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Overview of Results
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Overview of Results
This section provides an overview of the national and 
regional results for all sectors included in the report. The 
National Highlights section presents the estimated physical 
and monetary benefits (avoided impacts) to the U.S. of the 
global GHG mitigation scenario compared to the Reference 
scenario in 2050 and 2100. 

The Regional Highlights section shows regional impacts 
that are particularly notable, presenting changes in both the 
Reference and Mitigation scenarios to highlight the potential 
benefits of global GHG mitigation. The individual monetized 
estimates presented in these sections are not aggregated,  
as there are differences in the types of costs being quantified 
across sectors; furthermore, not all potential impacts of 
climate change are represented in this report.
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National Highlights
OVERVIEW OF RESULTS

his section provides an overview of the national-scale results presented 
throughout this report. It presents the estimated physical and monetary benefits 
(avoided impacts) to the U.S. of global GHG mitigation compared to the Reference 

scenario in the years 2050 and 2100. Although not available for all sectors, cumulative 
benefits for the entire 21st century would likely be much larger than the annual estimates 
presented here. In addition, the individual monetized estimates are not aggregated, as 
only a subset of climate change impacts is quantified in this report, and there are differ-
ences in the types of costs being quantified across the sectors. For detailed information 
on the results, and a summary of the methodologies used, please refer to the Sectors 
section of this report.  

An estimated 13,000 fewer deaths from poor air quality, 
valued at $160 billion.*

AIR  
QUALITY

INFRASTRUCTURE

ELECTRICITY

In the year 2050, global GHG mitigation  
is projected to result in... 

In the year 2100, global GHG mitigation  
is projected to result in...

HEALTH
An estimated 57,000 fewer deaths from poor air quality, 
valued at $930 billion.*

An estimated 1,700 fewer deaths from extreme heat and 
cold in 49 major U.S. cities, valued at $21 billion.

An estimated 12,000 fewer deaths from extreme heat and 
cold in 49 major U.S. cities, valued at $200 billion.

An estimated avoided loss of 360 million labor hours,  
valued at $18 billion.

An estimated avoided loss of 1.2 billion labor hours,  
valued at $110 billion.

An estimated $507-$700 million in avoided damages from 
poor water quality.†

An estimated $2.6-$3.0 billion in avoided damages from 
poor water quality.†

EXTREME  
TEMPERATURE

LABOR

WATER 
QUALITY

COASTAL 
PROPERTY

An estimated $0.14 billion in avoided damages and 
adaptation costs from sea level rise and storm surge.

An estimated $3.1 billion in avoided damages and adapta-
tion costs from sea level rise and storm surge.

DEMAND AND 
SUPPLY

An estimated 1.1%-4.0% reduction in energy demand  
and $10-$34 billion in savings in power system costs.‡

Not estimated.

*  These results do not reflect the additional benefits to air quality and human health that would stem from the co-control of traditional air pollutants along with GHG emissions.
†    For sectors sensitive to changes in precipitation, the estimated range of results is generated using projections from two climate models showing different patterns of future precipitation in the contiguous U.S. The 

IGSM-CAM model projects a relatively “wetter” future for most of the contiguous U.S. compared to the “drier” MIROC model (see the CIRA Framework section of this report for more information). 

‡  Estimated range of benefits from the reduction in demand and system costs resulting from lower temperatures associated with GHG mitigation. The electricity section in this report presents an analysis that includes 
the costs to the electric sector of reducing GHG emissions. 

T

An estimated 160-960 fewer bridges made structurally 
vulnerable, valued at $0.12-$1.5 billion.†

An estimated 720-2,200 fewer bridges made structurally 
vulnerable, valued at $1.1-$1.6 billion.†

An estimated $0.56-$2.3 billion in avoided adaptation 
costs.†

An estimated $4.2-$7.4 billion in avoided adaptation costs.†

An estimated $56 million to $2.9 billion in avoided adapta-
tion costs from the 50-year, 24-hour storm in 50 U.S. cities.†

An estimated $50 million to $6.4 billion in avoided adapta-
tion costs from the 50-year, 24-hour storm in 50 U.S. cities.†

BRIDGES

ROADS

URBAN 
DRAINAGE

g g



79

National Highlights
In the year 2050, global GHG mitigation  

is projected to result in... 
In the year 2100, global GHG mitigation  

is projected to result in...

