
Computers & Geosciences 70 (2014) 26–34

Contents lists available at ScienceDirect

Computers & Geosciences

journal homepage: www.elsevier.com/locate/cageo

MeshVoro: A three-dimensional Voronoi mesh building tool
for the TOUGH family of codes

C.M. Freeman a,n, K.L. Boyle b, M. Reagan b, J. Johnson b, C. Rycroft c, G.J. Moridis b

a Earth Sciences Division, Lawrence Berkeley National Laboratory, now with Hilcorp Energy Company, 1201 Louisiana St $1400, Houston, TX, 77002, United States
b Earth Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
c Harvard University, School of Engineering and Applied Sciences, Cambridge, MA 02138, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 6 September 2013
Received in revised form
30 April 2014
Accepted 2 May 2014
Available online 15 May 2014

Keywords:
Mesh
Grid
TOUGH
Hydrology
Geology
Visualization
VisIt
Petroleum
Shale/tight gas
Voronoi

Few tools exist for creating and visualizing complex three-dimensional simulation meshes, and these
have limitations that restrict their application to particular geometries and circumstances. Mesh
generation needs to trend toward ever more general applications. To that end, we have developed
MeshVoro, a tool that is based on the Voroþþ (Chris H. Rycroft, 2009. Chaos 19, 041111) library and is
capable of generating complex three-dimensional Voronoi tessellation-based (unstructured) meshes for
the solution of problems of flow and transport in subsurface geologic media that are addressed by the
TOUGH (Pruess, K., Oldenburg C., Moridis G., 1999. Report LBNL-43134, 582. Lawrence Berkeley National
Laboratory, Berkeley, CA) family of codes. MeshVoro, which includes built-in data visualization routines,
is a particularly useful tool because it extends the applicability of the TOUGH family of codes by enabling
the scientifically robust and relatively easy discretization of systems with challenging 3D geometries.

We describe several applications of MeshVoro. We illustrate the ability of the tool to straightfor
wardly transform a complex geological grid into a simulation mesh that conforms to the specifications of
the TOUGH family of codes. We demonstrate how MeshVoro can describe complex system geometries
with a relatively small number of grid blocks, and we construct meshes for geometries that would have
been practically intractable with a standard Cartesian grid approach. We also discuss the limitations and
appropriate applications of this new technology.

& 2014 Elsevier Ltd. All rights reserved.

1. Unstructured simulation meshing

Problems of modern interest in the subsurface sciences increas
ingly involve heterogeneities of flow parameters and complex geome
trical challenges. Examples of systems with significant heterogeneities
include reservoirs with faults and fractures, induced and naturally
occurring. Examples of systems with innate geometric complexity
include systems involving wells, fractures, geological strata and faults,
which may be intersecting at arbitrary angles. Few tools are available
which allow flexible mesh generation for arbitrary three-dimensional
geometries. TOUGH, as well as other codes capable of solving
differential equations over irregular and unstructured meshes, have
solved problems involving grids obtained by the “two-and-a-half
dimensional” (2-1/2D) Voronoi tessellation. This term describes the
practice of performing a two-dimensional Voronoi tessellation of
locally refined mesh on the X–Y plane, and then projecting the
computed mesh downward into the Z-axis in horizontal layers,
modified in the Z-dimension to follow the contours of the geological

n Corresponding author.

E-mail address: matt.freeman@pe.tamu.edu (C.M. Freeman).

http://dx.doi.org/10.1016/j.cageo.2014.05.002
0098-3004/& 2014 Elsevier Ltd. All rights reserved.

layers and to respect discontinuities caused by faults (Palagi, 1992;
Verma, 1996). This approach results in computational savings, but it is
generally limited to creating more efficient refinements over essen
tially two-dimensional problems, and, thus, can only describe accu
rately geological systems that are uniformly layered (stratified).

With the advent of ever more powerful computers and
advanced computer language capabilities, previously intractable
problems are within reach. Thus, the problems of flow and
transport that are currently under consideration involve not only
advanced coupled processes, but also intricate three-dimensional
geometries and extreme heterogeneities.

