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Few tools exist for creating and visualizing complex three-dimensional simulation meshes, and these 
have limitations that restrict their application to particular geometries and circumstances. Mesh 
generation needs to trend toward ever more general applications. To that end, we have developed 
MeshVoro, a tool that is based on the Voroþþ  (Chris H. Rycroft, 2009. Chaos 19, 041111) library and is 
capable of generating complex three-dimensional Voronoi tessellation-based (unstructured) meshes for 
the solution of problems of flow and transport in subsurface geologic media that are addressed by the 
TOUGH (Pruess, K., Oldenburg C., Moridis G., 1999. Report LBNL-43134, 582. Lawrence Berkeley National 
Laboratory, Berkeley, CA) family of codes. MeshVoro, which includes built-in data visualization routines, 
is a particularly useful tool because it extends the applicability of the TOUGH family of codes by enabling 
the scientifically robust and relatively easy discretization of systems with challenging 3D geometries. 

We describe several applications of MeshVoro. We illustrate the ability of the tool to straightfor
wardly transform a complex geological grid into a simulation mesh that conforms to the specifications of 
the TOUGH family of codes. We demonstrate how MeshVoro can describe complex system geometries 
with a relatively small number of grid blocks, and we construct meshes for geometries that would have 
been practically intractable with a standard Cartesian grid approach. We also discuss the limitations and 
appropriate applications of this new technology. 

& 2014 Elsevier Ltd. All rights reserved. 

1. Unstructured simulation meshing 

Problems of modern interest in the subsurface sciences increas
ingly involve heterogeneities of flow parameters and complex geome
trical challenges. Examples of systems with significant heterogeneities 
include reservoirs with faults and fractures, induced and naturally 
occurring. Examples of systems with innate geometric complexity 
include systems involving wells, fractures, geological strata and faults, 
which may be intersecting at arbitrary angles. Few tools are available 
which allow flexible mesh generation for arbitrary three-dimensional 
geometries. TOUGH, as well as other codes capable of solving 
differential equations over irregular and unstructured meshes, have 
solved problems involving grids obtained by the “two-and-a-half 
dimensional” (2-1/2D) Voronoi tessellation. This term describes the 
practice of performing a two-dimensional Voronoi tessellation of 
locally refined mesh on the  X–Y plane, and then projecting the 
computed mesh downward into the Z-axis in horizontal layers, 
modified in the Z-dimension to follow the contours of the geological 
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layers and to respect discontinuities caused by faults (Palagi, 1992; 
Verma, 1996). This approach results in computational savings, but it is 
generally limited to creating more efficient refinements over essen
tially two-dimensional problems, and, thus, can only describe accu
rately geological systems that are uniformly layered (stratified). 

With the advent of ever more powerful computers and 
advanced computer language capabilities, previously intractable 
problems are within reach. Thus, the problems of flow and 
transport that are currently under consideration involve not only 
advanced coupled processes, but also intricate three-dimensional 
geometries and extreme heterogeneities. 

The TOUGH (Pruess et al., 1999) family of codes, including the 
new generation involving the TOUGHþ architecture (Moridis 
et al., 2008), uses the integral finite difference method (IFD— 
Edwards, 1972; Narasimhan and Witherspoon., 1976, 1978) in its 
spatial discretization. This is a finite volume formulation that 
allows the use of irregularly shaped cells (unstructured grids). In 
other words, individual grid blocks in IDF may assume any shape 
and have any number of connected neighbors, so long as certain 
connectivity conditions are met, which are discussed shortly. This 
attribute allows TOUGH applications to use Voronoi tessellation-
based mesh solutions. Voronoi grids, sometimes referred to in the 

www.sciencedirect.com/science/journal/00983004
www.elsevier.com/locate/cageo
http://dx.doi.org/10.1016/j.cageo.2014.05.002
http://dx.doi.org/10.1016/j.cageo.2014.05.002
http://dx.doi.org/10.1016/j.cageo.2014.05.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2014.05.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2014.05.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2014.05.002&domain=pdf
mailto:matt.freeman@pe.tamu.edu
http://dx.doi.org/10.1016/j.cageo.2014.05.002


27 C.M. Freeman et al. / Computers & Geosciences 70 (2014) 26–34 

literature as Perpendicular Bisection (PEBI) grids, have been used 
by several practitioners in the petroleum engineering industry 
(Verma, 1996, Merland et al., 2011). Such, grids offer unique 
advantages in the description of domains with complex (especially 
3D) geometries. Cells can be constructed to conform to geometric 
features using variants of Voronoi tesellation (Du and Gunzburger, 
2002, Merland et al., 2011), in which case they may yield 
significantly more accurate solutions at a lower number of grid-
blocks than algorithms relying on uniform or rectilinear structured 
grids. In this sense, the availability of easily generated Voronoi
based grids would expand the usefulness of the TOUGH family of 
codes by enabling the solution of previously intractable problems. 

