Completed Study and Monograph Report for Backpack and Handgun Application of Liquid Spray in Utility Rights of Way (Agricultural Handlers Exposure Task Force)

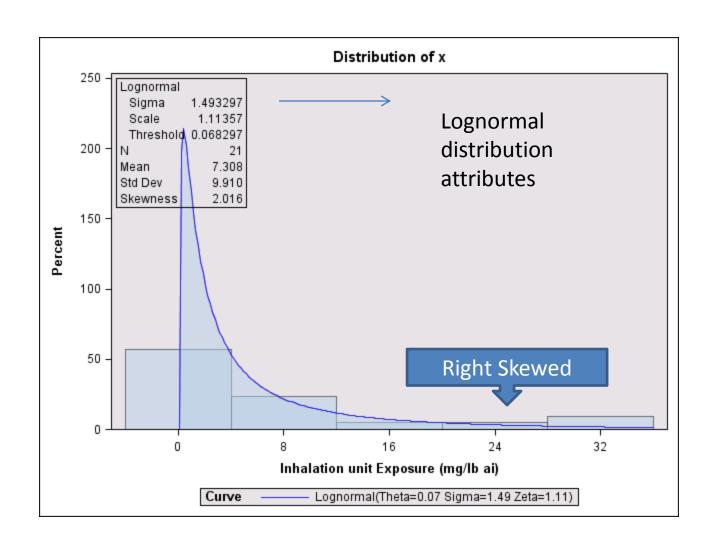
Science (Statistics) Review : Discussant: George Fernandez

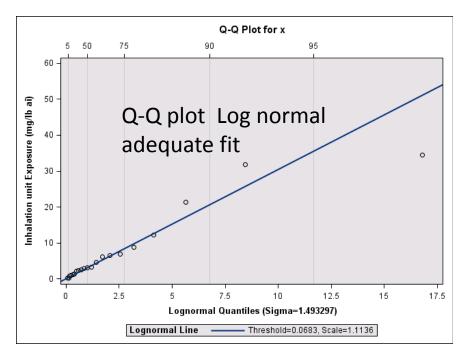
- Discuss the inadequacies in the current method of estimating standard deviation and 95% upper limit.
- ■Suggest currently available alternate methods to estimate arithmetic mean, its 95% Confidence Interval and 95% upper limit assuming the distribution of interested response variable is lognormal.

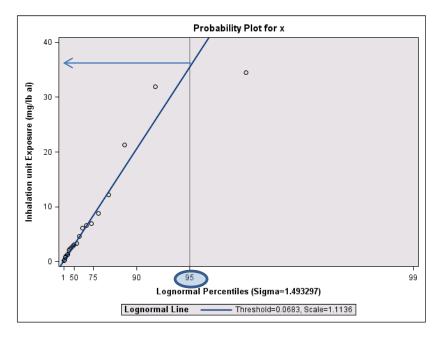
US ENVIRONMENTAL PROTECTION AGENCY
HUMAN STUDIES REVIEW BOARD
APRIL 2015 PUBLIC MEETING
Wednesday, April 22, 2015

Table 4. Handgun ROW Application - Results of Primary Benchmark Analysis for Inhalation Exposure

	Inhalation						
Statistic	Unit Exposure (ug	(D) A					
	Estimate	95% CI	fRA95				
GM_S	3.24	1.77 – 5.89	1.8				
GSDs	4.07	2.65 - 6.23					
$GM_{ m M}$	3.24	1.77 – 5.94	1.8				
GSD_M	4.07	2.65 - 6.32					
ICC	0.00	0.00 - 0.68					
GM _s = geometric m	ean assuming SRS = "exp(average of 21 ln(UE)) values".					
$GSD_S = geometric s$	GSD _S = geometric standard deviation assuming SRS = "exp(standard deviation of 21 ln(UE)) values"						
GM_M = variance con	nponent model-based geometric mean						
	mponent model-based geometric standard devia	ition					
ICC = intra-cluster							
$ m AM_S$	7.31	3.56 - 20.4	2.4				
AM_{U}	8.68	3.84 - 21.7	2.4				
AM_{M}	8.68	3.84 - 22.4	2.4				
AM _S = simple avera	ge of 17 unit exposures						
$AM_U = arithmetic m$	lean based on $GM_S = GM_S * exp (0.5*((lnGSD_S)))$	2					
AM _M = variance con	nponent model-based arithmetic mean = Givi _M *						
P95 ₈	31.9	8.73 – 78.5	3.3				
P95 _U	32.6	12.6 - 82.5	2.6				
P95 _M	32.6	12.7 – 85.4	2.6				
	e (i.e., the 20th unit exposure out of 21 ranked in	n ascending order)					
P95 _U = 95 th percenti	le based on $GM_S = GM_S * GSD_S^1.645$ ——		<u> </u>				
$P95_{M} = variance con$	nponent model-based 95 th percentile = GM_M^* G	$SD_{M}^{1.645}$	Incorre				
			adjustr				




Under-estimate 95% upper limit


Normalized Inhalation Exposure (µg/lb ai) 34.5 4.6 0.902 6.93 3.35 6.51 0.178 31.9 1.17 2.82 Raw data from 21 MU 2.43 12.2 2.29 0.737 8.82 1.29 0.272 3.1 2.06 21.3 6.1

SAS Proc Univariate distribution analysis

The UNIVARIATE Procedure

Confidence Intervals for the Mean of a Log-Normal Distribution

Ulf Olsson

Swedish University of Agricultural Sciences

Journal of Statistics Education Volume 13, Number 1 (2005), www.amstat.org/publications/jse/v13n1/olsson.html

3.3 Cox method

Cox (quoted as "personal communication" in Land, 1971) has suggested that a confidence interval for $E(X) = \theta$ can be calculated in the following way:

Calculate a confidence interval for $log(\theta)$ as

$$\overline{Y} + \frac{S^2}{2} \pm z \sqrt{\frac{S^2}{n} + \frac{S^4}{2(n-1)}}$$
 (4)

Handgin ROW applications Results of Primary Benchmark analysis for Inhalation Exposture

The UNIVARIATE Procedure
Fitted Lognormal Distribution for x (Inhalation unit Exposure (mg/lb ai))

Parameters for Lognormal Distribution			
Parameter	Symbol	Estimate	
Threshold	Theta	0.068297	
Scale	Zeta	1.11357	
Shape	Sigma	1.493297	
Mean		9.354579	
Std Dev		26.75234	

Quantiles for Lognormal Distribution				
	Quantile			
Percent	Observed	Estimated		
1.0	0.17800	0.16268		
5.0	0.27200	0.32944		
10.0	0.73700	0.51755		
25.0	1.29000	1.18052		
50.0	3.10000	3.11351		
75.0	6.93000	8.40597		
90.0	21.30000	20.70987		
95.0	31.90000	35.57868		
99.0	34.50000	98.3 666		

Proc Univariate based calculation Cox's method

Handgin ROW applications Results of Primary Benchmark analysis for Inhalation Exposture

			Quantile							
(number	Arithmatic	, Standard	95% Upper	LN	çox	сох	5%	Median	95%
ı	of	Mean LN	Deviation	Confidence	Geometric	Arithmatic	95%	Lower		Upper
ı	nonmissing	distribution	LN	interval	Mean	Mean	Upper	Limit		Limit
ı	values,		distribution			0.00	CLM for			22 6
ı	logx		GSD 4.07			8.68	AMean			32.6 ↓
	21	9.35458		21.5321	3.23829	8.67622	21.5894	0.32944	3.11351	35.5787