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SOP#: 1704
DATE: 07/27/95

REV. #: 0.1
 SUMMA CANISTER SAMPLING

1.0 SCOPE AND APPLICATION

The purpose of this standard operating procedure
(SOP) is to describe a procedure for sampling of
volatile organic compounds (VOCs) in ambient air.
The method is based on samples collected as whole
air samples in Summa passivated stainless steel
canisters.  The VOCs are subsequently separated by
gas chromatography (GC) and measured by
mass-selective detector or multidetector techniques.
This method presents procedures for sampling into
canisters at final pressures both above and below
atmospheric pressure (respectively referred to as
pressurized and subatmospheric pressure sampling).

This method is applicable to specific VOCs that have
been tested and determined to be stable when stored in
pressurized and subatmospheric pressure canisters.
The organic compounds that have been successfully
collected in pressurized canisters by this method are
listed in the Volatile Organic Compound Data Sheet
(Appendix A).  These compounds have been measured
at the parts per billion by volume (ppbv) level.

These are standard (i.e., typically applicable)
operating procedures which may be varied or changed
as required, dependent on site conditions, equipment
limitations or limitations imposed by the procedure or
other procedure limitations.  In all instances, the
ultimate procedures employed should be documented
and associated with the final report.

Mention of trade names or commercial products does
not constitute U.S. EPA endorsement or
recommendation for use.

2.0 METHOD SUMMARY

Both subatmospheric pressure and pressurized
sampling modes use an initially evacuated canister.
Both modes may also use a mass flow
controller/vacuum pump arrangement to regulate flow.
With the above configuration, a sample of ambient air

is drawn through a sampling train comprised of
components that regulate the rate and duration of
sampling into a pre-evacuated Summa passivated
canister.  Alternatively, subatmospheric pressure
sampling may be performed using a fixed orifice,
capillary, or adjustable micrometering valve in lieu of
the mass flow controller/vacuum pump arrangement
for taking grab samples or short duration
time-integrated samples.  Usually, the alternative
types of flow controllers are appropriate only in
situations where screening samples are taken to assess
for future sampling activities.

3.0 SAMPLE PRESERVATION,
CONTAINERS, HANDLING,
AND STORAGE

After the air sample is collected, the canister valve is
closed, an identification tag is attached to the canister,
and the canister is transported to a laboratory for
analysis.  Upon receipt at the laboratory, the canister
tag data is recorded.  Sample holding times and
expiration should be determined prior to initiating
field activities.

4.0 INTERFERENCES AND
POTENTIAL PROBLEMS

Contamination may occur in the sampling system if
canisters are not properly cleaned before use.
Additionally, all other sampling equipment (e.g.,
pump and flow controllers) should be thoroughly
cleaned.

5.0 EQUIPMENT/APPARATUS

The following equipment/apparatus (Figure 1,
Appendix B) is required:
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5.1 Subatmospheric Pressure Sampling
Equipment

1. VOC canister sampler - whole air sampler
capable of filling an initially evacuated
canister by action of the flow controlled
pump from vacuum to near atmospheric
pressure.  (Andersen Samplers Inc.,  Model
87-100 or equivalent).

2. Sampling inlet line - stainless steel tubing to
connect the sampler to the sample inlet.

3. Sample canister - leak-free stainless steel
pressure vessels of desired volume with
valve and Summa passivated interior
surfaces (Scientific Instrumentation
Specialist, Inc., ID 83843, Andersen
Samplers, Inc., or equivalent).

4. Particulate matter filter - 2-µm sintered
stainless steel in-line filter (Nupro Co.,
Model SS-2F-K4-2, or equivalent).

5. Chromatographic grade stainless steel tubing
and fittings - for interconnections (Alltech
Associates, Cat. #8125, or equivalent).  All
materials in contact with sample, analyte,
and support gases should be chromatographic
grade stainless steel.

6. Fixed orifice, capillary, or adjustable
micrometering valve - used in lieu of the
electronic flow controller/vacuum pump for
grab samples or short duration
time-integrated samples.

5.2 Pressurized Sampling Equipment

1. VOC canister sampler - whole air sampler
capable of filling an initially evacuated
canister by action of the flow controlled
pump from vacuum to near atmospheric
pressure.  (Andersen Samplers Inc.,  Model
87-100).

2. Sampling inlet line - stainless steel tubing to
connect the sampler to the sample inlet.

3. Sample canister - leak-free stainless steel
pressure vessels of desired volume with
valve and Summa passivated interior

surfaces (Scientific Instrumentation
Specialist, Inc., ID 83843, Andersen
Samplers, Inc., or equivalent).

4. Particulate matter filter - 2-µm sintered
stainless steel in-line filter (Nupro Co.,
Model SS-2F-K4-2, or equivalent).

5. Chromatographic grade stainless steel tubing
and fittings - for interconnections (Alltech
Associates, Cat. #8125, or equivalent).  All
materials in contact with sample, analyte,
and support gases should be chromatographic
grade stainless steel.

6.0 REAGENTS

This section is not applicable to this SOP.

7.0 PROCEDURE

7.1 Subatmospheric Pressure Sampling

7.1.1 Sampling Using a Fixed Orifice,
Capillary, or Adjustable
Micrometering Valve 

1. Prior to sample collection, the appropriate
information is completed on the Canister
Sampling Field Data Sheet (Appendix C).

2. A canister, which is evacuated to 0.05 mm
Hg and fitted with a flow restricting device,
is opened to the atmosphere containing the
VOCs to be sampled.

3. The pressure differential causes the sample
to flow into the canister.

4. This technique may be used to collect grab
samples (duration of 10 to 30 seconds) or
time-integrated samples (duration of 12 to 24
hours).  The sampling duration depends on
the degree to which the flow is restricted.

5. A critical orifice flow restrictor will have a
decrease in the flow rate as the pressure
approaches atmospheric.

6. Upon sample completion at the location, the
appropriate information is recorded on the
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Canister Sampling Field Data Sheet. VOCs to be sampled.

7.1.2 Sampling Using a Mass Flow
Cont ro l l e r /Vacuum Pump
Arrangement (Andersen Sampler
Model 87-100)

1. Prior to sample collection the appropriate
information is completed on the Canister
Sampling Field Data Sheet (Appendix C).

2. A canister, which is evacuated to 0.05 mm
Hg and connected in line with the sampler, is
opened to the atmosphere containing the
VOCs to be sampled.

3. A whole air sample is drawn into the system
through a stainless steel inlet tube by a direct
drive blower motor assembly.

4. A small portion of this whole air sample is
pulled from the inlet tube by a specially
modified inert vacuum pump in conjunction
with a mass flow controller.

5. The initially evacuated canister is filled by
action of the flow controlled pump to near
atmospheric pressure.

6. A digital time-program is used to pre-select
sample duration and start and stop times.

7. Upon sample completion at the location, the
appropriate information is recorded on the
Canister Sampling Field Data Sheet.

7.2 Pressurized Sampling

7.2.1 Sampling Using a Mass Flow
Control ler /Vacuum Pump
Arrangement (Anderson Sampler
Model 87-100)

1. Prior to sample commencement at the
location, the appropriate information is
completed on the Canister Sampling Field
Data Sheet.

2. A canister, which is evacuated to 0.05 mm
Hg and connected in line with the sampler, is
opened to the atmosphere containing the

3. A whole air sample is drawn into the system
through a stainless steel inlet tube by a direct
drive blower motor assembly.

4. A small portion of this whole air sample is
pulled from the inlet tube by a specially
modified inert vacuum pump in conjunction
with a mass flow controller.

5. The initially evacuated canister is filled by
action of the flow controlled pump to a
positive pressure not to exceed 25 psig.

6. A digital time-programmer is used to
pre-select sample duration and start and stop
times.

7. Upon sample completion at the location, the
appropriate information is recorded on the
Canister Sampling Field Data Sheet.

8.0 CALCULATIONS

1. A flow control device is chosen to maintain
a constant flow into the canister over the
desired sample period.  This flow rate is
determined so the canister is filled to about
88.1 kPa for subatmospheric pressure
sampling or to about one atmosphere above
ambient pressure for pressurized sampling
over the desired sample period.  The flow
rate can be calculated by:

where:

F = flow rate (cm /min)3

P = final canister pressure,
atmospheres absolute

V =  volume of the canister
(cm )3

T =  sample period (hours)

For example, if a 6-L canister is to be filled to 202
kPa (two atmospheres) absolute pressure in 24 hours,
the flow rate can be calculated by:
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2. If the canister pressure is increased, a
dilution factor (DF) is calculated and
recorded on the sampling data sheet.

where:

Xa = canister pressure (kPa,
psia) absolute before
dilution.

Ya = canister pressure (kPa,
psia) absolute after
dilution.

After sample analysis, detected VOC concentrations
are multiplied by the dilution factor to determine
concentration in the sampled air.