The TOUGH (Pruess et al., 1999) family of codes, including the
new generation involving the TOUGHþ architecture (Moridis
et al., 2008), uses the integral finite difference method (IFD—
Edwards, 1972; Narasimhan and Witherspoon., 1976, 1978) in its
spatial discretization. This is a finite volume formulation that
allows the use of irregularly shaped cells (unstructured grids). In
other words, individual grid blocks in IDF may assume any shape
and have any number of connected neighbors, so long as certain
connectivity conditions are met, which are discussed shortly. This
attribute allows TOUGH applications to use Voronoi tessellation-
based mesh solutions. Voronoi grids, sometimes referred to in the

www.sciencedirect.com/science/journal/00983004
www.elsevier.com/locate/cageo
http://dx.doi.org/10.1016/j.cageo.2014.05.002
http://dx.doi.org/10.1016/j.cageo.2014.05.002
http://dx.doi.org/10.1016/j.cageo.2014.05.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2014.05.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2014.05.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2014.05.002&domain=pdf
mailto:matt.freeman@pe.tamu.edu
http://dx.doi.org/10.1016/j.cageo.2014.05.002

27 C.M. Freeman et al. / Computers & Geosciences 70 (2014) 26–34

literature as Perpendicular Bisection (PEBI) grids, have been used
by several practitioners in the petroleum engineering industry
(Verma, 1996, Merland et al., 2011). Such, grids offer unique
advantages in the description of domains with complex (especially
3D) geometries. Cells can be constructed to conform to geometric
features using variants of Voronoi tesellation (Du and Gunzburger,
2002, Merland et al., 2011), in which case they may yield
significantly more accurate solutions at a lower number of grid-
blocks than algorithms relying on uniform or rectilinear structured
grids. In this sense, the availability of easily generated Voronoi
based grids would expand the usefulness of the TOUGH family of
codes by enabling the solution of previously intractable problems.

To provide a specific example, take a thin volume of geologic
media containing part of a horizontal well with radius 0.05 m,
which is itself transversely intersected by a fracture with dimen
sions of 0.001 m internal thickness, 50 m half-length and 10 m
height. In other words, an object with required refinement in the x,
y, and z dimensions. By taking advantage of the geometric
arrangement of these objects we can express this relatively
complex object in detail with 27197 grid elements, down to the
interface of the fracture with the well’s radius, with the assump
tion that the well can be approximated with a 16-sided polygon.
Capturing a similar level of mesh fidelity with a rectilinear grid
would require refinement to be propagated in the x, y, and z
dimensions, resulting in at least 300,000 rectilinear elements and
potentially orders of magnitude more, depending on the desired
precision at the fracture–wellbore interface. With this example we
demonstrate a key objective in this work: to provide a means of
switching from one paradigm of gridding at the bulk scale to a
more appropriate type of gridding at the local scale.

The first connectivity condition for a finite volume discretiza
tion is that the surface associated with a given connection must be
normal to the straight line connecting the cell centroids (centers of
gravity). This requirement is met by definition by any centroidal
Voronoi tessellation (Du et al., 1999), where a centroidal Voronoi
tessellation is defined as one where the generator points are
identical to the centroids. Every facet of a Voronoi cell is mathe
matically defined as being normal to the line connecting two
neighboring points. Voronoi tessellations possess the added attri
bute that the common interface is equidistant from those two
connected points. In Voronoi tessellations, the tessellation genera
tor points are not necessarily identical to the element centroids. In
other words, Voronoi tessellations may not necessarily be centroi
dal, and thus do not strictly satisfy the requirements for accuracy of
a finite volume spatial discretization. We discuss the consequences
of using non-centroidal Voronoi meshes in Section 4. MeshVoro
includes a module that processes the generated mesh to guarantee
that the mesh is watertight, i.e., that the mesh does not possess
connections which should not be present and is not missing
connections which should be present. This post-processing essen
tially verifies the correctness of each interface.

2. Algorithmic innovations

In the course of developing and applying MeshVoro to a variety
of problems, we faced many unique challenges. Generally, these
challenges were related either to the visualization of the simula
tion results, or to enforcing sufficient smoothness of the mesh to
promote numerical tractability.

2.1. Tetrahedralization

A perhaps surprising obstacle to the general use of Voronoi
meshes, and unstructured meshes made up of arbitrary polyhedra
in general, is the lack of robust and flexible tools for visualizing the

meshes. A basic requirement of any simulation study is the
capability to view the state of a simulation at any point in time
in a spatially intuitive way for diagnostic and analytical purposes.
However, it is typical for even the most cutting-edge visualization
software packages to support rendering of only basic shapes, such
as tetrahedra and hexahedra, but not of arbitrary polyhedra.

In order to address the issue of visualization, we subdivide the
polyhedral Voronoi mesh into tetrahedra. We rely on the fact that
any convex polyhedron can be broken into a number of tetrahedra
equal to the number of edges of the original polyhedron by
following a relatively straightforward algorithm (Chazelle, 1980):
For each edge of the Voronoi polyhedron, we begin with the two
points defining the beginning (Point 1) and the end (Point 2) of the
edge. Then, recalling that each edge constitutes the intersection of
two faces, we define Point 3 as the center of one of the faces
adjacent to that edge. Finally, we define Point 4 as the centroid of
the Voronoi cell. These four points define a tetrahedron. A cube, or
hexahedron, having twelve edges, will be subdivided into 24
tetrahedra by the iterative application of this algorithm.
The geometries of two such tetrahedra are depicted in Fig. 1.