To provide a specific example, take a thin volume of geologic 
media containing part of a horizontal well with radius 0.05 m, 
which is itself transversely intersected by a fracture with dimen
sions of 0.001 m internal thickness, 50 m half-length and 10 m 
height. In other words, an object with required refinement in the x, 
y, and z dimensions. By taking advantage of the geometric 
arrangement of these objects we can express this relatively 
complex object in detail with 27197 grid elements, down to the 
interface of the fracture with the well’s radius, with the assump
tion that the well can be approximated with a 16-sided polygon. 
Capturing a similar level of mesh fidelity with a rectilinear grid 
would require refinement to be propagated in the x, y, and z 
dimensions, resulting in at least 300,000 rectilinear elements and 
potentially orders of magnitude more, depending on the desired 
precision at the fracture–wellbore interface. With this example we 
demonstrate a key objective in this work: to provide a means of 
switching from one paradigm of gridding at the bulk scale to a 
more appropriate type of gridding at the local scale. 

The first connectivity condition for a finite volume discretiza
tion is that the surface associated with a given connection must be 
normal to the straight line connecting the cell centroids (centers of 
gravity). This requirement is met by definition by any centroidal 
Voronoi tessellation (Du et al., 1999), where a centroidal Voronoi 
tessellation is defined as one where the generator points are 
identical to the centroids. Every facet of a Voronoi cell is mathe
matically defined as being normal to the line connecting two 
neighboring points. Voronoi tessellations possess the added attri
bute that the common interface is equidistant from those two 
connected points. In Voronoi tessellations, the tessellation genera
tor points are not necessarily identical to the element centroids. In 
other words, Voronoi tessellations may not necessarily be centroi
dal, and thus do not strictly satisfy the requirements for accuracy of 
a finite volume spatial discretization. We discuss the consequences 
of using non-centroidal Voronoi meshes in Section 4. MeshVoro  
includes a module that processes the generated mesh to guarantee 
that the mesh is watertight, i.e., that the mesh does not possess 
connections which should not be present and is not missing 
connections which should be present. This post-processing essen
tially verifies the correctness of each interface. 

2. Algorithmic innovations 

In the course of developing and applying MeshVoro to a variety 
of problems, we faced many unique challenges. Generally, these 
challenges were related either to the visualization of the simula
tion results, or to enforcing sufficient smoothness of the mesh to 
promote numerical tractability. 

2.1. Tetrahedralization 

A perhaps surprising obstacle to the general use of Voronoi 
meshes, and unstructured meshes made up of arbitrary polyhedra 
in general, is the lack of robust and flexible tools for visualizing the 

meshes. A basic requirement of any simulation study is the 
capability to view the state of a simulation at any point in time 
in a spatially intuitive way for diagnostic and analytical purposes. 
However, it is typical for even the most cutting-edge visualization 
software packages to support rendering of only basic shapes, such 
as tetrahedra and hexahedra, but not of arbitrary polyhedra. 

In order to address the issue of visualization, we subdivide the 
polyhedral Voronoi mesh into tetrahedra. We rely on the fact that 
any convex polyhedron can be broken into a number of tetrahedra 
equal to the number of edges of the original polyhedron by 
following a relatively straightforward algorithm (Chazelle, 1980): 
For each edge of the Voronoi polyhedron, we begin with the two 
points defining the beginning (Point 1) and the end (Point 2) of the 
edge. Then, recalling that each edge constitutes the intersection of 
two faces, we define Point 3 as the center of one of the faces 
adjacent to that edge. Finally, we define Point 4 as the centroid of 
the Voronoi cell. These four points define a tetrahedron. A cube, or 
hexahedron, having twelve edges, will be subdivided into 24 
tetrahedra by the iterative application of this algorithm. 
The geometries of two such tetrahedra are depicted in Fig. 1. 