9.0 QUALITY ASSURANCE/
QUALITY CONTROL

The following general quality assurance procedures VIP-8, EPA 600/9-87-010.
apply:

1. All data must be documented on standard Volume Sets When Sampling Ambient Air
chain of custody records, field data sheets, or Using Solid Adsorbents,"  Atmospheric
site logbooks. Environ., 18:855-859, 1984.

2. All instrumentation must be operated in 4. J. F. Walling, J. E. Bumgarner, J. D.
accordance with operating instructions as Driscoll,C. M. Morris, A. E. Riley, and L. H.
supplied by the manufacturer, unless Wright, "Apparent Reaction Products
otherwise specified in the work plan. Desorbed From Tenax Used to Sample
Equipment checkout and calibration Ambient Air," Atmospheric Environ.,
activities must occur prior to 20:51-57, 1986.
sampling/operation, and they must be
documented. 5. Portable Instruments User's Manual for

10.0 DATA VALIDATION

This section is not applicable to this SOP.

11.0 HEALTH AND SAFETY

When working with potentially hazardous materials,
follow U.S. EPA, OSHA, and corporate health and
safety practices.  Specifically, pressurizing of Summa
canisters should be performed in a well ventilated
room, or preferably under a fume hood.  Care must be
taken not to exceed 40 psi in the canisters.  Canisters
are under pressure, albeit only 20-30 psi, and should
not be dented or punctured.  They should be stored in
a cool dry place and always be placed in their plastic
shipping boxes during transport and storage.
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APPENDIX A

Volatile Organic Compound Data Sheet
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APPENDIX B

FIGURE 1.  Subatmospheric/Pressurized Sampling Equipment
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APPENDIX C

Canister Sampling Field Data Sheet
Page       of      

SUMMA AIR SAMPLING WORK SHEET

Site:                                                            Site#:                                                   
Samplers:                              Work Assignment Manager:                                                  
Date:                                                        Project Leader:                                                  

Sample #

Location

SUMMA ID

Orifice Used

Analysis/Method

Time (Start)

Time (Stop)

Total Time

SUMMA WENT TO YES/NO YES/NO YES/NO YES/NO YES/NO
AMBIENT

Pressure Gauge

Pressure Gauge

Flow Rate (Pre)

Flow Rate (Post)

Flow Rate (Average)

MET Station On-site?  Y  /  N

General Comments:
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METHOD TO-15

Determination of Volatile Organic Compounds (VOCs) In Air Collected In
Specially-Prepared Canisters And Analyzed By Gas Chromatography/

Mass Spectrometry (GC/MS)

1.  Scope

1.1  This method documents sampling and analytical procedures for the measurement of subsets of the 97 volatile
organic compounds (VOCs) that are included in the 189 hazardous air pollutants (HAPs) listed in Title III of the
Clean Air Act Amendments of 1990.  VOCs are defined here as organic compounds having a vapor pressure
greater than 10  Torr at 25EC and 760 mm Hg.  Table 1 is the list of the target VOCs along with their CAS-1

number, boiling point, vapor pressure and an indication of their membership in both the list of VOCs covered
by Compendium Method TO-14A (1) and the list of VOCs in EPA's Contract Laboratory Program (CLP)
document entitled:  Statement-of-Work (SOW) for the Analysis of Air Toxics from Superfund Sites (2).

Many of these compounds have been tested for stability in concentration when stored in specially-prepared
canisters (see Section 8) under conditions typical of those encountered in routine ambient air analysis.  The
stability of these compounds under all possible conditions is not known. However, a model to predict compound
losses due to physical adsorption of VOCs on canister walls and to dissolution of VOCs in water condensed in
the canisters has been developed (3).  Losses due to physical adsorption require only the establishment of
equilibrium between the condensed and gas phases and are generally considered short term losses, (i.e., losses
occurring over minutes to hours).  Losses due to chemical reactions of the VOCs with cocollected ozone or other
gas phase species also account for some short term losses.  Chemical reactions between VOCs and substances
inside the canister are generally assumed to cause the gradual decrease of concentration over time (i.e., long term
losses over days to weeks).  Loss mechanisms such as aqueous hydrolysis and biological degradation (4) also
exist.  No models are currently known to be available to estimate and characterize all these potential losses,   

although a number of experimental observations are referenced in Section 8.  Some of the VOCs listed in Title
III have short atmospheric lifetimes and may not be present except near sources. 

1.2  This method applies to ambient concentrations of VOCs above 0.5 ppbv and typically requires VOC
enrichment by concentrating up to one liter of a sample volume.  The VOC concentration range for ambient air
in many cases includes the concentration at which continuous exposure over a lifetime is estimated to constitute
a 10  or higher lifetime risk of developing cancer in humans.  Under circumstances in which many hazardous-6

VOCs are present at 10  risk concentrations, the total risk may be significantly greater.-6

1.3  This method applies under most conditions encountered in sampling of ambient air into canisters.  However,
the composition of a gas mixture in a canister, under unique or unusual conditions, will change so that the sample
is known not to be a true representation of the ambient air from which it was taken.  For example, low humidity
conditions in the sample may lead to losses of certain VOCs on the canister walls, losses that would not happen
if the humidity were higher. If the canister is pressurized, then condensation of water from high humidity samples
may cause fractional losses of water-soluble compounds. Since the canister surface area is limited, all gases are
in competition for the available active sites. Hence an absolute storage stability cannot be assigned to a specific
gas.  Fortunately, under conditions of normal usage for sampling ambient air, most VOCs can be recovered from
canisters near their original concentrations after storage times of up to thirty days (see Section 8).

1.4  Use of the Compendium Method TO-15 for many of the VOCs listed in Table 1 is likely to present two
difficulties: (1) what calibration standard to use for establishing a basis for testing and quantitation, and (2) how
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to obtain an audit standard.  In certain cases a chemical similarity exists between a thoroughly tested compound
and others on the Title III list.  In this case,  what works for one is likely to work for the other in terms of making
standards.  However, this is not always the case and some compound standards will be troublesome.  The reader
is referred to the Section 9.2 on standards for guidance.  Calibration of compounds such as formaldehyde,
diazomethane, and many of the others represents a challenge.

1.5  Compendium Method TO-15 should be considered for use when a subset of the 97 Title III VOCs constitute
the target list.  Typical situations involve ambient air testing associated with the permitting procedures for
emission sources.  In this case sampling and analysis of VOCs is performed to determine the impact of dispersing
source emissions in the surrounding areas.  Other important applications are prevalence and trend monitoring for
hazardous VOCs in urban areas and risk assessments downwind of industrialized or source-impacted areas.  

1.6  Solid adsorbents can be used in lieu of canisters for sampling of VOCs, provided the solid adsorbent
packings, usually multisorbent packings in metal or glass tubes, can meet the performance criteria specified in
Compendium Method TO-17 which specifically addresses the use of multisorbent packings.  The two sample
collection techniques are different but become the same upon movement of the sample from the collection
medium (canister or multisorbent tubes) onto the sample concentrator.  Sample collection directly from the
atmosphere by automated gas chromatographs can be used in lieu of collection in canisters or on solid adsorbents.

2.  Summary of Method

2.1  The atmosphere is  sampled by introduction of  air into a specially-prepared stainless steel canister.  Both
subatmospheric pressure and pressurized sampling modes use an initially evacuated canister.  A pump ventilated
sampling line is used during sample collection with most commercially available samplers.  Pressurized sampling
requires an additional pump to provide positive pressure to the sample canister.  A sample of air is drawn through
a sampling train comprised of components that regulate the rate and duration of sampling into the pre-evacuated
and passivated canister.

2.2  After the air sample is collected, the canister valve is closed, an identification tag is attached to the canister,
and the canister is transported to the laboratory for analysis.

2.3  Upon receipt at the laboratory, the canister tag data is recorded and the canister is stored until analysis.
Storage times of up to thirty days have been demonstrated for many of the VOCs (5).  

2.4  To analyze the sample, a known volume of sample is directed from the canister through a solid multisorbent
concentrator.  A portion of the water vapor in the sample breaks through the concentrator during sampling, to a
degree depending on the multisorbent composition, duration of sampling, and other factors.  Water content of
the sample can be further reduced by dry purging the concentrator with helium while retaining target compounds.
After the concentration and drying steps are completed, the VOCs are thermally desorbed, entrained in a carrier
gas stream, and then focused in a small volume by trapping on a reduced temperature trap or small volume
multisorbent trap.  The sample is then released by thermal desorption and carried onto a gas chromatographic
column for separation.

As a simple alternative to the multisorbent/dry purge water management technique, the amount of water vapor
in the sample can be reduced below any threshold for affecting the proper operation of the analytical system by
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reducing the sample size. For example, a small sample can be concentrated on a cold trap and released directly
to the gas chromatographic column. The reduction in sample volume may require an enhancement of detector
sensitivity.

