APPENDIX C: Calculating Observed Flow Volumes for Calibration

APPENDIX C: Calculating Observed Flow Volumes for Calibration

In order to calibrate hydrology manually, you need to compare observed flow volumes to simulated flow volumes. Annual and seasonal flow volumes can be calculated in a spreadsheet from the observed flow time series. The following steps explain this process.

A. Annual Flow Volumes

- 1. From the **Start** menu under **Programs**, select **BASINS**, and then **WDMUtil**.
- 2. From the **File** menu, select **Open**.
- 3. Navigate to *c:\BASINS\modelout* and select "*hyd_out.wdm*." Click OPEN.
- 4. Select the time series for Upper Marlboro's "OBSERVED" flow (DSN 261).

🧮 WDMI	WDMUtil: hyd_out						
<u>File To</u> o	File Tools Scenarios Locations Constituents Time Series Help						
Scenarios				cations		Constituents	t
0 of 3	All	Nor	ne O o	f6 All	None	0 of 32	All None
OPCER							
PT-OB	S		LA	UREL		ATD-NH3	<u>-</u>
SED_V	VB		RC	CH4		ATD-NO3	
			RC			BOD	
			W	ASH NAT		CHL-a	-
Ľ.							
– Time Sr	eries - 38	of 38 a	wailable time se	ries in list (A no	t on WDM file).	1 selected —	
I IIII	1/8+ A			al al	k on work meg,	i scicetta.	
	12 -	<u> </u>					
Туре	File	DSN	Scenario	Location	Constituent	Start	SJDay 🔺
WDM	hyd_out	151	OBSERVED	WASH_NAT	DEWPT	1984/1/1	45700
WDM	hyd_out	161	OBSERVED	WASH_NAT	SOLRAD	1980/1/1	44239
WDM	hyd_out	171	OBSERVED	UPMARLBR	ATD-N03	1982/1/1	44970
WDM	hyd_out	172	OBSERVED	UPMARLBR	ATD-NH3	1983/4/1	45425
WDM	hyd_out	261	OBSERVED	UPMARLBR	FLOW	1985/10/1	46339
WDM	hyd_out	262	OBSERVED	UPMARLBR	N03	1985/1/1	46066
WDM	hyd_out	263	OBSERVED	UPMARLBR	NH3	1985/1/1	46066
WDM	hyd_out	264	OBSERVED	UPMARLBR	ORGN	1985/1/1	46066
WDM	hyd_out	265	OBSERVED	UPMARLBR	TOTAL-N	1985/1/1	46066
WDM	hyd_out	266	OBSERVED	UPMARLBR	P04	1985/1/1	46066
WDM	hud out	267	OBSERVED	HPMARI RR	ORGP	1985/1/1	46066
– Dates –					- Tools		
Reset	Start	-	End 1	Step, Units		. 4.	
						222	
Current	11385110		11383 4 30		لي المنظم ال		
Commo	n 1985 10	1 to	1989 4 30	Native 🔽		~ <u>6</u>	

- 5. In the current "Start" field, enter "1/1/1986."
- 6. In the current "End" field, enter "12/31/1988."
- 7. In the "Dates" frame, under the "T Step, Units" heading, select "Sum/Div."
- 8. Two new boxes will appear above the "Sum/Div" box. Leave the left box as "1" and make sure "Day" is selected in the in the right box. The "Dates" frame should look like the following:

Dates		
Reset Start	🛨 End	TStep,Units
Current 1986 1 1	to 1987 12 31	1 Day 💌
Common 1950 1 1	to 1990 12 31	Sum/Div

9. From the "Tools" frame, click the "List Edit Time Series" button, [111] following window will appear:

🖁 Timeseries Data				
<u>F</u> ile <u>E</u> dit				
Scenario	OBSERVED			
Location	UPMARLBR			
Constituent	FLOW			
1986/01/01	31.0			
1986/01/02	32.0			
1986/01/03	34.0			
1986/01/04	35.0			
1986/01/05	33.0			
1986/01/06	30.0			
1986/01/07	33.0			
1986/01/08	30.0			
1986/01/09	26.0			
1986/01/10	25.0			
1986/01/11	25.0			
1986/01/12	25.0			
1986/01/13	28.0			
1986/01/14	24 በ			

- 10. From the **Edit** menu, select **Copy All**.
- 11. Open Excel or another spreadsheet program.
- 12. Click in the upper left cell. From the **Edit** menu, select **Paste**. You can now manipulate the WDM time series within the spreadsheet.