If the points defining these tetrahedra are stored in the memory
during the computations for mesh generation, they can be used to
generate output files in standard formats such as .vtk (Schroeder et al.,
1998). Thus the tetrahedralization of the original Voronoi mesh can be
visualized. The data reflecting the simulation state can be visualized
by color-coded mapping onto the mesh elements. This allows us to
robustly visualize the state of the simulation system at any point in
time. The costs and benefits of retaining these tetrahedral in memory
are discussed in the next section.

In a graph-theoretic sense, the Voronoi mesh is the dual of the
Delaunay tetrahedralization for the generator points (Florack et al.,
2012). Note that the Delaunay tetrahedralization is not the tetra
hedralization algorithm employed by MeshVoro. In the MeshVoro
tetrahedralization algorithm, the interior volume of each tetrahe
dron belongs strictly to one Voronoi cell, whereas the volume of a
given tetrahedron in the Delaunay tetrahedralization will overlap
partially into several different Voronoi cells.

2.2. Extension to very large meshes

In the course of developing and applying the MeshVoro tool to
different research problems, we discovered that some simulation
meshes are too large to be handled even on powerful modern
computers without special tools. A direct decomposition of a mesh
consisting of 2264,000 elements (discussed in more detail in

ig. 1. A cube (hexahedron) is partially decomposed into tetrahedra. Points 1 and
 represent the two ends of a single edge; Point 3 represents the center of one of
he faces bordered by that edge; and Point 4 represents the centroid of the Voronoi
lement. These four points make up a single tetrahedron.

F
2
t
e

28 C.M. Freeman et al. / Computers & Geosciences 70 (2014) 26–34

Section 3.1) into tetrahedra would result in nearly 100 million
tetrahedra. Merely storing the relevant metadata needed to
express these 100 million objects results in a 22 GB file. Perform
ing the operations necessary for visualization on files of this size
requires infeasible amounts of computer memory and processing
power.

Using a combination of Python, C and Cþþ , we wrote a special
suite of modules that allow a user to specify in a pre-processing
step which regions of the mesh should be selectively visualized.
This special suite of the MeshVoro code sets aside only the
tetrahedra which make up this selected region, then extracts the
relevant simulation state data from hundreds of output files
generated by massively parallel TOUGHþ runs, each representing
one portion of the mesh, and collates the selected data into a more
compact file format. Finally a .vtk (Schroeder et al., 1998) output
file is generated from the extracted data.

2.3. Smoothing of the point distribution

In general, the intersections and edges of discrete three-
dimensional objects pose a significant challenge to accurate mesh
building. For example, the point at which the wells depicted in
Fig. 5 pass through the overlying interface between geological
strata must preserve both the continuity of the well and the
continuity of the surface plane of the geological layer. Creating a
mesh for the region of intersection between these two objects in a
way that respects the continuity of the objects and the physics of
the flow simulation is not straightforward.

Another difficulty is posed in cases where a very finely
discretized subdomain (often referred to as mesh object) is
adjacent to a subdomain that does not require fine discretization.
In the confluence (contact) of these two subdomains, a problem
will arise because the Voronoi mesh generation algorithm con
nects each of the coarse grid points with tens or hundreds of
neighboring points on the refined object. If this is allowed to occur,
it can result in a significantly less sparse Jacobian matrix at
simulation time, which may lead to poor solver performance.

A standard technique for improving mesh smoothness in
unstructured meshes is Lloyd’s (1982) iteration. The Lloyd iteration
is a method for smoothing highly anisotropic Voronoi grids by
shifting the generator points of the Voronoi cells to the centroids
of the Voronoi cells, and then recomputing the Voronoi tesselation
based on the new generator points. In the extreme case, this
iteration is continued until every Voronoi cell’s centroid coincides
with its generator point. This degree of smoothing would nullify
any local refinement, so it is not appropriate for our purposes.
In MeshVoro, we provide an option to select the number of desired
Lloyd iterations to be performed. MeshVoro provides an additional
option to attach special flags to particular points or regions of
points designating them as ‘movable,’ where by default the
generator points will not be updated. This allows selective
smoothing of particular regions of the mesh.