Other water management approaches are also acceptable as long as their use does not compromise the attainment
of the performance criteria listed in Section 11.  A listing of some commercial water management systems is
provided in Appendix A.  One of the alternative ways to dry the sample is to separate VOCs from condensate
on a low temperature trap by heating and purging the trap.  

2.5  The analytical strategy for Compendium Method TO-15 involves using a high resolution gas chromatograph
(GC) coupled to a mass spectrometer.  If the mass spectrometer is a linear quadrupole system, it is operated either
by continuously scanning a wide range of mass to charge ratios (SCAN mode) or by monitoring select ion
monitoring mode (SIM) of compounds on the target list.  If the mass spectrometer is based on a standard ion trap
design, only a scanning mode is used (note however, that the Selected Ion Storage (SIS) mode for the ion trap has
features of the SIM mode).  Mass spectra for individual peaks in the total ion chromatogram are examined with
respect to the fragmentation pattern of ions corresponding to various VOCs including the intensity of primary
and secondary ions.  The fragmentation pattern is compared with stored spectra taken under similar conditions,
in order to identify the compound.  For any given compound, the intensity of the primary fragment is compared
with the system response to the primary fragment for known amounts of the compound. This establishes the
compound concentration that exists in the sample.

Mass spectrometry is considered a more definitive identification technique than single specific detectors such as
flame ionization detector (FID), electron capture detector (ECD), photoionization detector (PID), or a
multidetector arrangement of these (see discussion in Compendium Method TO-14A).  The use of both gas
chromatographic retention time and the generally unique mass fragmentation patterns reduce the chances for
misidentification.  If the technique is supported by a comprehensive mass spectral database and a knowledgeable
operator, then the correct identification and quantification of VOCs is further enhanced.  

3.  Significance

3.1  Compendium Method TO-15 is significant in that it extends the Compendium Method TO-14A description
for using canister-based sampling and gas chromatographic analysis in the following ways:

• Compendium Method TO-15 incorporates a multisorbent/dry purge technique or equivalent (see Appendix
A) for water management thereby addressing a more extensive set of compounds (the VOCs mentioned
in Title III of the CAAA of 1990) than addressed by Compendium Method TO-14A.  Compendium
Method TO-14A approach to water management alters the structure or reduces the sample stream
concentration of some VOCs, especially water-soluble VOCs.

• Compendium Method TO-15 uses the GC/MS technique as the only means to identify and quantitate target
compounds.  The GC/MS approach provides a more scientifically-defensible detection scheme which is
generally more desirable than the use of single or even multiple specific detectors.

• In addition, Compendium Method TO-15 establishes method performance criteria for acceptance of data,
allowing the use of alternate but equivalent sampling and analytical equipment.  There are several new and
viable commercial approaches for water management as noted in Appendix A of this method on which to
base a VOC monitoring technique as well as other approaches to sampling (i.e., autoGCs and solid
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adsorbents) that are often used.  This method lists performance criteria that these alternatives must meet
to be acceptable alternatives for monitoring ambient VOCs.

• Finally, Compendium Method TO-15 includes enhanced provisions for inherent quality control.  The
method uses internal analytical standards and frequent verification of analytical system performance to
assure control of the analytical system.  This more formal and better documented approach to quality
control guarantees a higher percentage of good data.

3.2  With these features, Compendium Method TO-15 is a more general yet better defined method for VOCs than
Compendium Method TO-14A.  As such, the method can be applied with a higher confidence to reduce the
uncertainty in risk assessments in environments where the hazardous volatile gases listed in the Title III of the
Clean Air Act Amendments of 1990 are being monitored.  An emphasis on risk assessments for human health
and effects on the ecology is a current goal for the U.S. EPA.

4.  Applicable Documents

4.1  ASTM Standards

• Method D1356 Definitions of Terms Relating to Atmospheric Sampling and Analysis.
• Method E260 Recommended Practice for General Gas Chromatography Procedures.
• Method E355 Practice for Gas Chromatography Terms and Relationships.
• Method D5466 Standard Test Method of Determination of Volatile Organic Compounds in

Atmospheres (Canister Sampling Methodology).

4.2  EPA Documents

• Quality Assurance Handbook for Air Pollution Measurement Systems, Volume II, U. S. Environmental
Protection Agency, EPA-600/R-94-038b, May 1994.

• Technical Assistance Document for Sampling and Analysis of Toxic Organic Compounds in Ambient
Air, U. S. Environmental Protection Agency, EPA-600/4-83-027, June 1983. 

• Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air:  Method
TO-14, Second Supplement, U. S. Environmental Protection Agency, EPA-600/4-89-018, March 1989.

• Statement-of-Work (SOW) for the Analysis of Air Toxics from Superfund Sites, U. S. Environmental
Protection Agency, Office of Solid Waste, Washington, D.C., Draft Report, June 1990.

• Clean Air Act Amendments of 1990, U. S. Congress, Washington, D.C., November 1990.

5.  Definitions

[Note:  Definitions used in this document and any user-prepared standard operating procedures (SOPs)
should be consistent with ASTM Methods D1356, E260, and E355.  Aside from the definitions given below,
all pertinent abbreviations and symbols are defined within this document at point of use.]

5.1  Gauge Pressure—pressure measured with reference to the surrounding atmospheric pressure, usually
expressed  in units of kPa or psi.  Zero gauge pressure is equal to atmospheric (barometric) pressure.
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5.2  Absolute Pressure—pressure measured with reference to absolute zero pressure, usually expressed in units
of kPa, or psi.

5.3  Cryogen—a refrigerant used to obtain sub-ambient temperatures in the VOC concentrator and/or on front
of the analytical column.  Typical cryogens are liquid nitrogen (bp -195.8EC),  liquid argon (bp -185.7EC), and
liquid CO  (bp -79.5EC ).2

5.4  Dynamic Calibration—calibration of an analytical system using calibration gas standard concentrations
in a form identical or very similar to the samples to be analyzed and by introducing such standards into the inlet
of the sampling or analytical system from a manifold through which the gas standards are flowing.

5.5  Dynamic Dilution—means of preparing calibration mixtures in which standard gas(es) from pressurized
cylinders are continuously blended with humidified zero air in a manifold so that a flowing stream of calibration
mixture is available at the inlet of the analytical system.

5.6  MS-SCAN—mass spectrometric mode of operation in which the gas chromatograph (GC) is coupled to a
mass spectrometer (MS) programmed to SCAN all ions repeatedly over a specified mass range.

5.7  MS-SIM—mass spectrometric mode of operation in which the GC is coupled to a MS that is programmed
to scan a selected number of ions repeatedly [i.e., selected ion monitoring (SIM) mode].

5.8  Qualitative Accuracy—the degree of measurement accuracy required to correctly identify compounds with
an analytical system.

5.9  Quantitative Accuracy—the degree of measurement accuracy required  to correctly measure the
concentration of an identified compound with an analytical system with known uncertainty.

5.10  Replicate Precision—precision determined from two canisters filled from the same air mass over the same
time period and determined as the absolute value of the difference between the analyses of canisters divided by
their average value and expressed as a percentage (see Section 11 for performance criteria for replicate precision).

5.11  Duplicate Precision—precision determined from the analysis of two samples taken from the same canister.
The duplicate precision is determined as the absolute value of the difference between the canister analyses divided
by their average value and expressed as a percentage.  

5.12  Audit Accuracy—the difference between the analysis of a sample provided in an audit canister and the
nominal value as determined by the audit authority, divided by the audit value and expressed as a percentage (see
Section 11 for performance criteria for audit accuracy).

6.  Interferences and Contamination

6.1  Very volatile compounds, such as chloromethane and vinyl chloride can display peak broadening and
co-elution with other species if the compounds are not delivered to the GC column in a small volume of carrier
gas.  Refocusing of the sample after collection on the primary trap, either on a separate focusing trap or at the
head of the gas chromatographic column, mitigates this problem.
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6.2  Interferences in canister samples may result from improper use or from contamination of:  (1) the canisters
due to poor manufacturing practices, (2) the canister cleaning apparatus, and (3) the sampling or analytical
system.  Attention to the following details will help to minimize the possibility of contamination of canisters.

6.2.1  Canisters should be manufactured using high quality welding and cleaning techniques, and new
canisters should be filled with humidified zero air and then analyzed, after “aging” for 24 hours, to determine
cleanliness.  The cleaning apparatus, sampling system, and analytical system should be assembled of clean, high
quality components and each system should be shown to be free of contamination.

6.2.2  Canisters should be stored in a contaminant-free location and should be capped tightly during shipment
to prevent leakage and minimize any compromise of the sample.

6.2.3  Impurities in the calibration dilution gas (if applicable) and carrier gas, organic compounds out-gassing
from the system components ahead of the trap, and solvent vapors in the laboratory account for the majority of
contamination problems.  The analytical system must be demonstrated to be free from contamination under the
conditions of the analysis by running humidified zero air blanks.  The use of non-chromatographic grade stainless
steel tubing, non-PTFE thread sealants, or flow controllers with Buna-N rubber components must be avoided.