N	Kicrosoft Excel - Book1					
	🖲 Eile Edit View Insert Format Iools Data Window Help					
	൙ 🖬 🧯	5 📐 🖿	🛍 💅 🛛	∽ ⊂ - ⊂	$\Sigma f_{\mathbf{x}} \stackrel{A}{=} \downarrow$	
	A1	-	= Scena	rio .		
	Α	В	С	D	E	F
1	Scenario	OBSERVE	D			
2	Location	UPMARLB	R			
3	Constituen	FLOW				
4	1/1/1986	31				
5	1/2/1986	32				
6	1/3/1986	34				
7	1/4/1986	35				
8	1/5/1986	33				
9	1/6/1986	30				
10	1/7/1986	33				
11	1/8/1986	30				
12	1/9/1986	26				
13	1/10/1986	25				
14	1/11/1986	25				
15	1/12/1986	25				
16	1/13/1986	28				

In order to compute total volumes from average daily flows, we need to: (1) convert the flow values from cubic feet per second to acre-feet per day, (2) sum the flow rates (for a desired time period), and (3) multiply the sum by the corresponding time interval for each desired increment (i.e., annual, seasonal, monthly, etc).

The conversion from ft^3/sec to acre-feet/day is:

ft^3	$\frac{60 \sec}{8}$	$\frac{60 \text{ min}}{8}$	$\frac{24hour}{2}$	*lacre	$_ acre \cdot feet$	or 1 cfs – 1 983 acre-feet/day
1sec	1 min	1hour	1day	$43560 ft^2$	day	

13. Enter this conversion factor as a formula in the next spreadsheet field. If you are using Excel, click in the C4 cell and enter =B4*1.983.

M	Microsoft Excel - Book1							
	<u>File E</u> dit <u>V</u> iev	w <u>I</u> nsert F <u>o</u> rma	at <u>T</u> ools <u>D</u> a	ata <u>W</u> indow	<u>H</u> elp			
	MAX	✓ × ✓ = =	B4*1.983					
	A	В	С	D	E			
1	Scenario	OBSERVED						
2	Location	UPMARLBR						
3	Constituent	FLOW						
4	1/1/1986	31	=B4*1.983					
5	1/2/1986	32						
6	1/3/1986	34						
7	1/4/1986	35						
8	1/5/1986	33						

14. **Double click** the small square on the bottom right corner of the cell containing the formula. This will fill down the formula to all of the time series.

Now we will sum the volumes in yearly increments in order to obtain yearly flow volumes.

15. In cell D4, type "=C4" and in cell D5 type "=C5+D4".

_							
M 14	🔀 Microsoft Excel - Book1						
	Eile Edit View Insert Format Tools Data Window Help						
] 🗅] D 🚅 🖬 🔒 🚑 🔩 🖤 👗 🛍 🛍 🚿 ၊∽ • ∽ - 🤮 Σ ፉ 斜 🏙 👰 3						
MAX 💌 🗙 🗸 = =C5+D4							
	A	В	С	D	E	F	G
1	Scenario	OBSERVED					
2	Location	UPMARLBR					
3	Constituent	FLOW					
4	1/1/1986	31	61.473	61.473			
5	1/2/1986	32	63.456	=C5+D4			
6	1/3/1986	34	67.422				
7	1/4/1986	35	69.405				
8	1/5/1986	33	65.439				
9	1/6/1986	30	59.49				
10	1/7/1986	33	65.439				
11	1/8/1986	30	59.49				
12	1/9/1986	26	51.558				
13	1/10/1986	25	49.575				
14	1/11/1986	25	49.575				
15	1/12/1986	25	49.575				
10	1/10/1000	10	EE ED 4				