An estimated change in flooding damages ranging from $260 
million in damages to $230 million in avoided damages.†

INLAND 
FLOODING

AGRICULTURE & FORESTRY

ECOSYSTEMS

WATER RESOURCES
An estimated change in flooding damages ranging from 
$32 million in damages to $2.5 billion in avoided damages.†

An estimated 29%-45% fewer severe and extreme droughts, 
with corresponding avoided damages to the agriculture 
sector of approximately $1.2-$1.4 billion.†

An estimated 40%-59% fewer severe and extreme droughts, 
with corresponding avoided damages to the agriculture 
sector of $2.6-$3.1 billion.†

An estimated $3.9-$54 billion in avoided damages due to 
water shortages.†

An estimated $11-$180 billion in avoided damages due to 
water shortages.†

DROUGHT

WATER 
SUPPLY AND 
DEMAND

AGRICULTURE An estimated $1.5-$3.8 billion in avoided damages.

Estimated damages of $9.5-$9.6 billion. 

An estimated $6.6-$11 billion in avoided damages.

An estimated $520 million to $1.5 billion in avoided 
damages. 

An estimated avoided loss of 53% of coral in Hawaii,  
3.7% in Florida, and 2.8% in Puerto Rico. These avoided 
losses are valued at $1.4 billion.

CORAL  
REEFS

An estimated avoided loss of 35% of coral in Hawaii, 1.2%  
in Florida, and 1.7% in Puerto Rico. These avoided losses are 
valued at $1.2 billion. 

An estimated avoided loss of 11% of the U.S. oyster  
supply, 12% of the U.S. scallop supply, and 4.6% of the  
U.S. clam supply, with corresponding consumer benefits  
of $85 million.

An estimated avoided loss of 34% of the U.S. oyster  
supply, 37% of the U.S. scallop supply, and 29% of the  
U.S. clam supply, with corresponding consumer benefits  
of $380 million.

An estimated change in recreational fishing ranging from 
$13 million in avoided damages to $3.8 million in damages.†

An estimated $95-$280 million in avoided damages 
associated with recreational fishing.†

An estimated 2.1-2.2 million fewer acres burned and 
corresponding avoided wildfire response costs of $160-$390 
million.†

An estimated 6.0-7.9 million fewer acres burned and 
corresponding avoided wildfire response costs of $940 
million to $1.4 billion.†

SHELLFISH

FRESHWATER 
FISH

WILDFIRE

An estimated 26-78 million fewer metric tons of carbon 
stored, and corresponding costs of $7.5-$23 billion.†

An estimated 1-26 million fewer metric tons of carbon stored, 
and corresponding costs of $880 million to $12 billion.†

CARBON  
STORAGE

FORESTRY
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 Estimates are presented in undiscounted 2014 dollars and rely upon climate projections from the IGSM-CAM climate model. Results using projections from other climate models, such as the MIROC model used 
throughout this report, could lead to variations in results for some sectors. 

 

 

 

 

 

SHELLFISH
Acidi�cation in the Paci�c Northwest is already a�ecting 
U.S. shell�sh harvests. The U.S. supplies of oysters, 
clams, and scallops are projected to decline 45%, 32%, 
and 48%, respectively, in the Reference scenario in 
2100, compared to 11%, 3%, and 11%, respectively, in 
the Mitigation scenario. 

CARBON STORAGE
The Northwest is projected to experience a 6.1% 
decrease in terrestrial carbon storage in 2100 under the 
Reference scenario, compared to a 2.4% decrease in the 
Mitigation scenario.   

WATER SUPPLY AND DEMAND
California is projected to incur $4.5 billion in damages in 
2100 due to changes in water supply and demand in the 
Reference scenario. However, climate change under the 
Mitigation scenario is projected to result in an increase 
in welfare of $40 million. 

DROUGHT
In the Southwest, the number of severe and 
extreme droughts is projected to nearly quadruple 
by the end of the century in the Reference scenario 
compared to today. In the Mitigation scenario, the 
incidence of drought is not projected to change 
substantially from present day.   