If the points defining these tetrahedra are stored in the memory 
during the computations for mesh generation, they can be used to 
generate output files in standard formats such as .vtk (Schroeder et al., 
1998). Thus the tetrahedralization of the original Voronoi mesh can be 
visualized. The data reflecting the simulation state can be visualized 
by color-coded mapping onto the mesh elements. This allows us to 
robustly visualize the state of the simulation system at any point in 
time. The costs and benefits of retaining these tetrahedral in memory 
are discussed in the next section. 

In a graph-theoretic sense, the Voronoi mesh is the dual of the 
Delaunay tetrahedralization for the generator points (Florack et al., 
2012). Note that the Delaunay tetrahedralization is not the tetra
hedralization algorithm employed by MeshVoro. In the MeshVoro 
tetrahedralization algorithm, the interior volume of each tetrahe
dron belongs strictly to one Voronoi cell, whereas the volume of a 
given tetrahedron in the Delaunay tetrahedralization will overlap 
partially into several different Voronoi cells. 

2.2. Extension to very large meshes 

In the course of developing and applying the MeshVoro tool to 
different research problems, we discovered that some simulation 
meshes are too large to be handled even on powerful modern 
computers without special tools. A direct decomposition of a mesh 
consisting of 2264,000 elements (discussed in more detail in 

ig. 1. A cube (hexahedron) is partially decomposed into tetrahedra. Points 1 and 
 represent the two ends of a single edge; Point 3 represents the center of one of 
he faces bordered by that edge; and Point 4 represents the centroid of the Voronoi 
lement. These four points make up a single tetrahedron. 

F
2
t
e



28 C.M. Freeman et al. / Computers & Geosciences 70 (2014) 26–34 

Section 3.1) into tetrahedra would result in nearly 100 million 
tetrahedra. Merely storing the relevant metadata needed to 
express these 100 million objects results in a 22 GB file. Perform
ing the operations necessary for visualization on files of this size 
requires infeasible amounts of computer memory and processing 
power. 

Using a combination of Python, C and Cþþ , we wrote a special 
suite of modules that allow a user to specify in a pre-processing 
step which regions of the mesh should be selectively visualized. 
This special suite of the MeshVoro code sets aside only the 
tetrahedra which make up this selected region, then extracts the 
relevant simulation state data from hundreds of output files 
generated by massively parallel TOUGHþ runs, each representing 
one portion of the mesh, and collates the selected data into a more 
compact file format. Finally a .vtk (Schroeder et al., 1998) output 
file is generated from the extracted data. 

2.3. Smoothing of the point distribution 

In general, the intersections and edges of discrete three-
dimensional objects pose a significant challenge to accurate mesh 
building. For example, the point at which the wells depicted in 
Fig. 5 pass through the overlying interface between geological 
strata must preserve both the continuity of the well and the 
continuity of the surface plane of the geological layer. Creating a 
mesh for the region of intersection between these two objects in a 
way that respects the continuity of the objects and the physics of 
the flow simulation is not straightforward. 

Another difficulty is posed in cases where a very finely 
discretized subdomain (often referred to as mesh object) is 
adjacent to a subdomain that does not require fine discretization. 
In the confluence (contact) of these two subdomains, a problem 
will arise because the Voronoi mesh generation algorithm con
nects each of the coarse grid points with tens or hundreds of 
neighboring points on the refined object. If this is allowed to occur, 
it can result in a significantly less sparse Jacobian matrix at 
simulation time, which may lead to poor solver performance. 

A standard technique for improving mesh smoothness in 
unstructured meshes is Lloyd’s (1982) iteration. The Lloyd iteration 
is a method for smoothing highly anisotropic Voronoi grids by 
shifting the generator points of the Voronoi cells to the centroids 
of the Voronoi cells, and then recomputing the Voronoi tesselation 
based on the new generator points. In the extreme case, this 
iteration is continued until every Voronoi cell’s centroid coincides 
with its generator point. This degree of smoothing would nullify 
any local refinement, so it is not appropriate for our purposes. 
In MeshVoro, we provide an option to select the number of desired 
Lloyd iterations to be performed. MeshVoro provides an additional 
option to attach special flags to particular points or regions of 
points designating them as ‘movable,’ where by default the 
generator points will not be updated. This allows selective 
smoothing of particular regions of the mesh. 