16. Fill the formula you just entered down to the end of 1986.

M	licrosoft Exce	l - Book1					
	<u>File E</u> dit <u>V</u> iev	v <u>I</u> nsert F <u>o</u> rm	at <u>T</u> ools <u>D</u> a	ita <u>W</u> indow	<u>H</u> elp		
	🛩 🖬 🔒	a 🖏 🖉	አ 🖻 🛍	🚿 🔊 -	CH 👻 🍓	$\Sigma f_{x} \stackrel{A}{\geq}$	l 🛍 🛛
	D368 = = C368+D367						
	A	В	С	D	E	F	G
358	12/21/1986	63	124.929	36557.6			
359	12/22/1986	53	105.099	36662.7			
360	12/23/1986	48	95.184	36757.88			
361	12/24/1986	210	416.43	37174.31			
362	12/25/1986	864	1713.312	38887.62			
363	12/26/1986	360	713.88	39601.5			
364	12/27/1986	160	317.28	39918.78			
365	12/28/1986	111	220.113	40138.89			
366	12/29/1986	90	178.47	40317.36			
367	12/30/1986	82	162.606	40479.97			
368	12/31/1986	72	142.776	40622.75			
369	1/1/1987	73	144.759				
370	1/2/1987	234	464.022				
371	1/3/1987	154	305.382				
372	1/4/1987	95	188.385				
272	1/5/1007	75	140 705				

17. Repeat the process for 1987 and 1988 in order to calculate values for total annual flow volumes. The totals should be approximately 40622.75 for 1986, 53251.09 for 1987, and 49388.2 for 1988. These totals can now be compared to simulated annual volumes.

B. Seasonal Flow Volumes

Seasonal flow volumes can be calculated by repeating this summing process with seasonal (instead of yearly) increments.

1. Using the same spreadsheet, in cell E4, type "=C4" and in cell E5 type "=E4+C5".

M	🔀 Microsoft Excel - Book1.xls								
	🔊 File Edit View Insert Format Iools Data Window Help								
] 🗅] 🗅 💕 🖬 🖴 🚳 🐼 🚏 👗 🛍 🛍 💅 🗠 • ↔ - 🧐 🍇 Σ 🍂 Ѯ↓ 🏭 😰 🏹 Arial 🛛 • 10 • 18 🗾 1								
	MAX 🗾 🗙 🗸 = =E4+C5								
	A	В	С	D	E	F			
1	Scenario	OBSERVED							
2	Location	UPMARLBR							
3	Constituent	FLOW (cfs)	Volume (acre-ft)	Annual Volume Sum (acre-ft)	Seasonal Volume Sum (acre-feet)				
4	1/1/1986	31	61.473	61.473	61.473				
5	1/2/1986	32	63.456	124.929	=E4+C5				
6	1/3/1986	34	67.422	192.351					
- 7 -	1/4/1986	35	69.405	261.756					
8	1/5/1986	33	65.439	327.195					
9	1/6/1986	30	59.49	386.685					
10	1/7/1986	33	65.439	452.124					
11	1/8/1986	30	59.49	511.614					
12	1/9/1986	26	51.558	563.172					
13	1/10/1986	25	49.575	612.747					
14	1/11/1986	25	49.575	662.322					
15	1/12/1986	25	49.575	711.897					
16	1/13/1986	28	55 524	767 421					

For this model, we will look at the seasonal flow totals for winter (defined for our purposes as the months comprising December, January, and February) and for summer (June, July, and August). In your own models, the seasons you select and the time span for which you define a season may vary. For example, you may want to look at the total flows for spring, and define spring as the months of April, May, and June.

2. Fill the formula down to the end of February 1986 to obtain the total volume for winter 1986. Use the same method for summer 1986, winter 1987 (including December of 1986), summer 1987, winter 1988 (including December of 1987), summer 1988, and December of 1988. Because we have only two months of data for the winter of 1986, the extra winter month will make our totals more accurate. The values you should get are as follows:

Season	Total Volume (acre-ft)
1986 winter total	10181.15702
1986 summer total	5187.570248
1986-7 winter total	25517.35537
1987 summer total	4273.38843
1987-8 winter total	22076.03306
1988 summer total	5427.570248
1988 winter total	2358.347107
Winter Total	60132.89256
Summer Total	14888.52893

3. Once you have totaled the flows for each of the seasons, add their volumes together to achieve total winter and total summer volumes. These values can now be compared to simulated seasonal flow totals.