6.2.4  Significant contamination of the analytical equipment can occur whenever samples containing high
VOC concentrations are analyzed.  This in turn can result in carryover contamination in subsequent analyses.
Whenever a high concentration (>25 ppbv of a trace  species) sample is encountered, it should be followed by
an analysis of humid zero air to check for carry-over contamination. 

6.2.5  In cases when solid sorbents are used to concentrate the sample prior to analysis, the sorbents should
be tested to identify artifact formation (see Compendium Method TO-17 for more information on artifacts).

7.  Apparatus and Reagents

[Note:  Compendium Method To-14A list more specific requirements for sampling and analysis apparatus
which may be of help in identifying options.  The listings below are generic.]

7.1  Sampling Apparatus

[Note:  Subatmospheric pressure and pressurized canister sampling systems are commercially available and
have been used as part of U.S. Environmental Protection Agency's Toxic Air Monitoring Stations (TAMS),
Urban Air Toxic Monitoring Program (UATMP), the non-methane organic compound (NMOC) sampling and
analysis program, and the Photochemical Assessment Monitoring Stations (PAMS).]

7.1.1  Subatmospheric Pressure (see Figure 1, without metal bellows type pump).
7.1.1.1  Sampling Inlet Line.  Stainless steel tubing to connect the sampler to the sample inlet.
7.1.1.2  Sample Canister.  Leak-free stainless steel pressure vessels of desired volume (e.g., 6 L), with

valve and specially prepared interior surfaces (see Appendix B for a listing of known manufacturers/resellers of
canisters).

7.1.1.3  Stainless Steel Vacuum/Pressure Gauges.  Two types are required, one capable of measuring
vacuum (–100 to 0 kPa  or 0 to - 30 in Hg) and pressure (0–206 kPa or 0–30 psig) in the sampling system and
a second type (for checking the vacuum of canisters during cleaning) capable of measuring at 0.05 mm Hg (see
Appendix B) within 20%.  Gauges should be tested clean and leak tight.  

7.1.1.4  Electronic Mass Flow Controller.  Capable of maintaining a constant flow rate (± 10%) over
a sampling period of up to 24 hours and under conditions of changing temperature (20–40EC) and humidity.

7.1.1.5  Particulate Matter Filter.  2-Fm sintered stainless steel in-line filter.
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7.1.1.6  Electronic Timer.  For unattended sample collection.
7.1.1.7  Solenoid Valve.  Electrically-operated, bi-stable solenoid valve with Viton® seat and O-rings. A

Skinner Magnelatch valve is used for purposes of illustration in the text (see Figure 2).
7.1.1.8  Chromatographic Grade Stainless Steel Tubing and Fittings.  For interconnections. All such

materials in contact with sample, analyte, and support gases prior to analysis should be chromatographic grade
stainless steel or equivalent.

7.1.1.9  Thermostatically Controlled Heater. To maintain above ambient temperature inside insulated
sampler enclosure. 

7.1.1.10  Heater Thermostat.  Automatically regulates heater temperature.
7.1.1.11  Fan.  For cooling sampling system.
7.1.1.12  Fan Thermostat.  Automatically regulates fan operation.
7.1.1.13  Maximum-Minimum Thermometer.  Records highest and lowest temperatures during sampling

period.
7.1.1.14  Stainless Steel Shut-off Valve.  Leak free, for vacuum/pressure gauge.
7.1.1.15  Auxiliary Vacuum Pump.  Continuously draws air through the inlet manifold at 10 L/min. or

higher flow rate.  Sample is extracted from the manifold at a lower rate, and excess air is exhausted. 

[Note:  The use of higher inlet flow rates dilutes any contamination present in the inlet and reduces the
possibility of sample contamination as a result of contact with active adsorption sites on inlet walls.]

7.1.1.16  Elapsed Time Meter.  Measures duration of sampling.
7.1.1.17  Optional Fixed Orifice, Capillary, or Adjustable Micrometering Valve.  May be used in lieu

of the electronic flow controller for grab samples or short duration time-integrated samples.  Usually appropriate
only in situations where screening samples are taken to assess future sampling activity.

7.1.2  Pressurized (see Figure 1 with metal bellows type pump and Figure 3).
7.1.2.1  Sample Pump.  Stainless steel, metal bellows type, capable of 2 atmospheres output pressure.

Pump must be free of leaks, clean, and uncontaminated by oil or organic compounds. 

[Note:  An alternative sampling system has been developed by Dr. R. Rasmussen, The Oregon Graduate
Institute of Science and Technology, 20000 N.W. Walker Rd., Beaverton, Oregon 97006, 503-690-1077, and
is illustrated in Figure 3.  This flow system uses, in order, a pump, a mechanical flow regulator, and a
mechanical compensation flow restrictive device.  In this configuration the pump is purged with a large
sample flow, thereby eliminating the need for an auxiliary vacuum pump to flush the sample inlet.]  

7.1.2.2  Other Supporting Materials.  All other components of the pressurized sampling system are
similar to components discussed in Sections 7.1.1.1 through 7.1.1.17.

7.2  Analytical Apparatus

7.2.1  Sampling/Concentrator System (many commercial alternatives are available).
7.2.1.1  Electronic Mass Flow Controllers.  Used to maintain constant flow (for purge gas, carrier gas

and sample gas) and to provide an analog output to monitor flow anomalies.
7.2.1.2  Vacuum Pump.  General purpose laboratory pump, capable of reducing the downstream pressure

of the flow controller to provide the pressure differential necessary to maintain controlled flow rates of sample
air.

7.2.1.3  Stainless Steel Tubing and Stainless Steel Fittings.  Coated with fused silica to minimize active
adsorption sites.
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7.2.1.4  Stainless Steel Cylinder Pressure Regulators.  Standard, two-stage cylinder regulators with
pressure gauges. 

7.2.1.5  Gas Purifiers.  Used to remove organic impurities and moisture from gas streams. 
7.2.1.6  Six-port Gas Chromatographic Valve.  For routing sample and carrier gas flows.
7.2.1.7  Multisorbent Concentrator.  Solid adsorbent packing with various retentive properties for

adsorbing trace gases are commercially available from several sources.  The packing contains more than one type
of adsorbent packed in series.  

7.2.1.7.1A pre-packed adsorbent trap (Supelco 2-0321) containing 200 mg Carbopack B (60/80 mesh)
and 50 mg Carbosieve S-III (60/80 mesh) has been found to retain VOCs and allow some water vapor to pass
through (6).  The addition of a dry purging step allows for further water removal from the adsorbent trap.  The
steps constituting the dry purge technique that are normally used with multisorbent traps are illustrated in
Figure 4.  The optimum trapping and dry purging procedure for the Supelco trap consists of a sample volume of
320 mL and a dry nitrogen purge of 1300 mL. Sample trapping and drying is carried out at 25EC.  The trap is
back-flushed with helium and heated to 220EC to transfer material onto the GC column.  A trap bake-out at
260EC for 5 minutes is conducted after each run.  

7.2.1.7.2An example of the effectiveness of dry purging is shown in Figure 5. The multisorbent used in
this case is Tenax/Ambersorb 340/Charcoal (7).  Approximately 20% of the initial water content in the sample
remains after sampling 500 mL of air.  The detector response to water vapor (hydrogen atoms detected by atomic
emission detection) is plotted versus purge gas volume.  Additional water reduction by a factor of 8 is indicated
at temperatures of 45EC or higher.  Still further water reduction is possible using a two-stage concentration/dryer
system.  

7.2.1.8  Cryogenic Concentrator.  Complete units are commercially available from several vendor
sources.  The characteristics of the latest concentrators include a rapid, "ballistic" heating of the concentrator to
release any trapped VOCs into a small carrier gas volume.  This facilitates the separation of compounds on the
gas chromatographic column.  

7.2.2  Gas Chromatographic/Mass Spectrometric (GC/MS) System.
7.2.2.1  Gas Chromatograph.  The gas chromatographic (GC) system must be capable of temperature

programming.  The column oven can be cooled to subambient temperature (e.g., -50EC) at the start of the gas
chromatographic run to effect a resolution of the very volatile organic compounds.  In other designs, the rate of
release of compounds from the focusing trap in a two stage system obviates the need for retrapping of compounds
on the column.  The system must include or be interfaced to a concentrator and have all required accessories
including analytical columns and gases.  All GC carrier gas lines must be constructed from stainless steel or
copper tubing.  Non-polytetrafluoroethylene (PTFE) thread sealants or flow controllers with Buna-N rubber
components must not be used.  

7.2.2.2  Chromatographic Columns.  100% methyl silicone or 5% phenyl, 95% methyl silicone fused
silica capillary columns of 0.25- to 0.53-mm I.D. of varying lengths are recommended for separation of many
of the possible subsets of target compounds involving nonpolar compounds.  However, considering the diversity
of the target list, the choice is left to the operator subject to the performance standards given in Section 11.