WATER QUALITY
The Southwest is projected to experience water quality 
damages of approximately $1.8 billion in 2100 under the 
Reference scenario, compared to $470 million in the 
Mitigation scenario. 

CORAL REEFS
By the end of the century, Hawaii is projected to lose 
98% of its current shallow-water coral in the Reference 
scenario, compared to 64% in the Mitigation scenario. 

LABOR
In 2100, the Southwest is projected to experience a 
3.4% decrease in high-risk labor hours worked in the 
Reference scenario, compared to a decrease of 0.82% 
in the Mitigation scenario. 

COASTAL PROPERTY
In 2100, the Tampa Bay area is projected to incur $2.8 
billion in damages from sea level rise and storm surge 
in the Reference scenario without adaptation. When 
adaptation measures are implemented, total costs in 
2100 fall to $500 million in the Reference scenario, 
compared to $450 million in the Mitigation scenario. 

AIR QUALITY
In 2100, areas of the Southeast are projected to 
experience an annual increase in ozone (O3) and �ne 
particulate matter (PM2.5) of 0.7 ppb and 1 µg/m-3, 
respectively. In the Mitigation scenario, the levels of 
O3 and PM2.5 are projected to decrease by 120% and 
88%, respectively, compared to the Reference. 

AGRICULTURE
In the Southeast, yields of irrigated soybeans are 
projected to decrease 23% in 2100 under the Reference 
scenario. Under the Mitigation scenario, yields are 
projected to increase 4.7%.

URBAN DRAINAGE
In 2100, major cities analyzed in the Great Plains are 
estimated to incur $2.1 million per square mile in 
damages associated with urban drainage systems in the 
Reference scenario, compared to $750,000 per square 
mile in the Mitigation scenario.

EXTREME TEMPERATURE
Without mitigation, major cities in the Northeast from 
D.C. to Boston are projected to su�er a combined 2,600 
extreme temperature mortalities in 2100, compared to 
190 in the Mitigation scenario.  

FRESHWATER FISH
Throughout the Appalachians, global GHG mitigation is 
projected to preserve approximately 70% of habitat for 
coldwater �sh species (e.g., trout) that would otherwise 
be lost by the end of the century to rising temperatures 
from unmitigated climate change.

BRIDGES
In the Great Lakes region, approximately 520 bridges are 
projected to be vulnerable in 2100 under the Reference 
scenario, compared to 65 in the Mitigation scenario. 

INLAND FLOODING
In Texas, projected damages associated with the 
100-year �ood event are $3.6 billion in 2100 under the 
Reference scenario, compared to $2.6 billion in the 
Mitigation scenario. 

ROADS
In 2100, the Great Plains region is projected to incur 
road damages of approximately $3.5 billion in the 
Reference scenario, compared to $1.1 billion in the 
Mitigation scenario.  

WILDFIRE
In the Rocky Mountains, an estimated 1.9 million more 
acres are projected to burn in 2100 under the Reference 
scenario compared to today. In the Mitigation scenario, 
an estimated 1.5 million fewer acres are projected to 
burn compared to today.  

ELECTRICITY DEMAND
The South Central region is projected to experience 
a 2.0% to 4.2% increase in electricity demand under 
the Reference scenario in 2050. In the Mitigation 
scenario, the projected change in demand ranges 
from -1.4% to 1.6%.  

*
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OVERVIEW OF RESULTS

This section highlights regional impacts of climate change in the U.S. For each sector,  
the map presents a region where substantial benefits of global GHG mitigation are projected  
to occur in the years 2050 or 2100.* Note that the geographic scale at which impacts are  
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SHELLFISH
Acidi�cation in the Paci�c Northwest is already a�ecting 
U.S. shell�sh harvests. The U.S. supplies of oysters, 
clams, and scallops are projected to decline 45%, 32%, 
and 48%, respectively, in the Reference scenario in 
2100, compared to 11%, 3%, and 11%, respectively, in 
the Mitigation scenario. 

CARBON STORAGE
The Northwest is projected to experience a 6.1% 
decrease in terrestrial carbon storage in 2100 under the 
Reference scenario, compared to a 2.4% decrease in the 
Mitigation scenario.   

