12301-007 August 20, 2010

Wet FGD Cost Development Methodology - Final

The following factors and assumptions underlie calculations of the VOM:

- All of the VOM costs were tabulated on a per megawatt-hour (MWh) basis.
- The reagent usage is a function of gross unit size, SO₂ feed rate, and removal efficiency. The estimated reagent usage was based on a sulfur removal efficiency of 98% and a calcium-to-sulfur stoichiometric ratio of 1.03. The basis for the limestone purity was 90% CaCO₃ with the balance being inert material.
- The waste generation rate is directly proportional to the reagent usage and is estimated based on 10% moisture in the by-product.
- The additional power required includes increased fan power to account for the added wet FGD pressure drop. This requirement is a function of gross unit size (actual gas flow rate) and sulfur rate.
- The makeup water rate is a function of gross unit size (actual gas flow rate) and sulfur feed rate.

Input options are provided for the user to adjust the variable O&M costs per unit. Average default values are included in the base estimate. The variable O&M costs per unit options are:

- Limestone cost in \$/ton;
- Waste disposal costs in \$/ton;
- Auxiliary power cost in \$/kWh;
- Makeup water costs in \$/1000 gallon; and
- Operating labor rate (including all benefits) in \$/hr.

Project No. 12301-007 August 20, 2010

Wet FGD Cost Development Methodology - Final

The variables that contribute to the overall VOM are:

VOMR =	Variable O&M costs for limestone reagent
VOMW =	Variable O&M costs for waste disposal
VOMP =	Variable O&M costs for additional auxiliary power
VOMM =	Variable O&M costs for makeup water
VOMWW =	Variable O&M costs for wastewater treatment

A future variable O&M cost category is included to account for an extensive wastewater treatment facility. At this time, the wastewater treatment variable O&M (VOMWW) is not estimated and is included at zero dollars.

The total VOM is the sum of VOMR, VOMW, VOMP, VOMM, and VOMWW. Table 2 contains an example O&M cost estimate, while Table 3 is a complete capital and O&M cost estimate worksheet.

Project No. 12301-007 August 20, 2010

Wet FGD Cost Development Methodology – Final

Table 2. Example O&M Cost Estimate for the Wet FGD System (Costs are all based on 2009 dollars)

	Variable	Designation	Units	Value	Calculation		
	Wastewater Treatment		Minor physical/chemical				
	Unit Size (Gross)	A	(MW)	500	< User Input (Greater than 100 MW)		
	Retrofit Factor	B	()	1	< User Input (An "average" retrofit has a factor = 1.0)		
	Gross Heat Rate	C	(Btu/kWh)	9500	< User Input		
	SO2 Rate	D	(lb/MMBtu)	3	< User Input		
	Type of Coal	E		Bituminuous 🔻	< User Input		
	Coal Factor				Bit=1, PRB=1.05_Lig=1.07		
	Heat Rate Factor	GY	\checkmark		C/10000		
(Heat Input	Н	(Btu/hr)		A*C*1000		
	Limestone Rate	K	(ton/hr)	12	17.52*A*D*G/2000		
	Waste Rate	L	(ton/hr)	23	1.811*K		
(Aux Power	М	(%)	1.59	(1.05e^(0.155*D))*F*G Should be used for model input.		
	Makeup Water Rate	N	(1000 gph)	38	(1.674*D+74.68)*A*F*G/1000		
	Limestone Cost	P	(\$/ton)	15			
(Waste Disposal Cost	Q	(\$/ton)	30			
	Aux Power Cost	R	(\$/kWh)	0.06			
	Makeup Water Cost Operating Labor Rate	S	(\$/1000) (\$/hr)	1 60	Labor cost including all benefits		
(Operating Labor Rate	I	(⊅/11)	00			
	λ λ λ	λ λ	λ λ	λ λ	$\lambda \lambda \lambda \lambda$		
Fixed O&M Cost		\sim					
FOMO (\$/kW yr) = (if MW	>500 then 16 additional ope	rators else 12 o	perators)*2080*	T/(A*1000)	\$ 3.00 Fixed O&M additional operating labor costs		
FOMM (\$/kW yr) = BM*0.	015/(B*A*1000)				\$ 5.00 Fixed O&M additional maintenance material and labor costs		
FOMA (\$/kW yr) = 0.03*(F	FOMO+0.4*FOMM)				\$ 0.15 Fixed O&M additional administrative labor costs		
FOMWW (\$/kW yr) =					\$ - Fixed O&M costs for wastewater treatment facility		
FOM (\$/kW yr) = FOMO	+ Fomm + Foma + Fomw	N			\$ 8.15 Total Fixed O&M costs		
Variable O&M Cost							
VOMR ($\%$ /MWh) = K*P/A					\$ 0.37 Variable O&M costs for limestone reagent		
VOMW ($^{(MWh)} = L^{Q/A}$					\$ 1.36 Variable O&M costs for waste disposal		
VOMP (\$/MWh) =M*R*10					variable O&M costs for additional auxiliary power required including		
$\lambda = N + C $					additional fan power (Refer to Aux Power % above) 0.08 Variable O&M costs for makeup water		
VOMM (\$/MWh) = N*S/A VOMWW (\$/MWh) =					 \$ 0.08 Variable O&M costs for makeup water \$ - Variable O&M costs for wastewater treatment facility 		
VOM (\$/MWh) = VOMR +	VOMW + VOMP + VOMM	+ VOMWW			\$ 1.81		