7.2.2.3  Mass Spectrometer.  Either a linear quadrupole or ion trap mass spectrometer can be used as long
as it is capable of scanning from 35 to 300 amu every 1 second or less, utilizing 70 volts (nominal) electron
energy in the electron impact ionization mode, and producing a mass spectrum which meets all the instrument
performance acceptance criteria when 50 ng or less of p-bromofluorobenzene (BFB) is analyzed.  

7.2.2.3.1Linear Quadrupole Technology.  A simplified diagram of the heart of the quadrupole mass
spectrometer is shown in Figure 6.  The quadrupole consists of a parallel set of four rod electrodes mounted in
a square configuration.  The field within the analyzer is created by coupling opposite pairs of rods together and
applying radiofrequency (RF) and direct current (DC) potentials between the pairs of rods.  Ions created in the
ion source from the reaction of column eluates with electrons from the electron source are moved through the
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parallel array of rods under the influence of the generated field.  Ions which are successfully transmitted through
the quadrupole are said to possess stable trajectories and are subsequently recorded with the detection system.
When the DC potential is zero, a wide band of m/z values is transmitted through the quadrupole.  This "RF only"
mode is referred to as the "total-ion" mode.  In this mode, the quadrupole acts as a strong focusing lens analogous
to a high pass filter.  The amplitude of the RF determines the low mass cutoff.  A mass spectrum is generated by
scanning the DC and RF voltages using a fixed DC/RF ratio and a constant drive frequency or by scanning the
frequency and holding the DC and RF constant.  With the quadrupole system only 0.1 to 0.2 percent of the ions
formed in the ion source actually reach the detector.  

7.2.2.3.2Ion Trap Technology.  An ion-trap mass spectrometer consists of a chamber formed between
two metal surfaces in the shape of a hyperboloid of one sheet (ring electrode) and a hyperboloid of two sheets
(the two end-cap electrodes).  Ions are created within the chamber by electron impact from an electron beam
admitted through a small aperture in one of the end caps.  Radio frequency (RF) (and sometimes direct current
voltage offsets) are applied between the ring electrode and the two end-cap electrodes establishing a quadrupole
electric field.  This field is uncoupled in three directions so that ion motion can be considered independently in
each direction; the force acting upon an ion increases with the displacement of the ion from the center of the field
but the direction of the force depends on the instantaneous voltage applied to the ring electrode.  A restoring force
along one coordinate (such as the distance, r, from the ion-trap's axis of radial symmetry) will exist concurrently
with a repelling force along another coordinate (such as the distance, z, along the ion traps axis), and if the field
were static the ions would eventually strike an electrode.  However, in an RF field the force along each coordinate
alternates direction so that a stable trajectory may be possible in which the ions do not strike a surface.  In
practice, ions of appropriate mass-to-charge ratios may be trapped within the device for periods of milliseconds
to hours.  A diagram of a typical ion trap is illustrated in Figure 7.  Analysis of stored ions is performed by
increasing the RF voltage, which makes the ions successively unstable.  The effect of the RF voltage on the ring
electrode is to "squeeze" the ions in the xy plane so that they move along the z axis.  Half the ions are lost to the
top cap (held at ground potential); the remaining ions exit the lower end cap to be detected by the electron
multiplier.  As the energy applied to the ring electrode is increased, the ions are collected in order of increasing
mass to produce a conventional mass spectrum.  With the ion trap, approximately 50 percent of the generated
ions are detected.  As a result, a significant increase in sensitivity can be achieved when compared to a full scan
linear quadrupole system.  

7.2.2.4  GC/MS Interface.  Any gas chromatograph to mass spectrometer interface that gives acceptable
calibration points for each of the analytes of interest and can be used to achieve all acceptable performance
criteria may be used.  Gas chromatograph to mass spectrometer interfaces constructed of all-glass, glass-lined,
or fused silica-lined materials are recommended.  Glass and fused silica should be deactivated. 

7.2.2.5  Data System.  The computer system that is interfaced to the mass spectrometer must allow the
continuous acquisition and storage, on machine readable media, of all mass spectra obtained throughout the
duration of the chromatographic program.  The computer must have software that allows searching any GC/MS
data file for ions of a specified mass and plotting such ion abundances versus time or scan number.  This type
of plot is defined as a Selected Ion Current Profile (SICP).  Software must also be available that allows integrat-
ing the abundance in any SICP between specified time or scan number limits.  Also, software must be available
that allows for the comparison of sample spectra with reference library spectra.  The National Institute of
Standards and Technology (NIST) or Wiley Libraries or equivalent are recommended as reference libraries.

7.2.2.6  Off-line Data Storage Device.  Device must be capable of rapid recording and retrieval of data
and must be suitable for long-term, off-line data storage.
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7.3  Calibration System and Manifold Apparatus (see Figure 8)

7.3.1  Calibration Manifold.  Stainless steel, glass, or high purity quartz manifold, (e.g.,1.25-cm I.D. x
66-cm) with sampling ports and internal baffles for flow disturbance to ensure proper mixing.  The manifold
should be heated to -50EC.

7.3.2  Humidifier.  500-mL impinger flask containing HPLC grade deionized water.
7.3.3  Electronic Mass Flow Controllers.  One 0 to 5 L/min unit and one or more 0 to 100 mL/min units

for air, depending on number of cylinders in use for calibration.
7.3.4  Teflon Filter(s).  47-mm Teflon® filter for particulate collection.

7.4  Reagents

7.4.1  Neat Materials or Manufacturer-Certified Solutions/Mixtures.  Best source (see Section 9).
7.4.2  Helium and Air.  Ultra-high purity grade in gas cylinders.  He is used as carrier gas in the GC.
7.4.3  Liquid Nitrogen or Liquid Carbon Dioxide.  Used to cool secondary trap.
7.4.4  Deionized Water.  High performance liquid chromatography (HPLC) grade, ultra-high purity (for

humidifier).

8.  Collection of Samples in Canisters

8.1  Introduction

8.1.1  Canister samplers, sampling procedures, and canister cleaning procedures have not changed very much
from the description given in the original Compendium Method TO-14.  Much of the material in this section is
therefore simply a restatement of the material given in Compendium Method TO-14, repeated here in order to
have all the relevant information in one place.

8.1.2  Recent notable additions to the canister technology has been in the application of canister-based
systems for example, to microenvironmental monitoring (8), the capture of breath samples (9), and sector
sampling to identify emission sources of VOCs (10).

8.1.3  EPA has also sponsored the development of a mathematical model to predict the storage stability of
arbitrary mixtures of trace gases in humidified air (3), and the investigation of the SilcoSteel™ process of coating
the canister interior with a film of fused silica to reduce surface activity (11).  A recent summary of storage
stability data for VOCs in canisters is given in the open literature (5).  

8.2  Sampling System Description

8.2.1  Subatmospheric Pressure Sampling [see Figure 1 (without metal bellows type pump)].
8.2.1.1  In preparation for subatmospheric sample collection in a canister, the canister is evacuated to

0.05 mm Hg (see Appendix C for discussion of evacuation pressure).  When the canister is opened to the
atmosphere containing the VOCs to be sampled, the differential pressure causes the sample to flow into the
canister.  This technique may be used to collect grab samples (duration of 10 to 30 seconds) or time-weighted-
average (TWA) samples (duration of 1-24 hours) taken through a flow-restrictive inlet (e.g., mass flow controller,
critical orifice).

8.2.1.2  With a critical orifice flow restrictor, there will be a decrease in the flow rate as the pressure
approaches atmospheric. However, with a mass flow controller, the subatmospheric sampling system can
maintain a constant flow rate from full vacuum to within about 7 kPa (1.0 psi) or less below ambient pressure.
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8.2.2    Pressurized Sampling [see Figure 1 (with metal bellows type pump)].
8.2.2.1  Pressurized sampling is used when longer-term integrated samples or higher volume samples are

required.  The sample is collected in a canister using a pump and flow control arrangement to achieve a typical
101-202 kPa (15-30 psig) final canister pressure.  For example, a 6-liter evacuated canister can be filled at 10
mL/min for 24 hours to achieve a final pressure of 144 kPa (21 psig).

8.2.2.2  In pressurized canister sampling, a metal bellows type pump draws in air from the sampling
manifold to fill and pressurize the sample canister.

8.2.3  All Samplers.
8.2.3.1  A flow control device is chosen to maintain a constant flow into the canister over the desired

sample period.  This flow rate is determined so the canister is filled (to about 88.1 kPa for subatmospheric
pressure sampling or to about one atmosphere above ambient pressure for pressurized sampling) over the desired
sample period.  The flow rate can be calculated by:

where:

F = flow rate, mL/min.
P = final canister pressure, atmospheres absolute. P is approximately equal to

V = volume of the canister, mL.
T = sample period, hours.