We determined that this technique comes with drawbacks that 
can restrict (potentially severely) its application. Primarily, in all of 
the applications we discuss in this study, there are numerous 
‘fixed’ objects such as wells, boundary layers, and insulators that 
are effectively destroyed by applying Lloyd’s iteration to them. 
Applying Lloyd smoothing to the points surrounding or between 
refined objects can also yield inconsistent results. 

Several alternatives to Lloyd iteration exist in the literature. 
Centroidal Voronoi Tessellation (CVT) is a research topic of con
siderable interest, and has been explored by several authors 
(Du et al., 1999, Merland et al., 2011, for example), and brings 
the mathematics of optimization theory to bear on the point 
smoothing problem. At lowest order, CVT can reproduce Lloyd 
iteration, but the definition of an objective function can be 

enriched to accommodate anisotropy in a geological model, as 
well as special considerations on the boundary of the domain. 
Point density functions can also be defined to smooth points in a 
way that produces regions of gradually different resolutions, 
though designing properly parametrized density functions is 
something of an art form. 

Another technique that has been recently demonstrated is 
a “force-equilibrium” approach described by Persson (2005). 
Here the author generates meshes using Delaunay triangulation, 
balancing forces aligned with the edges of the triangles to produce 
smooth node distributions that respect density functions similar to 
those described for CVT by Du et al. (1999). He also describes 
methods for producing anisotropic cells that conform to bound
aries on the exterior and within the interior of domains. Persson 
has made available a MATLAB code, DistMesh, that demonstrates 
some of these capabilities (Persson and Strang, 2004). 

In any case, MeshVoro separates the process of defining the 
mesh points from the tessellation, allowing any of these techni
ques to be implemented in Python, producing a set of points that 
can then be fed to the Voroþþ  tessellator. 

2.4. Strategies for mesh object integrity 

If the techniques of the previous section cannot be applied, the 
default option for preserving the geometric integrity of specific 
mesh objects (subdomains) – such as wells and fault planes – is to 
carefully hand-code a purpose-built algorithm which places points 
exactly where they are needed, so as to conform to the geometric 
requirements of all the objects involved in the mesh. This can be 
extremely time-consuming and the solutions that are pro
grammed in this way are typically not re-usable in other contexts, 
owing to the intricacy of fitting together multiple three-
dimensional objects in the same region of space. 

The general strategy behind implementing specific mesh 
objects in this fashion is to approximate the desired geometric 
shapes using regular point clouds. For example, a well consists of 
stacked discs of points. A fracture, depending on the desired 
configuration, consists of layers of regular 2D grids of points. 
Multiple layers in all dimensions are needed to ensure adequate 
mesh smoothness. While technically a well could be approximated 
with a cylinder consisting of a double-ring of points, this config
uration would be insufficiently smooth; the volume of the ele
ments comprising the inside of the well would be vastly smaller 
than the volume of adjacent elements in the mesh outside the 
well. The term used for this transition region populated by 
increasingly widely spaced grid elements is the “fade zone.” 

There are a number of heuristics that we determined in the 
course of developing many such tailor-made meshing solutions. 
These heuristics are the result of numerous personal experiments and 
are provided in the interest of avoiding pitfalls such as insufficiently 
smooth meshes, inconsistent behavior, or over-discretization result
ing in numerical problems. 

1.	 It is advisable, in order to achieve consistent smoothness, to 
provide a fade zone surrounding any refined object (typically a 
fracture or well), with a thickness greater than twice the 
distance between the points representing the refined object 
in the least refined dimension. 

2. Treating the inside of a wellbore as a ring of points rather than 
a single central point results in significant numerical overhead 
and provides no additional physical insight; thus, single central 
points for wells are to be used. 

3. When	 creating complex objects involving well-fracture con
tinua (such as wells intersected by transverse fractures), it is 
recommended to use a radial geometry to represent the 
fracture near the wellbore, and to transition to a rectilinear 
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geometry at a radius greater than twice the distance between 
the well rings. 