We determined that this technique comes with drawbacks that
can restrict (potentially severely) its application. Primarily, in all of
the applications we discuss in this study, there are numerous
‘fixed’ objects such as wells, boundary layers, and insulators that
are effectively destroyed by applying Lloyd’s iteration to them.
Applying Lloyd smoothing to the points surrounding or between
refined objects can also yield inconsistent results.

Several alternatives to Lloyd iteration exist in the literature.
Centroidal Voronoi Tessellation (CVT) is a research topic of con
siderable interest, and has been explored by several authors
(Du et al., 1999, Merland et al., 2011, for example), and brings
the mathematics of optimization theory to bear on the point
smoothing problem. At lowest order, CVT can reproduce Lloyd
iteration, but the definition of an objective function can be

enriched to accommodate anisotropy in a geological model, as
well as special considerations on the boundary of the domain.
Point density functions can also be defined to smooth points in a
way that produces regions of gradually different resolutions,
though designing properly parametrized density functions is
something of an art form.

Another technique that has been recently demonstrated is
a “force-equilibrium” approach described by Persson (2005).
Here the author generates meshes using Delaunay triangulation,
balancing forces aligned with the edges of the triangles to produce
smooth node distributions that respect density functions similar to
those described for CVT by Du et al. (1999). He also describes
methods for producing anisotropic cells that conform to bound
aries on the exterior and within the interior of domains. Persson
has made available a MATLAB code, DistMesh, that demonstrates
some of these capabilities (Persson and Strang, 2004).

In any case, MeshVoro separates the process of defining the
mesh points from the tessellation, allowing any of these techni
ques to be implemented in Python, producing a set of points that
can then be fed to the Voroþþ tessellator.

2.4. Strategies for mesh object integrity

If the techniques of the previous section cannot be applied, the
default option for preserving the geometric integrity of specific
mesh objects (subdomains) – such as wells and fault planes – is to
carefully hand-code a purpose-built algorithm which places points
exactly where they are needed, so as to conform to the geometric
requirements of all the objects involved in the mesh. This can be
extremely time-consuming and the solutions that are pro
grammed in this way are typically not re-usable in other contexts,
owing to the intricacy of fitting together multiple three-
dimensional objects in the same region of space.

The general strategy behind implementing specific mesh
objects in this fashion is to approximate the desired geometric
shapes using regular point clouds. For example, a well consists of
stacked discs of points. A fracture, depending on the desired
configuration, consists of layers of regular 2D grids of points.
Multiple layers in all dimensions are needed to ensure adequate
mesh smoothness. While technically a well could be approximated
with a cylinder consisting of a double-ring of points, this config
uration would be insufficiently smooth; the volume of the ele
ments comprising the inside of the well would be vastly smaller
than the volume of adjacent elements in the mesh outside the
well. The term used for this transition region populated by
increasingly widely spaced grid elements is the “fade zone.”

There are a number of heuristics that we determined in the
course of developing many such tailor-made meshing solutions.
These heuristics are the result of numerous personal experiments and
are provided in the interest of avoiding pitfalls such as insufficiently
smooth meshes, inconsistent behavior, or over-discretization result
ing in numerical problems.

1.	 It is advisable, in order to achieve consistent smoothness, to
provide a fade zone surrounding any refined object (typically a
fracture or well), with a thickness greater than twice the
distance between the points representing the refined object
in the least refined dimension.

2. Treating the inside of a wellbore as a ring of points rather than
a single central point results in significant numerical overhead
and provides no additional physical insight; thus, single central
points for wells are to be used.

3. When	 creating complex objects involving well-fracture con
tinua (such as wells intersected by transverse fractures), it is
recommended to use a radial geometry to represent the
fracture near the wellbore, and to transition to a rectilinear

29 C.M. Freeman et al. / Computers & Geosciences 70 (2014) 26–34

geometry at a radius greater than twice the distance between
the well rings.

4. A relatively reliable method to ensure that the continuity of
geological layers in the mesh is not marred by stray points
belonging to nearby mesh objects is to ‘mirror’ all the points
that are closest to one side of the plane which defines the layer
interface (i.e., in the first “stratum” of such points) onto the
other side of that plane, normal to the plane in both directions.
This cannot be applied if any other mesh objects (subdomains)
intersect the geological layer at a non-right angle.

5. Attempting to blend one mesh object fade zone into another by
‘feathering’ the two fade zones (i.e., by allowing the fade zones
to sparsely intermingle) is strongly discouraged. Hard cutoffs
between fade zone interfaces are recommended.