For example, if a 6-L canister is to be filled to 202 kPa (2 atmospheres) absolute pressure in 24 hours, the flow
rate can be calculated by:

8.2.3.2  For automatic operation, the timer is designed to start and stop the pump at appropriate times for
the desired sample period.  The timer must also control the solenoid valve, to open the valve when starting the
pump and to close the valve when stopping the pump.

8.2.3.3  The use of the Skinner Magnelatch valve (see Figure 2) avoids any substantial temperature rise
that would occur with a conventional, normally closed solenoid valve that would have to be energized during the
entire sample period.  The temperature rise in the valve could cause outgassing of organic compounds from the
Viton® valve seat material.  The Skinner Magnelatch valve requires only a brief electrical pulse to open or close
at the appropriate start and stop times and therefore experiences no temperature increase.  The pulses may  be
obtained either with an electronic timer that can be programmed for short (5 to 60 seconds) ON periods, or with
a conventional mechanical timer and a special pulse circuit.  A simple electrical pulse circuit for operating the
Skinner Magnelatch solenoid valve with a conventional mechanical timer is illustrated in Figure 2(a).  However,
with this simple circuit, the valve may operate unreliably during brief power interruptions or if the timer is
manually switched on and off too fast.  A better circuit incorporating a time-delay relay to provide more reliable
valve operation is shown in Figure 2(b).
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8.2.3.4  The connecting lines between the sample inlet and the canister should be as short as possible to
minimize their volume.  The flow rate into the canister should remain relatively constant over the entire sampling
period.  

8.2.3.5  As an option, a second electronic timer may be used to start the auxiliary pump several hours prior
to the sampling period to flush and condition the inlet line.

8.2.3.6  Prior to field use, each sampling system must pass a humid zero air certification (see
Section 8.4.3).  All plumbing should be checked carefully for leaks.  The canisters must also pass a humid zero
air certification before use (see Section 8.4.1).

8.3  Sampling Procedure

8.3.1  The sample canister should be cleaned and tested according to the procedure in Section 8.4.1.
8.3.2  A sample collection system is assembled as shown in Figures 1 and 3 and must be cleaned according

to the procedure outlined in Sections 8.4.2 and 8.4.4.  

[Note:  The sampling system should be contained in an appropriate enclosure.]

8.3.3  Prior to locating the sampling system, the user may want to perform "screening analyses" using a
portable GC system, as outlined in Appendix B of Compendium Method TO-14A, to determine potential volatile
organics present and potential "hot spots."  The information gathered from the portable GC screening analysis
would be used in developing a monitoring protocol, which includes the sampling system location, based upon the
"screening analysis" results.

8.3.4  After "screening analysis," the sampling system is located.  Temperatures of ambient air and sampler
box interior are recorded on the canister sampling field test data sheet (FTDS), as documented in Figure 9. 

[Note:  The following discussion is related to Figure 1]

8.3.5  To verify correct sample flow, a "practice" (evacuated) canister is used in the sampling system.

[Note:  For a subatmospheric sampler, a flow meter and practice canister are needed.  For the pump-driven
system, the practice canister is not needed, as the flow can be measured at the outlet of the system.] 

A certified mass flow meter is attached to the inlet line of the manifold, just in front of the filter.  The canister
is opened.  The sampler is turned on and the reading of the certified mass flow meter is compared to the sampler
mass flow controller.  The values should agree within ±10%.  If not, the sampler mass flow meter needs to be
recalibrated or there is a leak in the system.  This should be investigated and corrected.  

[Note:  Mass flow meter readings may drift.  Check the zero reading carefully and add or subtract the zero
reading when reading or adjusting the sampler flow rate to compensate for any zero drift.]

After 2 minutes, the desired canister flow rate is adjusted to the proper value (as indicated by the certified mass
flow meter) by the sampler flow control unit controller (e.g., 3.5 mL/min for 24 hr, 7.0 mL/min for 12 hr).
Record final flow under "CANISTER FLOW RATE" on the FTDS. 

8.3.6  The sampler is turned off and the elapsed time meter is reset to 000.0. 

[Note:  Whenever the sampler is turned off, wait at least 30 seconds to turn the sampler back on.]
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8.3.7  The "practice" canister and certified mass flow meter are disconnected and a clean certified (see
Section 8.4.1) canister is attached to the system.

8.3.8  The canister valve and vacuum/pressure gauge valve are opened.
8.3.9  Pressure/vacuum in the canister is recorded on the canister FTDS (see Figure 9) as indicated by the

sampler vacuum/pressure gauge.
8.3.10  The vacuum/pressure gauge valve is closed and the maximum-minimum thermometer is reset to

current temperature.  Time of day and elapsed time meter readings are recorded on the canister FTDS.
8.3.11  The electronic timer is set to start and stop the sampling period at the appropriate times. Sampling

starts and stops by the programmed electronic timer.
8.3.12  After the desired sampling period, the maximum, minimum, current interior temperature and current

ambient temperature are recorded on the FTDS.  The current reading from the flow controller is recorded.
8.3.13  At the end of the sampling period, the vacuum/pressure gauge valve on the sampler is briefly opened

and closed and the pressure/vacuum is recorded on the FTDS.  Pressure should be close to desired pressure.  

[Note:  For a subatmospheric sampling system, if the canister is at atmospheric pressure when the field final
pressure check is performed, the sampling period may be suspect.  This information should be noted on the
sampling field data sheet.]

Time of day and elapsed time meter readings are also recorded.
8.3.14  The canister valve is closed.  The sampling line is disconnected from the canister and the canister is

removed from the system.  For a subatmospheric system, a certified mass flow meter is once again connected to
the inlet manifold in front of the in-line filter and a "practice" canister is attached to the Magnelatch valve of the
sampling system. The final flow rate is recorded on the canister FTDS (see Figure 9).  

[Note:  For a pressurized system, the final flow may be measured directly.]

The sampler is turned off.
8.3.15  An identification tag is attached to the canister.  Canister serial number, sample number, location, and

date, as a minimum, are recorded on the tag.  The canister is routinely transported back to the analytical
laboratory with other canisters in a canister shipping case.

8.4  Cleaning and Certification Program

8.4.1  Canister Cleaning and Certification.
8.4.1.1  All canisters must be clean and free of any contaminants before sample collection.
8.4.1.2  All canisters are leak tested by pressurizing them to approximately 206 kPa (30 psig) with zero

air.  

[Note:  The canister cleaning system in Figure 10 can be used for this task.]

The initial pressure is measured, the canister valve is closed, and the final pressure is checked after 24 hours.  If
acceptable, the pressure should not vary more than ± 13.8 kPa (± 2 psig) over the 24 hour period.

8.4.1.3  A canister cleaning system may be assembled as illustrated in Figure 10.  Cryogen is added to both
the vacuum pump and zero air supply traps.  The canister(s) are connected to the manifold.  The vent shut-off
valve and the canister valve(s) are opened to release any remaining pressure in the canister(s).  The vacuum pump
is started and the vent shut-off valve is then closed and the vacuum shut-off valve is opened.  The canister(s) are
evacuated to <0.05 mm Hg (see Appendix B) for at least 1 hour.  
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[Note:  On a daily basis or more often if necessary, the cryogenic traps should be purged with zero air to
remove any trapped water from previous canister cleaning cycles.]

Air released/evacuated from canisters should be diverted to a fume hood.
8.4.1.4  The vacuum and vacuum/pressure gauge shut-off valves are closed and the zero air shut-off valve

is opened to pressurize the canister(s) with humid zero air to approximately 206 kPa (30 psig).  If a zero gas
generator system is used, the flow rate may need to be limited to maintain the zero air quality.

8.4.1.5  The zero air shut-off valve is closed and the canister(s) is allowed to vent down to atmospheric
pressure through the vent shut-off valve.  The vent shut-off valve is closed.  Repeat Sections 8.4.1.3 through
8.4.1.5 two additional times for a total of three (3) evacuation/pressurization cycles for each set of canisters.

8.4.1.6  At the end of the evacuation/pressurization cycle, the canister is pressurized to 206 kPa (30 psig)
with humid zero air.  The canister is then analyzed by a GC/MS analytical system.  Any canister that has not
tested clean (compared to direct analysis of humidified zero air of less than 0.2 ppbv of targeted VOCs) should
not be used.  As a "blank" check of the canister(s) and cleanup procedure, the final humid zero air fill of 100%
of the canisters is analyzed until the cleanup system and canisters are proven reliable (less than 0.2 ppbv of any
target VOCs).  The check can then be reduced to a lower percentage of canisters.

8.4.1.7  The canister is reattached to the cleaning manifold and is then reevacuated to <0.05 mm Hg (see
Appendix B) and remains in this condition until used.  The canister valve is closed.  The canister is removed from
the cleaning system and the canister connection is capped with a stainless steel fitting.  The canister is now ready
for collection of an air sample.  An identification tag is attached to the inlet of each canister for field notes and
chain-of-custody purposes.  An alternative to evacuating the canister at this point is to store the canisters and
reevacuate them just prior to the next use.