4. A relatively reliable method to ensure that the continuity of 
geological layers in the mesh is not marred by stray points 
belonging to nearby mesh objects is to ‘mirror’ all the points 
that are closest to one side of the plane which defines the layer 
interface (i.e., in the first “stratum” of such points) onto the 
other side of that plane, normal to the plane in both directions. 
This cannot be applied if any other mesh objects (subdomains) 
intersect the geological layer at a non-right angle. 

5. Attempting to blend one mesh object fade zone into another by 
‘feathering’ the two fade zones (i.e., by allowing the fade zones 
to sparsely intermingle) is strongly discouraged. Hard cutoffs 
between fade zone interfaces are recommended. 

6. As	 a post-processing step, MeshVoro provides a means of 
removing elements outside of a predetermined area, which 
may be a complex shape. Consequently, while the original 
generator cloud input must be a box, the boundaries of the 
system output by MeshVoro may be non-box or non-convex. 
Particular attention should be paid to the behavior of elements 
at the periphery of the boundary, to ensure that the boundaries 
of exclusion are set and performing as intended. 

7.	 If possible, it is a good practice to visually inspect every new 
mesh that is generated for unexpected meshing behavior. 
Intuition can be a poor guide with regards to which points will 
end up connected and how surfaces will be realized. 

3.	 Methods and applications of MeshVoro 

The Voroþþ  (Rycroft, 2009) library possesses a large variety of 
features not used for the purposes of this work. We primarily rely 
on the capability of the library to import large numbers of grid 
points or cell centers, and to rapidly compute the Voronoi 
tessellation that conforms to these generator points. Furthermore, 
the Voroþþ  library enables direct access to all the relevant details 
of the Voronoi cells computed from these grid points, such as 
volumes, surface areas, reference indices of neighboring cells, and 
distances from each point to each surface. This information is 
sufficient to produce a valid (finite volume) TOUGH mesh in the 
appropriate format. 

Prior to the development of MeshVoro, there was no straight
forward method to transform a complex geological model (such as 
one obtained from seismic inversion) into a TOUGH mesh. With 
MeshVoro, the geological model can be directly converted into a 
TOUGH mesh that respects the cell centers of the original geological 
data points. 

3.1. Application to a complex hydrate problem 

We applied the MeshVoro code to the geophysically-obtained 
geological model in a project involving the study of gas production 
from offshore gas hydrate deposits. The geological model was 
received as a field of points in space associated with geophysical 

Fig. 2. The geological model of 2264,000 elements shown here was transformed directly into a Voronoi mesh using MeshVoro. This is the largest grid ever developed for any 
TOUGH simulation up to the time of preparation of this paper. 
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data. In addition to creating a TOUGH mesh from the provided 
geological model, we also needed to represent a horizontal well 
that was to be positioned at an appropriate location in the system. 

The appropriate location for the horizontal well was deter
mined by using a search algorithm to find the longest continuous 
interval of hydrate-bearing media possessing adequate gross 
thickness in the entire domain. This was done with the aim of 
maximizing the productivity of the well. 

The points lying within a 250 m radius of the desired horizon
tal well location were removed from the mesh. The region was 
then repopulated with a cylindrically refined region of points, with 
radially logarithmic grid spacing, to optimize smoothness, increas
ing from a few centimeters near the wellbore to the spacing of the 
background mesh at the extent of the cylindrical region. In the axis 
of the horizontal well’s penetration (the y-axis) the discretization 
used was the original discretization of the background geologic 
mesh. The points in this cylindrically refined subdomain inherited 
their geological material designation and initial state from the 
computed nearest-neighbor point in the original geologic data 
(see Fig. 2). 

This mesh is the largest grid ever generated for a TOUGH 
simulation up to the time of preparation of this paper, involving 
2264,000 elements and requiring the solution of over 9000,000 
simultaneous coupled equations (Figs. 3 and 4). 

The code modules developed for visualizing very large meshes 
(see discussion in Section 2.2) were written specifically for this 
highly refined field-scale hydrate mesh. Visualizing the results of 
the simulation required more human and computational time 
investment than generating the simulation mesh had demanded 
in the first place. 