WATER SUPPLY AND DEMAND
California is projected to incur $4.5 billion in damages in 
2100 due to changes in water supply and demand in the 
Reference scenario. However, climate change under the 
Mitigation scenario is projected to result in an increase 
in welfare of $40 million. 

DROUGHT
In the Southwest, the number of severe and 
extreme droughts is projected to nearly quadruple 
by the end of the century in the Reference scenario 
compared to today. In the Mitigation scenario, the 
incidence of drought is not projected to change 
substantially from present day.   

WATER QUALITY
The Southwest is projected to experience water quality 
damages of approximately $1.8 billion in 2100 under the 
Reference scenario, compared to $470 million in the 
Mitigation scenario. 

CORAL REEFS
By the end of the century, Hawaii is projected to lose 
98% of its current shallow-water coral in the Reference 
scenario, compared to 64% in the Mitigation scenario. 

LABOR
In 2100, the Southwest is projected to experience a 
3.4% decrease in high-risk labor hours worked in the 
Reference scenario, compared to a decrease of 0.82% 
in the Mitigation scenario. 

COASTAL PROPERTY
In 2100, the Tampa Bay area is projected to incur $2.8 
billion in damages from sea level rise and storm surge 
in the Reference scenario without adaptation. When 
adaptation measures are implemented, total costs in 
2100 fall to $500 million in the Reference scenario, 
compared to $450 million in the Mitigation scenario. 

AIR QUALITY
In 2100, areas of the Southeast are projected to 
experience an annual increase in ozone (O3) and �ne 
particulate matter (PM2.5) of 0.7 ppb and 1 µg/m-3, 
respectively. In the Mitigation scenario, the levels of 
O3 and PM2.5 are projected to decrease by 120% and 
88%, respectively, compared to the Reference. 

AGRICULTURE
In the Southeast, yields of irrigated soybeans are 
projected to decrease 23% in 2100 under the Reference 
scenario. Under the Mitigation scenario, yields are 
projected to increase 4.7%.

URBAN DRAINAGE
In 2100, major cities analyzed in the Great Plains are 
estimated to incur $2.1 million per square mile in 
damages associated with urban drainage systems in the 
Reference scenario, compared to $750,000 per square 
mile in the Mitigation scenario.

EXTREME TEMPERATURE
Without mitigation, major cities in the Northeast from 
D.C. to Boston are projected to su�er a combined 2,600 
extreme temperature mortalities in 2100, compared to 
190 in the Mitigation scenario.  

FRESHWATER FISH
Throughout the Appalachians, global GHG mitigation is 
projected to preserve approximately 70% of habitat for 
coldwater �sh species (e.g., trout) that would otherwise 
be lost by the end of the century to rising temperatures 
from unmitigated climate change.

BRIDGES
In the Great Lakes region, approximately 520 bridges are 
projected to be vulnerable in 2100 under the Reference 
scenario, compared to 65 in the Mitigation scenario. 

INLAND FLOODING
In Texas, projected damages associated with the 
100-year �ood event are $3.6 billion in 2100 under the 
Reference scenario, compared to $2.6 billion in the 
Mitigation scenario. 

ROADS
In 2100, the Great Plains region is projected to incur 
road damages of approximately $3.5 billion in the 
Reference scenario, compared to $1.1 billion in the 
Mitigation scenario.  

WILDFIRE
In the Rocky Mountains, an estimated 1.9 million more 
acres are projected to burn in 2100 under the Reference 
scenario compared to today. In the Mitigation scenario, 
an estimated 1.5 million fewer acres are projected to 
burn compared to today.  

ELECTRICITY DEMAND
The South Central region is projected to experience 
a 2.0% to 4.2% increase in electricity demand under 
the Reference scenario in 2050. In the Mitigation 
scenario, the projected change in demand ranges 
from -1.4% to 1.6%.  