8.4.1.8  As an option to the humid zero air cleaning procedures, the canisters are heated in an isothermal
oven not to exceed 100EC during evacuation of the canister to ensure that higher molecular weight compounds
are not retained on the walls of the canister.  

[Note:  For sampling more complex VOC mixtures the canisters should be heated to higher temperatures
during the cleaning procedure although a special high temperature valve would be needed].

Once heated, the canisters are evacuated to <0.05 mm Hg (see Appendix B) and maintained there for 1 hour.  At
the end of the heated/evacuated cycle, the canisters are pressurized with humid zero air and analyzed by a GC/MS
system after a minimum of 12 hrs of "aging."  Any canister that has not tested clean (less than 0.2 ppbv each of
targeted compounds) should not be used.  Once tested clean, the canisters are reevacuated to <0.05 mm Hg (see
Appendix B) and remain in the evacuated state until used.  As noted in Section 8.4.1.7, reevacuation can occur
just prior to the next use.

8.4.2  Cleaning Sampling System Components.
8.4.2.1  Sample components are disassembled and cleaned before the sampler is assembled.  Nonmetallic

parts are rinsed with HPLC grade deionized water and dried in a vacuum oven at 50EC.  Typically, stainless steel
parts and fittings are cleaned by placing them in a beaker of methanol in an ultrasonic bath for 15 minutes.  This
procedure is repeated with hexane as the solvent.

8.4.2.2  The parts are then rinsed with HPLC grade deionized water and dried in a vacuum oven at 100EC
for 12 to 24 hours.  

8.4.2.3  Once the sampler is assembled, the entire system is purged with humid zero air for 24 hours.
8.4.3  Zero Air Certification.
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[Note:  In the following sections, "certification" is defined as evaluating the sampling system with humid zero
air and humid calibration gases that pass through all active components of the sampling system.  The system
is "certified" if no significant additions or deletions (less than 0.2 ppbv each of target compounds) have
occurred when challenged with the test gas stream.]

8.4.3.1  The cleanliness of the sampling system is determined by testing the sampler with humid zero air
without an evacuated gas sampling canister, as follows.

8.4.3.2  The calibration system and manifold are assembled, as illustrated in Figure 8.  The sampler
(without an evacuated gas canister) is connected to the manifold and the zero air cylinder is activated to generate
a humid gas stream (2 L/min) to the calibration manifold [see Figure 8(b)].

8.4.3.3  The humid zero gas stream passes through the calibration manifold, through the sampling system
(without an evacuated canister) to the water management system/VOC preconcentrator of an analytical system.

[Note:  The exit of the sampling system (without the canister) replaces the canister in Figure 11.]

After the sample volume (e.g., 500 mL) is preconcentrated on the trap, the trap is heated and the VOCs are
thermally desorbed and refocussed on a cold trap.  This trap is heated and the VOCs are thermally desorbed onto
the head of the capillary column.  The VOCs are refocussed prior to gas chromatographic separation.  Then, the
oven temperature (programmed) increases and the VOCs begin to elute and are detected by a GC/MS (see
Section 10) system.  The analytical system should not detect greater than 0.2 ppbv of any targeted VOCs in order
for the sampling system to pass the humid zero air certification test.  Chromatograms (using an FID) of a certified
sampler and contaminated sampler are illustrated in Figures 12(a) and 12(b), respectively.  If the sampler passes
the humid zero air test, it is then tested with humid calibration gas standards containing selected VOCs at
concentration levels expected in field sampling (e.g., 0.5 to 2 ppbv) as outlined in Section 8.4.4.

8.4.4  Sampler System Certification with Humid Calibration Gas Standards from a Dynamic
Calibration System

8.4.4.1  Assemble the dynamic calibration system and manifold as illustrated in Figure 8.
8.4.4.2  Verify that the calibration system is clean (less than 0.2 ppbv of any target compounds) by

sampling a humidified gas stream, without gas calibration standards, with a previously certified clean canister
(see Section 8.1).

8.4.4.3  The assembled dynamic calibration system is certified clean if less than 0.2 ppbv of any targeted
compounds is found.

8.4.4.4  For generating the humidified calibration standards, the calibration gas cylinder(s) containing
nominal concentrations of 10 ppmv in nitrogen of selected VOCs is attached to the calibration system as
illustrated in Figure 8.  The gas cylinders are opened and the gas mixtures are passed through 0 to 10 mL/min
certified mass flow controllers to generate ppb levels of calibration standards.

8.4.4.5  After the appropriate equilibrium period, attach the sampling system (containing a certified
evacuated canister) to the manifold, as illustrated in Figure 8(b).

8.4.4.6  Sample the dynamic calibration gas stream with the sampling system. 
8.4.4.7  Concurrent with the sampling system operation, realtime monitoring of the calibration gas stream

is accomplished by the on-line GC/MS analytical system [Figure 8(a)] to provide reference concentrations of
generated VOCs.

8.4.4.8  At the end of the sampling period (normally the same time period used for experiments), the
sampling system canister is analyzed and compared to the reference GC/MS analytical system to determine if the
concentration of the targeted VOCs was increased or decreased by the sampling system.

8.4.4.9  A recovery of between 90% and 110% is expected for all targeted VOCs.
8.4.5  Sampler System Certification without Compressed Gas Cylinder Standards.
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8.4.5.1  Not all the gases on the Title III list are available/compatible with compressed gas standards. In
these cases sampler certification must be approached by different means.  

8.4.5.2  Definitive guidance is not currently available in these cases; however, Section 9.2 lists several ways
to generate gas standards.  In general, Compendium Method TO-14A compounds (see Table 1) are available
commercially as compressed gas standards.

9.  GC/MS Analysis of Volatiles from Canisters

9.1  Introduction

9.1.1  The analysis of canister samples is accomplished with a GC/MS system.  Fused silica capillary columns
are used to achieve high temporal resolution of target compounds.  Linear quadrupole or ion trap mass
spectrometers are employed for compound detection.  The heart of the system is composed of the sample inlet
concentrating device that is needed to increase sample loading into a detectable range.  Two examples of
concentrating systems are discussed.  Other approaches are acceptable as long as they are compatible with
achieving the system performance criteria given in Section 11. 

9.1.2  With the first technique, a whole air sample from the canister is passed through a multisorbent packing
(including single adsorbent packings) contained within a metal or glass tube maintained at or above the
surrounding air temperature.  Depending on the water retention properties of the packing, some or most of the
water vapor passes completely through the trap during sampling.  Additional drying of the sample is
accomplished after the sample concentration is completed by forward purging the trap with clean, dry helium or
another inert gas (air is not used).  The sample is then thermally desorbed from the packing and backflushed from
the trap onto a gas chromatographic column.  In some systems a "refocusing" trap is placed between the primary
trap and the gas chromatographic column.  The specific system design downstream of the primary trap depends
on technical factors such as the rate of thermal desorption and sampled volume, but the objective in most cases
is to enhance chromatographic resolution of the individual sample components before detection on a mass
spectrometer.

9.1.3  Sample drying strategies depend on the target list of compounds.  For some target compound lists, the
multisorbent packing of the concentrator can be selected from hydrophobic adsorbents which allow a high
percentage of water vapor in the sample to pass through the concentrator during sampling and without significant
loss of the target compounds. However, if very volatile organic compounds are on the target list, the adsorbents
required for their retention may also strongly retain water vapor and a more lengthy dry purge is necessary prior
to analysis.

9.1.4  With the second technique, a whole air sample is passed through a concentrator where the VOCs are
condensed on a reduced temperature surface (cold trap).  Subsequently, the condensed gases are thermally
desorbed and backflushed from the trap with an inert gas onto a gas chromatographic column.  This concentration
technique is similar to that discussed in Compendium Method TO-14, although a membrane dryer is not used.
The sample size is reduced in volume to limit the amount of water vapor that is also collected (100 mL or less
may be necessary).  The attendant reduction in sensitivity is offset by  enhancing  the  sensitivity of detection, for
example by using an ion trap detector.
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9.2  Preparation of Standards

9.2.1  Introduction.
9.2.1.1  When available, standard mixtures of target gases in high pressure cylinders must be certified

traceable to a NIST Standard Reference Material (SRM) or to a NIST/EPA approved Certified Reference
Material (CRM).  Manufacturer's certificates of analysis must be retained to track the expiration date.

9.2.1.2  The neat standards that are used for making trace gas standards must be of high purity; generally
a purity of 98 percent or better is commercially available. 

9.2.1.3  Cylinder(s) containing approximately 10 ppmv of each of the target compounds are typically used
as primary stock standards.  The components may be purchased in one cylinder or in separate cylinders depending
on compatibility of the compounds and the pressure of the mixture in the cylinder.  Refer to manufacturer's
specifications for guidance on purchasing and mixing VOCs in gas cylinders. 