6. As	 a post-processing step, MeshVoro provides a means of
removing elements outside of a predetermined area, which
may be a complex shape. Consequently, while the original
generator cloud input must be a box, the boundaries of the
system output by MeshVoro may be non-box or non-convex.
Particular attention should be paid to the behavior of elements
at the periphery of the boundary, to ensure that the boundaries
of exclusion are set and performing as intended.

7.	 If possible, it is a good practice to visually inspect every new
mesh that is generated for unexpected meshing behavior.
Intuition can be a poor guide with regards to which points will
end up connected and how surfaces will be realized.

3.	 Methods and applications of MeshVoro

The Voroþþ (Rycroft, 2009) library possesses a large variety of
features not used for the purposes of this work. We primarily rely
on the capability of the library to import large numbers of grid
points or cell centers, and to rapidly compute the Voronoi
tessellation that conforms to these generator points. Furthermore,
the Voroþþ library enables direct access to all the relevant details
of the Voronoi cells computed from these grid points, such as
volumes, surface areas, reference indices of neighboring cells, and
distances from each point to each surface. This information is
sufficient to produce a valid (finite volume) TOUGH mesh in the
appropriate format.

Prior to the development of MeshVoro, there was no straight
forward method to transform a complex geological model (such as
one obtained from seismic inversion) into a TOUGH mesh. With
MeshVoro, the geological model can be directly converted into a
TOUGH mesh that respects the cell centers of the original geological
data points.

3.1. Application to a complex hydrate problem

We applied the MeshVoro code to the geophysically-obtained
geological model in a project involving the study of gas production
from offshore gas hydrate deposits. The geological model was
received as a field of points in space associated with geophysical

Fig. 2. The geological model of 2264,000 elements shown here was transformed directly into a Voronoi mesh using MeshVoro. This is the largest grid ever developed for any
TOUGH simulation up to the time of preparation of this paper.

30 C.M. Freeman et al. / Computers & Geosciences 70 (2014) 26–34

data. In addition to creating a TOUGH mesh from the provided
geological model, we also needed to represent a horizontal well
that was to be positioned at an appropriate location in the system.

The appropriate location for the horizontal well was deter
mined by using a search algorithm to find the longest continuous
interval of hydrate-bearing media possessing adequate gross
thickness in the entire domain. This was done with the aim of
maximizing the productivity of the well.

The points lying within a 250 m radius of the desired horizon
tal well location were removed from the mesh. The region was
then repopulated with a cylindrically refined region of points, with
radially logarithmic grid spacing, to optimize smoothness, increas
ing from a few centimeters near the wellbore to the spacing of the
background mesh at the extent of the cylindrical region. In the axis
of the horizontal well’s penetration (the y-axis) the discretization
used was the original discretization of the background geologic
mesh. The points in this cylindrically refined subdomain inherited
their geological material designation and initial state from the
computed nearest-neighbor point in the original geologic data
(see Fig. 2).

This mesh is the largest grid ever generated for a TOUGH
simulation up to the time of preparation of this paper, involving
2264,000 elements and requiring the solution of over 9000,000
simultaneous coupled equations (Figs. 3 and 4).

The code modules developed for visualizing very large meshes
(see discussion in Section 2.2) were written specifically for this
highly refined field-scale hydrate mesh. Visualizing the results of
the simulation required more human and computational time
investment than generating the simulation mesh had demanded
in the first place.

3.2. Application to a problem involving wells with complex 3D
orientation

The next application of the MeshVoro code involves the relatively
free-form generation of meshes conforming to complex, yet some
what idealized, geometries, as motivated by a study of the potential
for the impact of hydraulic fracturing of deep tight/shale gas
reservoirs on shallow drinking water aquifers. For example, the
creation of a TOUGH mesh conforming to a system possessing two
vertical wells and a horizontal well each passing through multiple
distinct geological layers would have been prohibitively difficult if we
had attempted to use a structured (standard finite difference) grid
because of the requirement of high degrees of refinement in all
dimensions. With the MeshVoro tool, it becomes possible to
straightforwardly construct objects such as wells, fractures and layers
from cylindrical and planar fields of points that are carefully
assembled into a point cloud. The point cloud is then transformed
into a Voronoi mesh by the main MeshVoro code (see Fig. 5).

MeshVoro attempts to address these issues with three options,
the suitability and appropriateness of each of which depend on the
particular circumstances.