Project No. 12301-007 August 20, 2010

Wet FGD Cost Development Methodology – Final

Table 3. Example Complete Cost Estimate for the Wet FGD System (Costs are all based on 2009 dollars)

Variable	Designation	Units	Value	Cal	culation		
Wastewater Treatment		Minor physical/che	mical 🗨				
Unit Size (Gross)	A	(MW)	500	< User	< User Input (Greater than 100 MW)		
Retrofit Factor	В		1	< User	< User Input (An "average" retrofit has a factor = 1.0)		
Gross Heat Rate	С	(Btu/kWh)	9500		< User Input		
SO2 Rate	D	(Ib/MMBtu)	3	< User	< User Input		
Type of Coal	E		Bituminuous 🛛 🔻	< USE			
Coal Factor	F		1		RB=1.05, Lig=1.	07	
Heat Rate Factor	G		0.95	C/10000			
Heat Input	Н	(Btu/hr)		A*C*100			
Limestone Rate	K	(ton/hr)			*D*G/2000		
Waste Rate	L M	(ton/hr)	23	1.811*K		Nexual be used for model in such	
Aux Power Makeup Water Rate	N	(%) (1000 aph)	1.59 38		0.155°D))*F*G 3)+74.68)*A*F*G/	Should be used for model input.	
Limestone Cost	P	(\$/ton)	38 15	(1.074°D	7714.00) A F"G/	1000	
Waste Disposal Cost	Q	(\$/ton)	30	-			
Aux Power Cost	R	(\$/kWh)	0.06				
Makeup Water Cost	S	(\$/1000)	1				
Operating Labor Rate	Т	(\$/hr)	60	Labor co	st including all b	penefits	
Capital Cost Calculation				Example		Comments	
Includes - Equipment, installation, buildings, foundation	ons, electrical, m	ninor physical/ch	emical wastewate	er treatme	ent and retrofit di	ifficulty	
BMR (\$) = 550000*(B)*((F*G)^0.6)*((D/2)^0.02)*(A^0.716)			\$	46,024,000	Base absorber island cost	
$BMF (\$) = 190000^{*}(B)^{*}((D^{*}G)^{0}.3)^{*}(A^{0}.716)$				\$	22,267,000	Base reagent preparation cost	
$BMW (\$) = 100000^{*}(B)^{*}((D^{*}G)^{*}0.45)^{*}(A^{*}0.716)$				\$	13,713,000	Base waste handling cost	
BMB (\$) = 1010000*(B)*((F*G)^0.4)*(A^0.716)				\$	84,698,000	Base balance of plan costs including: ID or booster fans, new wet chimney, piping, ductwork, minor WWT, etc…	
				¢		Base wastewater treatment facility, beyond minor physical/chemical	
BMWW (\$) =				\$	-	treatment	
BM (\$) = BMR + BMF + BMW + BMB + BMWW				\$	166,702,000	Total base cost including retrofit factor	
BM (\$/KW) =					333	Base cost per kW	
Total Project Cost							
A1 = 10% of BM				\$	16,670,000	Engineering and Construction Management costs	
A2 = 10% of BM				\$	16,670,000	Labor adjustment for 6 x 10 hour shift premium, per diem, etc	
A3 = 10% of BM				\$	16,670,000	Contractor profit and fees	
CECC (\$) - Excludes Owner's Costs = BM+A1+A2· CECC (\$/kW) - Excludes Owner's Costs =	+A3				216,712,000 433	Capital, engineering and construciton cost subtotal Capital, engineering and construciton cost subtotal per kW	
CECC (#KW) - Excludes Owner a Costa -					400		
B1 = 5% of CECC				\$	10,836,000	Owners costs including all "home office" costs (owners engineering, management, and procurement activities)	
TPC' (\$) - Includes Owner's Costs = CECC + B1				\$	227,548,000	Total project cost without AFUDC	
TPC (\$/\$W) - Includes Owner's Costs = CECC + BT					455	Total project cost without AFUDC	
B2 = 10% of (CECC + B1)				\$	22,755,000	AFUDC (Based on a 3 year engineering and construction cycle)	
TPC (\$) - Includes Owner's Costs and AFUDC = C	ECC + B1 + B2			\$	250,303,000	Total project cost	
TPC (\$/kW) - Includes Owner's Costs and AFUDC				•	501	Total project cost per kW	
						· · · · · · · · · · · · · · · · · · ·	

