An integrated watershed-based approach for urban runoff and stormwater quality of Los Angeles County

> Youn Sim, Ph.D., P.E. Los Angeles County Flood Control District Department of Public Works, County of Los Angeles

> > **NACO Stormwater TMDL Webinar**

November 12, 2009

Outline

- Coastal watersheds of the Los Angeles County
- Why "Integrated watershed-based" approach?
 - Background-challenges
- Project Goals
- Tasks
 - Watershed management modeling system
 - Water Quality Improvement Plan
- Schedule and milestones

Coastal watersheds of the Los Angeles County

- Drainage from pristine mountains, urban areas, to pacific ocean
 A. 530 miles of open channels and 2,800 miles of storm drains
- Total 3,100 sq-miles of watershed areas
 - A. Los Angeles River Watershed
 - B. Santa Monica Bay Watershed (BC & MdR)
 - c. Malibu Creek Watershed
 - D. San Gabriel River Watershed
 - E. Dominguez Channel/Harbor Watershed
 - F. Santa Clara River Watershed

TMDLs in Los Angeles County

To date, total 23 TMDLs are currently effective

- Trash
- Indicator bacteria
- Metals
- Toxic pollutants
- Nutrients (N and P)
- Chlorides

TMDLs in Los Angeles County (cont)

✤ TMDLs are allocated to

- 1. Point Sources
 - POTWs effluent (non-storm discharges)
 - Municipal stormwater dischargers
 - California DOT stormwater discharges
 - Industrial and construction storm and non-storm dischargers
- 2. Non-point sources
 - Aerial deposition, natural sources (forests and animals), and urban runoff
 - Since LA county is highly urbanized, most of County's pollution is from non-point sources
- Two indicator bacteria TMDLs have been incorporated in the MS4 permit as enforceable standards

NPDES in Los Angeles County

T CILL			
Type of discharges	Permit type	No. of permits	
Artificial Discharges	Major discharges (WWTP, generation stations, refineries)	31	00
	Minor discharges	549	
Stormwater discharges	Industrial	2645	
	construction	2218	
	CALTRANS	1	
	Municipal (city of Long beach)	1	
	Municipal (LA county, LACFCD, 84 cities)	1	

Sanitary Sewer Overflow + natural sources (i.e., birds)

Why "Integrated watershedbased" approach?

- Challenges in WQ of the County's watersheds
 - A. Thousands of discharges in the County
 - WWTP, refineries, generation stations, etc
 - Stormwater runoff from industrial and construction facilities
 - Other urban areas (roads, residential, commercial,)
 - B. TMDL compliance is simply difficult, if not impossible
 - TMDLs are allocated only to MS4 at a system of 1000s of storm drain outlets
 - C. Multiple TMDLs are simultaneously in effect that require:
 - Different sources needed to be accounted for
 - Integrated solutions addressing multiple TMDLs
 - D. Effective stormwater management should involve all other aspects besides WQ simultaneously

Key issues in Watershed Planning

Project Goals

- 1. Develop a tool for TMDL compliance and stormwater management that allows:
 - A. Watershed planning at regional scale
 - B. BMP implementation at local scale
- Watershed Management Modeling System (WMMS)
 - Countywide watershed management planning tool
- Water Quality Improvement Plan (WQIP)
 - A. Comprehensive long-term TMDL compliance measures that account for <u>all</u> <u>pollutants listed</u>
 - B. With <u>quantifiable</u> water quality improvement benefits
 - c. <u>Cost-effective</u> approach for TMDL implementation
 - D. To avoid pollutant-specific TMDL implementation measures
 - E. Collaboration from EPA & Regional Board
 - F. General guidance for future WQ improvement efforts

Project Goals

2. To provide technical guidance for LID implementation at new and re-development projects with quantifiable WQ benefits

- A. Parcel scale planning for LID
- B. Strategic planning for MS4 Permit implementation
- 3. To provide a integrated watershed management tool for future planning of multi-use projects
 - A. Flood control
 - B. Water Resources
 - c. Water Quality
 - D. Open space development

Tasks

Watershed Management Modeling System
 Watershed model
 BMP selection system

Water quality Improvement Plan

Watershed management modeling system

<u>Background</u>

- Watershed models
 - Previously created for TMDL development by USEPA (e.g., LAR, SGR, & DC, LAH Metal/Toxics TMDLs)
- BMP selection system
 - Based on BMPDSS program developed in Prince George's County through joint effort with USEPA
 - Optimization at local and regional scale
- Partnership with USEPA
 - Technical support
 - Joint funding for system development

Watershed management modeling system (Cont.)

- 1. The system accounts for key elements of watershed characteristics:
 - A. Rainfall, infiltration, ET, and runoff
 - B. Pollutant generation, transportation, and removal mechanisms
 - c. Impact on receiving water quality (channels, streams, rivers, and ocean)
- 2. The system identifies the most optimal set of distributed and centralized BMPs by calculating:
 - A. Existing, site-specific runoff volume and pollutant load
 - B. Pollutant removal effectiveness and costs
 - c. Expected runoff volume/pollutant load reduction with selected BMPs
- 3. The system also allows for optimization of load reduction scenarios among different areas within a watershed.
- 4. Facilitates water quality credit trading among communities or cities

The Challenge of Scale

Water Quality Improvement Plan

1. Includes cost-effective WQ improvement projects

- A thorough list of distributed and centralized BMPs at subwatershed scale for all watershed areas
- Pollution load reduction to be achieved and associated costs
- To be updated with new WQ standards (i.e., TMDLs)

2. Will follow:

- EPA's Watershed Management Plan Preparation Guides for WQ improvement purposes
- Available state guidelines for Non-Point source control (Clean Water Act sec. 319)

Water Quality Improvement Plan (Cont.)

- 3. Provides guidance for a short and long term planning for stormwater regulatory compliance (i.e., TMDLs) at a sub-watershed scale
- 4. Provides a starting layout from which specific multi-use projects can be developed
 - Green infrastructure planning
 - Open space development
 - Water conservation and flood protection
- 5. Provides guidance for LID implementation at new and redevelopment projects

Finally...Make Adjustments

- Monitor water quality and BMPs
 - Compare results to goals
 - Are you making progress?
 - Are you meeting your goals?
- Adjust!
 - If you aren't meeting implementation milestones
 - If you aren't making progress toward reducing pollutant loads....
- <u>Iterative & adaptive</u> approach
 With specific, <u>quantifiable</u> WQ improvement goals with <u>economics</u> considered

Schedule and milestones

1. Phase 1 (1st yr, by May 2009)

- Stakeholder outreach
- Watershed models completed

2. Phase 2 (2nd yr, by May 2010)

- BMP selection optimization engine development
- Complete selection of distributed & centralized BMPs at subwatershed scale
- Complete key components of WQIP

3. Phase 3 (3rd yr and on)

- Continuous refinement of Phase 2 BMP selection
- Project implementation level BMP selections for LID & TMDL implementation
- Assist in future watershed management planning

Questions?

<u>Contact</u>

Youn Sim Los Angeles County Flood Control District <u>ysim@dpw.lacounty.gov</u> 626-458-4314