3.3. Application to meshing a hydrate core sample

While TOUGH and similar codes for modeling fluid flow in
porous media are normally used to simulate large-scale processes
in geologic media, the TOUGH codes can in fact render accurate
results for a domain of any size, so long as the underlying basic
equations of flow in the available options (i.e., Darcy’s law, the
Forchheimer, 1901, and the Barree and Conway, 2004, 2007

Fig. 3. A horizontal well is inserted into the geological model in this figure. The properties of the ‘fade zone’ a (the green region) around the horizontal well are inherited
from the properties of the nearest-neighbor points in the original grid. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

31 C.M. Freeman et al. / Computers & Geosciences 70 (2014) 26–34

Fig. 4. A view of the tetrahedralization of the region surrounding the horizontal well, processed selectively using the tools designed specifically for manipulating very large
meshes.

Fig. 5. A domain including two vertical wells and a horizontal well (with local refinement in the vicinity around each well), in the midst of a larger more coarsely refined region.

equation) is valid. We simulated the entire process of dissociation study of Birkedal et al. (2011). Figs. 6 and 7 show the saturation of
of methane hydrate in a hydrate-impregnated core sample that liquid water in the core sample. The sample shown in Fig. 8a was
had been scanned using Magnetic Resonance Imaging (MRI) in the subjected to depressurization, causing dissociation of the methane

32 C.M. Freeman et al. / Computers & Geosciences 70 (2014) 26–34

hydrate, and the resulting change in the phase saturations inside
the core was monitored and measured (Fig. 8b and c).

In order to (a) explore whether the hydrate dissociation in this
experiment was an equilibrium or a kinetic process, and (b) to
determine the corresponding parameters, we simulated the beha
vior of the entire system accounting for all the important condi
tions, properties and characteristics that defined it. To accomplish
this, we needed a refined simulation mesh capturing all of the data
extracted from the MRI scan and the surrounding experimental
apparatus.

In describing the system geometry, the dissociation apparatus
needed to be modeled accurately in order to capture the heat
transfers through the entire domain (including the boundaries).
As depicted in Fig. 9, the hydrate-bearing core was surrounded by

Fig. 6. A core sample saturated with gas hydrate was scanned using a Magnetic
Resonance Imaging (MRI). The MRI process generates useful data, including the
saturation of liquid water in the core, depicted here using high-resolution voxels.
This MRI-derived saturation data is then processed to generate the initial condi
tions of the TOUGH simulation (Birkedal et al. 2011).

an insulating Teflon sleeve and a very thin (micron-scale) gas
pocket (gap) along its cylindrical outer surface, and was fastened
in place on each end by plastic spacers. Accurately capturing the
geometry of these elements, and accurately describing their
thermal properties, was vital to represent the heat flow into the
core from the outer boundary (Fluorinert – a heat transfer fluid –
circulating at a monitored, nearly constant temperature).

Earlier attempts to capture the geometry of the dissociation
system using a standard rectilinear grid has indicated early-on the

Fig. 8. A cross-section of the simulation mesh for the hydrate core dissociation
experiment, color coded by material type. The inside of the hydrate core (red) uses
rectilinear gridding while the remainder of the grid uses pseudo-radial gridding.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 7. Schematic representation of the laboratory setup for the thermal dissociation of a methane hydrate core. The dimensions of the illustration are skewed to clearly
show the very thin but important air pocket layer. The Fluorinert layer is an inert pad of gas meant to thermally insulate the apparatus. PEEK refers to polyether ether ketone
and POM refers to polyoxymethylene; these are insulators.

33 C.M. Freeman et al. / Computers & Geosciences 70 (2014) 26–34

futility of this approach, as it would require a prohibitively large
simulation grid to capture the relevant details of the system at the
needed detail. Application of the MeshVoro tool to this geometry
enabled very fine gridding where needed. More importantly,
MeshVoro enabled a smooth transition between rectilinear gridd
ing inside the hydrate core and pseudo-radial gridding outside the
core. This transition is depicted in the cross-sectional in Fig. 8,
where the MRI scan data exactly determined the locations and
properties of the grid cells inside the core (Fig. 9); a custom-made
dynamic radial gridding algorithm populated the mesh describing
the rest of the laboratory apparatus (Figs. 10 and 11).

These examples show the power of the MeshVoro application,
and the strict control it allows for the description of the details of a
system over several spatial scales and in complex geometries.