Project No. 12301-007 August 20, 2010

Wet FGD Cost Development Methodology – Final

Variable	Designation	Units	Value	Calculation
Wastewater Treatment		Minor physical/che	mical 💌	
Unit Size (Gross)	A	(MW)	500	< User Input (Greater than 100 MW)
Retrofit Factor	В		1	< User Input (An "average" retrofit has a factor = 1.0)
Gross Heat Rate	С	(Btu/kWh)	9500	< User Input
SO2 Rate	D	(lb/MMBtu)	3	< User Input
Type of Coal	E		Bituminuous 🛛 🔻	< User Input
Coal Factor	F		1	Bit=1, PRB=1.05, Lig=1.07
Heat Rate Factor	G		0.95	C/10000
Heat Input	Н	(Btu/hr)	4.75E+09	A*C*1000
Limestone Rate	K	(ton/hr)	12	17.52*A*D*G/2000
Waste Rate	L	(ton/hr)	23	1.811*K
Aux Power	М	(%)	1.59	(1.05e^(0.155*D))*F*G Should be used for model input.
Makeup Water Rate	N	(1000 gph)	38	(1.674*D+74.68)*A*F*G/1000
Limestone Cost	Р	(\$/ton)	15	
Waste Disposal Cost	Q	(\$/ton)	30	
Aux Power Cost	R	(\$/kWh)	0.06	
Makeup Water Cost	S	(\$/1000)	1	
Operating Labor Rate	T	(\$/hr)	60	Labor cost including all benefits

Fixed O&M Cost

	VOM (\$/MWh) = VOMR + VOMW + VOMP + VOMM + VOMWW	\$	1.81	
	VOMWW (\$/MWh) =	\$	-	Variable O&M costs for wastewater treatment facility
	VOMM (\$/MWh) = N*S/A	\$	0.08	Variable O&M costs for makeup water
	VOMP (\$/MWh) =M*R*10	\$	-	Variable O&M costs for additional auxiliary power required including additional fan power (Refer to Aux Power % above)
	VOMW (MWh) = L*Q/A	\$	1.36	Variable O&M costs for waste disposal
v	′ariable O&M Cost VOMR (\$/MWh) = K*P/A	\$	0.37	Variable O&M costs for limestone reagent
	FOM (\$/kW yr) = FOMO + FOMM + FOMA + FOMWW	\$	8.15	Total Fixed O&M costs
	FOMWW (\$/kW yr) =	\$	-	Fixed O&M costs for wastewater treatment facility
	FOMA (\$/kW yr) = 0.03*(FOMO+0.4*FOMM)	\$	0.15	Fixed O&M additional administrative labor costs
	FOMO (\$/kW yr) = (if MW>500 then 16 additional operators else 12 operators)*2080*T/(A*1000) FOMM (\$/kW yr) = BM*0.015/(B*A*1000)	\$ ¢	3.00 5.00	Fixed O&M additional operating labor costs Fixed O&M additional maintenance material and labor costs
-				