*
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quantified in the sectoral analyses vary. For example, some of the analyses calculate impacts 
for large watersheds, while others use the National Climate Assessment regions. For purposes 
of highlighting regional impacts, this section approximates the regions. 
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Conclusion
Understanding the potential timing and  
magnitude of climate change impacts in the U.S., and how 
they could be reduced or avoided through GHG mitigation, 
informs near- and long-term policies to address these risks. 
This report describes climate change damages in the U.S. 
across multiple sectors using a consistent set of scenarios 
and underlying assumptions.1 In doing so, the study 
estimates the physical and economic risks of unmitigated 
climate change and the potential benefits to the U.S. of 
reducing global GHG emissions. Importantly, only a small 
portion of the impacts of climate change are estimated, 
and therefore this report captures just some of the total 
benefits of reducing GHGs. Looking across the large 
number of sectoral impacts described in this report, a 
number of key findings emerge:

•  Unmitigated climate change is projected to profoundly 
affect human health, the U.S. economy, and the environ-
ment. The CIRA analyses demonstrate substantial and 
far-reaching changes over the course of the 21st century—
and particularly at the end of the century—with negative 
consequences for a large majority of the impact sectors. In 
addition, the analyses suggest that climate change impacts 
will not be uniform across the U.S., with most sectors 
showing a complex pattern of regional-scale impacts.

•  Global action to mitigate GHG emissions is projected to 
reduce and avoid impacts in the U.S. that would other-
wise occur in a future with continued high growth in 
GHG emissions. Importantly, these benefits are projected 
to increase over the course of the century. The analyses 
indicate that risks and impacts over the long term will not 
be avoided unless there is near-term action to significantly 
reduce GHG emissions. This report presents benefits for one 
illustrative global GHG mitigation scenario. More stringent 
emissions reductions would likely increase the benefits 
compared to the Reference scenario, and, conversely, less 
stringent reductions would likely decrease the benefits.

•  Global GHG mitigation substantially reduces the risk of 
some extreme weather events and their subsequent 
impacts on human health and well-being by the end of 
the century. 

•  Adaptation, especially in the infrastructure sector, can 
substantially reduce the estimated damages of climate 
change. For some impacts, such as those described in the 
Coastal Property section, well-timed adaptation can have a 
larger effect on reducing the risks of inaction than global 
GHG mitigation, particularly in the near term, highlighting 
the need for concurrent mitigation and adaptation actions.

•  For some impacts, the effects of global GHG mitigation 
can vary across different projections of future climate. 
This is particularly true for those sectors sensitive to changes 
in precipitation. For a few of these sectors, mitigation results 
in either benefits or disbenefits depending upon the 
simulated level of future precipitation.2 By analyzing multiple 
types of impacts by sector, such as flooding, drought, water 
quality, and supply/demand in the water realm, and using a 
range of projections for future precipitation, a more compre-
hensive understanding of potential impacts and mitigation 
benefits is gained. 
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Conclusion

This report represents a significant and important contribution to estimating the multi-sectoral benefits to the U.S. of global GHG 
mitigation. Although the results presented in this report do not provide comprehensive coverage of all potential impacts, the 
breadth and depth of the analyses will expand in future work within the CIRA project. Comprehensive and quantitative estimates of 
climate change impacts are not only needed to evaluate the benefits of GHG mitigation, but also to evaluate the cost-effectiveness 
of adaptation responses, and to support the improvement of other economic tools used to analyze climate and energy policies. 
Although CIRA only begins to capture many of the dynamics and uncertainties involved in impact analysis (e.g., interactions among 
sectoral models), this report provides timely and quantitative estimates as the science continues to advance in this field. Future work 
to refine projections of how GHG emissions affect the climate, and how these changes affect society and the environment, will 
improve our understanding and confidence in the estimates presented in this report. 

Observed Climate Change
Climate Change Indicators in the United States: EPA publishes a set of indicators describing trends related to the 
causes and effects of climate change. Focusing primarily on the U.S., this resource presents compelling evidence that 
many fundamental measures of observed climate are changing. 

Please visit EPA’s website for more information: http://www.epa.gov/climatechange/science/indicators/index.html 
Climate Change Indicators 
in the United States, 2014 

Third Edition

EPA’s Climate Change website (www.epa.
gov/climatechange) provides a good 
starting point for further exploration of 
this topic. From this site, you can:

•  Read about greenhouse gas emissions, 
look through EPA’s greenhouse gas 
inventories, and explore EPA’s Greenhouse 
Gas Data Publication Tool. 