4. Discussion

3D Voronoi cells can easily possess 12 or more connected
neighbors with no structural regularity, whereas a traditional 3D
Cartesian or radial mesh can only have a maximum of six
neighbors with consistent orientation. Consequently, the Jacobian
matrix developed by the TOUGH codes to compute the solution of
the flow equations originating from Voronoi meshes will be
significantly less sparse, more ill-conditioned, and with a less

Fig. 9. A cross-section of the simulation mesh for the dissociation experiment of
the hydrate-bearing core. The different colors depict differences in saturation of
liquid water determined from the MRI scans. The grid center points of the mesh
and the properties assigned to these points are inherited directly from the MRI
scan data.

regular corresponding incidence matrix than those from Cartesian
meshes. This implies poorer solver performance for Voronoi
meshes compared to that corresponding to Cartesian meshes with
a similar number of grid cells. Note that the reference to “poorer”
solver performance does not mean deterioration in the accuracy of
the solution, which is unaffected, as it is controlled exclusively by
the convergence criterion in the Newton–Raphson iterative pro
cess (Pruess et al., 1999); it means an increased number of
iterations to convergence and, consequently, smaller time-step
sizes, a larger number of time steps to cover the desired simulation
period and a longer execution time. The solution performance of
problems involving Voronoi grids may be further aggravated by
improper spatial discretization, which would result in larger space
discretization errors and correspondingly increased convergence
difficulty. We must emphasize that the purpose of Voronoi meshes
is to represent geometries that cannot be efficiently represented
by Cartesian meshes, where the expected tradeoff in numerical
performance is warranted, and the additional execution time and
larger memory requirements are not an issue as there is practically
no alternative. For simple, geometrically regular problems, struc
tured meshes are sufficient and are almost certain to outperform
Voronoi meshes in terms of speed and memory requirements.
Given the intensive labor requirements to construct them, Voronoi
meshes should be used where they are suited to the demands of
the problem, such as in the irregular three-dimensional meshes
described above.

Another crucial property of the meshes generated by MeshVoro
is that the Voronoi tessellations are not required to be centroidal,
meaning that the element generator points are not necessarily
coincident with the element centroids. The option to perform
Lloyd’s (1982) iteration on the meshes is available, but we note
that the smoothing of very refined mesh regions such as wells and
fractures can severely distort these objects. Obtaining mesh
“cendroidality” eats the expense of the geometric integrity of
crucial flow and geometry features defeats the purpose of an
unstructured locally-refined mesh. The Lloyd’s iteration sacrifices
some numerical accuracy for geometric resolution and flexibility,
and in so doing opens up a new range of problems.

Regarding visualization of simulation results in a three-
dimensional fashion, we find no truly adequate tools exist for
creating publication-quality representations of complex three-
dimensional data. The tools we discuss and develop here may be
used for qualitative illustration and for data exploration, but these
tools do not provide precise quantitative illustrations. Events of
scientific interest may occur on a scale of centimeters or kilo
meters, depending on the nature of the problem, and it is difficult
to imbue static graphical representations with sufficient context
to unambiguously communicate the intent of any given figure.

C
or

e
di

am
et

er
 [c

m
]

Gas Hydrate Saturation [fraction]
0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15

Core length [cm]

1

0.8

0.6

0.4

0.2

0

Fig. 10. An axial cross-section view of the simulation state of the hydrate core sample showing liquid water saturation at its initial state, as determined from interpolation
from the MRI scan data.

34 C.M. Freeman et al. / Computers & Geosciences 70 (2014) 26–34

Fig. 11. An axial cross-section view of the simulation state of the hydrate core sample showing liquid water saturation at the end of the simulated depressurization.

Clearly representing complex three-dimensional geometries with
printed two-dimensional figures remains a challenge.

Acknowledgments

This research was partially funded by the U.S. Environmental
Protection Agency’s Hydraulic Fracturing Drinking Water Assess
ment through Interagency Agreement between EPA (DW-89
92235901, Stephen Kraemer, EPA Project Officer) and the Depart
ment of Energy Lawrence Berkeley National Laboratory (DE-AC02
05CH11231). The views expressed in this article are those of the
authors and do not necessarily reflect the views or policies of the
EPA.

References

Barree R.D., Conway M.W.: Beyond beta factors: a complete model for Darcy,
Forchheimer and trans-Forchheimer flow in porous media. In: Paper SPE 89325
Presented at the 2004 Annual Technical Conference and Exhibition, 26–29 Sept
2004, Houston, TX.

Barree R.D., Conway M.W., 2007. Multiphase non-Darcy flow in proppant packs. In:
Paper SPE 109561, Presented at the 2007 Annual Technical Conference and
Exhibition, 11–14 Nov 2007, Anaheim, CA.

Birkedal, K.A., Ersland, G., Hauge, L.P.O., Graue, A., Hester, K., Stevens, J., Howard, J.,
2011. Electrical resistivity measurements of CH4 hydrate-bearing sandstone
during formation. In: Proceedings of the Seventh International Conference on
Gas Hydrates held in Edinburgh, Scotland, July 17–21.

Chazelle, N., 1980. Computational Geometry and Convexity. Carnegie-Mellon
University (Ph.D. Thesis. CMU-CS-80-150, Computer Science).