3.2. Application to a problem involving wells with complex 3D 
orientation 

The next application of the MeshVoro code involves the relatively 
free-form generation of meshes conforming to complex, yet some
what idealized, geometries, as motivated by a study of the potential 
for the impact of hydraulic fracturing of deep tight/shale gas 
reservoirs on shallow drinking water aquifers. For example, the 
creation of a TOUGH mesh conforming to a system possessing two 
vertical wells and a horizontal well each passing through multiple 
distinct geological layers would have been prohibitively difficult if we 
had attempted to use a structured (standard finite difference) grid 
because of the requirement of high degrees of refinement in all 
dimensions. With the MeshVoro tool, it becomes possible to 
straightforwardly construct objects such as wells, fractures and layers 
from cylindrical and planar fields of points that are carefully 
assembled into a point cloud. The point cloud is then transformed 
into a Voronoi mesh by the main MeshVoro code (see Fig. 5). 

MeshVoro attempts to address these issues with three options, 
the suitability and appropriateness of each of which depend on the 
particular circumstances. 

3.3. Application to meshing a hydrate core sample 

While TOUGH and similar codes for modeling fluid flow in 
porous media are normally used to simulate large-scale processes 
in geologic media, the TOUGH codes can in fact render accurate 
results for a domain of any size, so long as the underlying basic 
equations of flow in the available options (i.e., Darcy’s law, the 
Forchheimer, 1901, and the Barree and Conway, 2004, 2007 

Fig. 3. A horizontal well is inserted into the geological model in this figure. The properties of the ‘fade zone’ a (the green region) around the horizontal well are inherited 
from the properties of the nearest-neighbor points in the original grid. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 
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Fig. 4. A view of the tetrahedralization of the region surrounding the horizontal well, processed selectively using the tools designed specifically for manipulating very large 
meshes. 

Fig. 5. A domain including two vertical wells and a horizontal well (with local refinement in the vicinity around each well), in the midst of a larger more coarsely refined region. 

equation) is valid. We simulated the entire process of dissociation study of Birkedal et al. (2011). Figs. 6 and 7 show the saturation of 
of methane hydrate in a hydrate-impregnated core sample that liquid water in the core sample. The sample shown in Fig. 8a was  
had been scanned using Magnetic Resonance Imaging (MRI) in the subjected to depressurization, causing dissociation of the methane 
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hydrate, and the resulting change in the phase saturations inside 
the core was monitored and measured (Fig. 8b and c). 

In order to (a) explore whether the hydrate dissociation in this 
experiment was an equilibrium or a kinetic process, and (b) to 
determine the corresponding parameters, we simulated the beha
vior of the entire system accounting for all the important condi
tions, properties and characteristics that defined it. To accomplish 
this, we needed a refined simulation mesh capturing all of the data 
extracted from the MRI scan and the surrounding experimental 
apparatus. 

In describing the system geometry, the dissociation apparatus 
needed to be modeled accurately in order to capture the heat 
transfers through the entire domain (including the boundaries). 
As depicted in Fig. 9, the hydrate-bearing core was surrounded by 

Fig. 6. A core sample saturated with gas hydrate was scanned using a Magnetic 
Resonance Imaging (MRI). The MRI process generates useful data, including the 
saturation of liquid water in the core, depicted here using high-resolution voxels. 
This MRI-derived saturation data is then processed to generate the initial condi
tions of the TOUGH simulation (Birkedal et al. 2011). 

an insulating Teflon sleeve and a very thin (micron-scale) gas 
pocket (gap) along its cylindrical outer surface, and was fastened 
in place on each end by plastic spacers. Accurately capturing the 
geometry of these elements, and accurately describing their 
thermal properties, was vital to represent the heat flow into the 
core from the outer boundary (Fluorinert – a heat transfer fluid – 
circulating at a monitored, nearly constant temperature). 

Earlier attempts to capture the geometry of the dissociation 
system using a standard rectilinear grid has indicated early-on the 

Fig. 8. A cross-section of the simulation mesh for the hydrate core dissociation 
experiment, color coded by material type. The inside of the hydrate core (red) uses 
rectilinear gridding while the remainder of the grid uses pseudo-radial gridding. 
(For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 7. Schematic representation of the laboratory setup for the thermal dissociation of a methane hydrate core. The dimensions of the illustration are skewed to clearly 
show the very thin but important air pocket layer. The Fluorinert layer is an inert pad of gas meant to thermally insulate the apparatus. PEEK refers to polyether ether ketone 
and POM refers to polyoxymethylene; these are insulators. 
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futility of this approach, as it would require a prohibitively large 
simulation grid to capture the relevant details of the system at the 
needed detail. Application of the MeshVoro tool to this geometry 
enabled very fine gridding where needed. More importantly, 
MeshVoro enabled a smooth transition between rectilinear gridd
ing inside the hydrate core and pseudo-radial gridding outside the 
core. This transition is depicted in the cross-sectional in Fig. 8, 
where the MRI scan data exactly determined the locations and 
properties of the grid cells inside the core (Fig. 9); a custom-made 
dynamic radial gridding algorithm populated the mesh describing 
the rest of the laboratory apparatus (Figs. 10 and 11). 