•  Learn about EPA’s regulatory initiatives 
and partnership programs. 

•  Find out what you can do at home, on 
the road, at work, and at school to help 
reduce greenhouse gas emissions.

Other government and nongovernment 
websites also provide information about 
climate change. Here are some examples:

•  The Intergovernmental Panel on Climate 
Change (IPCC) is the international 
authority on climate change science. The 
IPCC website (www.ipcc.ch/index.htm) 
summarizes the current state of scientific 
knowledge about climate change and 
includes links to their most recent Fifth 
Assessment Report.

•  The U.S. Global Change Research Program 
(www.globalchange.gov) is a multi-agency 
effort focused on improving our under-
standing of the science of climate change 

and its potential impacts on the U.S. 
through reports like the National Climate 
Assessment.

Finally, other groups are working to 
estimate the impacts of climate change in 
the U.S. and/or other world regions. Here 
are some examples:

•  The Inter-Sectoral Impact Model Inter-
comparison Project (ISI-MIP; https:// 
www.pik-potsdam.de/research/ 
climate-impacts-and-vulnerabilities/
research/rd2-cross-cutting-activities/
isi-mip) is an international, community- 
driven modelling effort bringing together 
impact models across sectors and scales.

•  The Risky Business Project (http://
riskybusiness.org/) focuses on quantifying 
and publicizing the economic risks  
from the impacts of a changing climate  
in the U.S.

•  The European Commission Joint Research 
Centre’s PESETA II project (Projection of 
Economic impacts of climate change in 
Sectors of the European Union based on 
bottom-up Analysis; http://peseta.jrc.ec.
europa.eu/) is a consistent multi-sectoral 
assessment of the impacts of climate 
change in Europe. 

•  AVOID (http://www.metoffice.gov.uk/
avoid/) is a research program that 
provides modeling and scientific informa-
tion to the U.K. Government on avoiding 
dangerous climate change brought on by 
greenhouse gas emissions.

•  The project on the Benefits of Reduced 
Anthropogenic Climate Change (BRACE; 
https://chsp.ucar.edu/brace) focuses on 
differences in impacts resulting from 
climate change driven by high and low 
emissions scenarios.

Additional Climate Change Resources

Next Steps

http://www.epa.gov/climatechange/science/indicators/index.html
http://www.epa.gov/climatechange
http://www.epa.gov/climatechange
http://www.ipcc.ch/index.htm
http://www.globalchange.gov
https://www.pik-potsdam.de/research/climate-impacts-and-vulnerabilities/research/rd2-cross-cutting-activities/isi-mip
https://www.pik-potsdam.de/research/climate-impacts-and-vulnerabilities/research/rd2-cross-cutting-activities/isi-mip
https://www.pik-potsdam.de/research/climate-impacts-and-vulnerabilities/research/rd2-cross-cutting-activities/isi-mip
https://www.pik-potsdam.de/research/climate-impacts-and-vulnerabilities/research/rd2-cross-cutting-activities/isi-mip
https://www.pik-potsdam.de/research/climate-impacts-and-vulnerabilities/research/rd2-cross-cutting-activities/isi-mip
http://riskybusiness.org/
http://riskybusiness.org/
http://peseta.jrc.ec.europa.eu/
http://peseta.jrc.ec.europa.eu/
http://www.metoffice.gov.uk/avoid/
http://www.metoffice.gov.uk/avoid/
https://chsp.ucar.edu/brace
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CONCLUSION
1  The few efforts to date that have estimated multi-sector impacts in a consistent 

framework include the European Commission’s PESETA project (http://peseta.jrc.ec.
europa.eu), and the Risky Business Initiative (http://riskybusiness.org), a project 
focusing on economic risks in the U.S. Integrated assessment models, such as FUND 
(http://fund-model.org), are also being used to estimate the multi-sector social costs of 
GHG emissions. 

2  The use of a climate model that generates a relatively higher amount of future 
precipitation may strongly influence results in a particular sector. For example, inland 
flooding damages may be larger under these wetter climate projections compared to 
those under a drier model. This same sensitivity of sectoral results to the choice of 
climate model could affect a different part of the water sector in complementary ways, 
such that drought damages could be smaller compared to those under a drier model. 
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