Rycroft, Chris H., 2009. Voroþþ: a three-dimensional Voronoi cell library in Cþþ .
Chaos 19, 041111.

Du, Q., Faber, V., Gunzburger, M., 1999. Centroidal Voronoi tessellations: applica
tions and algorithms. SIAM Rev. 41 (4), 637–676.

Du, Q., Gunzburger, M., 2002. Grid generation and optimization based on centroidal
Voronoi tessellations. Appl. Math. Comput. 133, 591–607.

Edwards, A.L., 1972. TRUMP: A Computer Program for Transient and Steady State
Temperature Distributions in Multidimensional Systems, National Technical
Information Service. National Bureau of Standards, Springfield, VA.

Florack, L., Duits, R., Jongbloed, G., 2012. Mathematical Methods for Signal and
Image Analysis and Representation. Springer, London (105).

Forchheimer, P., 1901. Wasserbewegung durch Bode. ZVDI 1901, 45.
Lloyd, Stuart P., 1982. Least squares quantization in PCM. IEEE Trans. Inf. Theory 28

(2), 129–137, http://dx.doi.org/10.1109/TIT.1982.1056489.
Merland, R., Levy, B., Caumon, G., 2011. Building PEBI grids conforming to 3D

geological features using centroidal Voronoi tessellations. In: IAMG Proceedings.
Moridis, G.J., Kowalsky, M., Pruess, K., 2008. TOUGHþHYDRATE v1.0 User’s Manual.

LBNL-161E. Lawrence Berkeley National Laboratory, Berkeley, CA.
Narasimhan, T.N., Witherspoon., P.A., 1976. An integrated finite difference method

for analyzing fluid flow in porous media. Water Resour. Res. 12 (1), 57–a64.
Narasimhan, T.N., Witherspoon, P.A., Edwards, A.L., 1978. Numerical model for

saturated-unsaturated flow in deformable porous media, Part 2: The algorithm.
Water Resour. Res. 14 (2), 255–261.

Palagi, C., 1992. Generation and Application of Voronoi Grids to Model Flow in
Heterogeneous Reservoirs. Stanford Univerity (Ph.D. Thesis).

Persson, P., 2005. Mesh Generation for Implicit Geometries. MIT (Ph.D. Thesis).
Persson, P., Strang, G., 2004. A simple mesh generator in MATLAB. SIAM Rev. 46 (2),

329–345.
Pruess, K., Oldenburg, C., Moridis, G., 1999. TOUGH2 User’s Guide, Version 2.0.

Lawrence Berkeley National Laboratory, Berkeley, CA (Report LBNL-43134).

Rycroft, C.H., 2009. Voroþþ: A three-dimensional Voronoi cell library in Cþþ .

Chaos 19, 041111.
Schroeder, W., Martin, K., Lorensen, B., 1998. The Visualization Toolkit: An Object-

Oriented Approach to 3D Graphics. Prentice Hall, New Jersey.
Verma, K., 1996. Flexible Grids for Reservoir Simulation. Stanford University

(Ph.D. Thesis).

http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref1
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref1
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref2
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref2
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref2
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref2
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref2
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref2
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref2
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref2
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref2
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref2
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref2
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref2
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref2
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref2
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref3
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref3
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref4
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref4
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref5
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref5
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref5
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref6
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref6
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref7
http://dx.doi.org/10.1109/TIT.1982.1056489
http://dx.doi.org/10.1109/TIT.1982.1056489
http://dx.doi.org/10.1109/TIT.1982.1056489
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref9
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref9
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref9
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref9
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref9
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref10
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref10
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref11
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref11
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref11
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref12
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref12
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref13
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref14
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref14
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref15
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref15
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref16
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref16
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref16
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref16
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref16
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref16
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref16
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref16
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref16
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref16
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref16
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref16
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref16
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref16
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref17
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref17
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref18
http://refhub.elsevier.com/S0098-3004(14)00104-6/sbref18

	MeshVoro: A three-dimensional Voronoi mesh building tool for the TOUGH family of codes
	Unstructured simulation meshing
	Algorithmic innovations
	Tetrahedralization
	Extension to very large meshes
	Smoothing of the point distribution
	Strategies for mesh object integrity

	Methods and applications of MeshVoro
	Application to a complex hydrate problem
	Application to a problem involving wells with complex 3D orientation
	Application to meshing a hydrate core sample

	Discussion
	Acknowledgments
	References