These examples show the power of the MeshVoro application, 
and the strict control it allows for the description of the details of a 
system over several spatial scales and in complex geometries. 

4. Discussion 

3D Voronoi cells can easily possess 12 or more connected 
neighbors with no structural regularity, whereas a traditional 3D 
Cartesian or radial mesh can only have a maximum of six 
neighbors with consistent orientation. Consequently, the Jacobian 
matrix developed by the TOUGH codes to compute the solution of 
the flow equations originating from Voronoi meshes will be 
significantly less sparse, more ill-conditioned, and with a less 

Fig. 9. A cross-section of the simulation mesh for the dissociation experiment of 
the hydrate-bearing core. The different colors depict differences in saturation of 
liquid water determined from the MRI scans. The grid center points of the mesh 
and the properties assigned to these points are inherited directly from the MRI 
scan data. 

regular corresponding incidence matrix than those from Cartesian 
meshes. This implies poorer solver performance for Voronoi 
meshes compared to that corresponding to Cartesian meshes with 
a similar number of grid cells. Note that the reference to “poorer” 
solver performance does not mean deterioration in the accuracy of 
the solution, which is unaffected, as it is controlled exclusively by 
the convergence criterion in the Newton–Raphson iterative pro
cess (Pruess et al., 1999); it means an increased number of 
iterations to convergence and, consequently, smaller time-step 
sizes, a larger number of time steps to cover the desired simulation 
period and a longer execution time. The solution performance of 
problems involving Voronoi grids may be further aggravated by 
improper spatial discretization, which would result in larger space 
discretization errors and correspondingly increased convergence 
difficulty. We must emphasize that the purpose of Voronoi meshes 
is to represent geometries that cannot be efficiently represented 
by Cartesian meshes, where the expected tradeoff in numerical 
performance is warranted, and the additional execution time and 
larger memory requirements are not an issue as there is practically 
no alternative. For simple, geometrically regular problems, struc
tured meshes are sufficient and are almost certain to outperform 
Voronoi meshes in terms of speed and memory requirements. 
Given the intensive labor requirements to construct them, Voronoi 
meshes should be used where they are suited to the demands of 
the problem, such as in the irregular three-dimensional meshes 
described above. 

Another crucial property of the meshes generated by MeshVoro 
is that the Voronoi tessellations are not required to be centroidal, 
meaning that the element generator points are not necessarily 
coincident with the element centroids. The option to perform 
Lloyd’s (1982) iteration on the meshes is available, but we note 
that the smoothing of very refined mesh regions such as wells and 
fractures can severely distort these objects. Obtaining mesh 
“cendroidality” eats the expense of the geometric integrity of 
crucial flow and geometry features defeats the purpose of an 
unstructured locally-refined mesh. The Lloyd’s iteration sacrifices 
some numerical accuracy for geometric resolution and flexibility, 
and in so doing opens up a new range of problems. 

Regarding visualization of simulation results in a three-
dimensional fashion, we find no truly adequate tools exist for 
creating publication-quality representations of complex three-
dimensional data. The tools we discuss and develop here may be 
used for qualitative illustration and for data exploration, but these 
tools do not provide precise quantitative illustrations. Events of 
scientific interest may occur on a scale of centimeters or kilo
meters, depending on the nature of the problem, and it is difficult 
to imbue static graphical representations with sufficient context 
to unambiguously communicate the intent of any given figure. 
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Fig. 10. An axial cross-section view of the simulation state of the hydrate core sample showing liquid water saturation at its initial state, as determined from interpolation 
from the MRI scan data. 
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Fig. 11. An axial cross-section view of the simulation state of the hydrate core sample showing liquid water saturation at the end of the simulated depressurization. 

Clearly representing complex three-dimensional geometries with 
printed two-dimensional figures remains a challenge. 
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