9.2.2  Preparing Working Standards.
9.2.2.1  Instrument Performance Check Standard.  Prepare a standard solution of BFB in humidified

zero air at a concentration which will allow collection of 50 ng of BFB or less under the optimized concentration
parameters.

9.2.2.2  Calibration Standards.  Prepare five working calibration standards in humidified zero air at a
concentration which will allow collection at the 2, 5, 10, 20, and 50 ppbv level for each component under the
optimized concentration parameters.

9.2.2.3  Internal Standard Spiking Mixture.  Prepare an internal spiking mixture containing bromo-
chloromethane, chlorobenzene-d , and 1,4-difluorobenzene at 10 ppmv each in humidified zero air to be added5

to the sample or calibration standard.  500 µL of this mixture spiked into 500 mL of sample will result in a
concentration of 10 ppbv.  The internal standard is introduced into the trap during the collection time for all
calibration, blank, and sample analyses using the apparatus shown in Figure 13 or by equivalent means.  The
volume of internal standard spiking mixture added for each analysis must be the same from run to run.

9.2.3  Standard Preparation by Dynamic Dilution Technique.
9.2.3.1  Standards may be prepared by dynamic dilution of the gaseous contents of a cylinder(s) containing

the gas calibration stock standards with humidified zero air using mass flow controllers and a calibration
manifold.  The working standard may be delivered from the manifold to a clean, evacuated canister using a pump
and mass flow controller.

9.2.3.2  Alternatively, the analytical system may be calibrated by sampling directly from the manifold if
the flow rates are optimized to provide the desired amount of calibration standards.  However, the use of the
canister as a reservoir prior to introduction into the concentration system resembles the procedure normally used
to collect samples and is preferred.  Flow rates of the dilution air and cylinder standards (all expressed in the same
units) are measured using a bubble meter or calibrated electronic flow measuring device, and the concentrations
of target compounds in the manifold are then calculated using the dilution ratio and the original concentration of
each compound.

9.2.3.3  Consider the example of 1 mL/min flow of 10 ppmv standard diluted with 1,000 mL/min of humid
air provides a nominal 10 ppbv mixture, as calculated below: 
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9.2.4  Standard Preparation by Static Dilution Bottle Technique

[Note:  Standards may be prepared in canisters by spiking the canister with a mixture of components prepared
in a static dilution bottle (12).  This technique is used specifically for liquid standards.]

9.2.4.1  The volume of a clean 2-liter round-bottom flask, modified with a threaded glass neck to accept
a Mininert septum cap, is determined by weighing the amount of water required to completely fill up the flask.
Assuming a density for the water of 1 g/mL, the weight of the water in grams is taken as the volume of the flask
in milliliters.

9.2.4.2  The flask is flushed with helium by attaching a tubing into the glass neck to deliver the helium.
After a few minutes, the tubing is removed and the glass neck is immediately closed with a Mininert septum cap.

9.2.4.3  The flask is placed in a 60EC oven and allowed to equilibrate at that temperature for about
15 minutes.  Predetermined aliquots of liquid standards are injected into the flask making sure to keep the flask
temperature constant at 60EC.

9.2.4.4  The contents are allowed to equilibrate in the oven for at least 30 minutes.  To avoid condensation,
syringes must be preheated in the oven at the same temperature prior to withdrawal of aliquots to avoid
condensation.

9.2.4.5  Sample aliquots may then be taken for introduction into the analytical system or for further
dilution.  An aliquot or aliquots totaling greater than 1 percent of the flask volume should be avoided.

9.2.4.6  Standards prepared by this method are stable for one week.  The septum must be replaced with
each freshly prepared standard.

9.2.4.7  The concentration of each component in the flask is calculated using the following equation:

where: V  = Volume of liquid neat standard injected into the flask, µL.a

d = Density of the liquid neat standard, mg/µL.

V  = Volume of the flask, L.f

9.2.4.8  To obtain concentrations in ppbv, the equation given in Section 9.2.5.7 can be used.

[Note:  In the preparation of standards by this technique, the analyst should make sure that the volume of neat
standard injected into the flask does not result in an overpressure due to the higher partial pressure produced
by the standard compared to the vapor pressure in the flask.  Precautions should also be taken to avoid a
significant decrease in pressure inside the flask after withdrawal of aliquot(s).]  

9.2.5  Standard Preparation Procedure in High Pressure Cylinders

[Note:  Standards may be prepared in high pressure cylinders (13).  A modified summary of the procedure
is provided below.]

9.2.5.1  The standard compounds are obtained as gases or neat liquids (greater than 98 percent purity).
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9.2.5.2  An aluminum cylinder is flushed with high-purity nitrogen gas and then evacuated to better than
25 in. Hg.

9.2.5.3  Predetermined amounts of each neat standard compound are measured using a microliter or
gastight syringe and injected into the cylinder.  The cylinder is equipped with a heated injection port and nitrogen
flow to facilitate sample transfer.

9.2.5.4  The cylinder is pressurized to 1000 psig with zero nitrogen.

[Note:  User should read all SOPs associated with generating standards in high pressure cylinders.  Follow
all safety requirements to minimize danger from high pressure cylinders.]

9.2.5.5  The contents of the cylinder are allowed to equilibrate (-24 hrs) prior to withdrawal of aliquots
into the GC system.

9.2.5.6  If the neat standard is a gas, the cylinder concentration is determined using the following equation:

[Note:  Both values must be expressed in the same units.]

9.2.5.7  If the neat standard is a liquid, the gaseous concentration can be determined using the following
equations:

and:

where: V = Gaseous volume of injected compound at EPA standard temperature (25EC) and
pressure (760 mm Hg), L.

n = Moles.
R = Gas constant, 0.08206 L-atm/mole EK.
T = 298EK (standard temperature).
P = 1 standard pressure, 760 mm Hg (1 atm).

mL = Volume of liquid injected, mL. 
d = Density of the neat standard, g/mL.

MW = Molecular weight of the neat standard expressed, g/g-mole.

The gaseous volume of the injected compound is divided by the cylinder volume at STP and then multiplied by
10  to obtain the component concentration in ppb units. 9
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9.2.6  Standard Preparation by Water Methods.

[Note:  Standards may be prepared by a water purge and trap method (14) and summarized as follows].

9.2.6.1  A previously cleaned and evacuated canister is pressurized to 760 mm Hg absolute (1 atm) with
zero grade air.

9.2.6.2  The air gauge is removed from the canister and the sparging vessel is connected to the canister with
the short length of 1/16 in. stainless steel tubing.  

[Note:  Extra effort should be made to minimize possible areas of dead volume to maximize transfer of
analytes from the water to the canister.]

9.2.6.3  A measured amount of the stock standard solution and the internal standard solution is spiked into
5 mL of water.

9.2.6.4  This water is transferred into the sparge vessel and purged with nitrogen for 10 mins at
100 mL/min.  The sparging vessel is maintained at 40EC.

9.2.6.5  At the end of 10 mins, the sparge vessel is removed and the air gauge is re-installed, to further
pressurize the canister with pure nitrogen to 1500 mm Hg absolute pressure (approximately 29 psia).

9.2.6.6  The canister is allowed to equilibrate overnight before use.
9.2.6.7  A schematic of this approach is shown in Figure 14.

9.2.7  Preparation of Standards by Permeation Tubes.
9.2.7.1  Permeation tubes can be used to provide standard concentration of a trace gas or gases.  The

permeation of the gas can occur from inside a permeation tube containing the trace species of interest to an air
stream outside.  Permeation can also occur from outside a permeable membrane tube to an air stream passing
through the tube (e.g., a tube of permeable material immersed in a liquid). 

9.2.7.2  The permeation system is usually held at a constant temperature to generate a constant
concentration of  trace gas.  Commercial suppliers provide systems for generation and dilution of over
250 compounds.  Some commercial suppliers of permeation tube equipment are listed in Appendix D.

9.2.8  Storage of Standards.
9.2.8.1  Working standards prepared in canisters may be stored for thirty days in an atmosphere free of

potential contaminants.
9.2.8.2  It is imperative that a storage logbook be kept to document storage time.

10.  GC/MS Operating Conditions

10.1  Preconcentrator

The following are typical cryogenic and adsorbent preconcentrator analytical conditions which, however, depend
on the specific combination of solid sorbent and must be selected carefully by the operator.  The reader is referred
to Tables 1 and 2 of Compendium Method TO-17 for guidance on selection of sorbents.  An example of a system
using a solid adsorbent preconcentrator with a cryofocusing trap is discussed in the literature (15).  Oven
temperature programming starts above ambient.

10.1.1  Sample Collection Conditions

Cryogenic Trap Adsorbent Trap



VOCs Method TO-15

January 1999 Compendium of Methods for Toxic Organic Air Pollutants Page 15-21

Set point -150EC Set point 27EC
Sample volume - up to 100 mL Sample volume - up to 1,000 mL
Carrier gas purge flow - none Carrier gas purge flow - selectable

[Note:  The analyst should optimize the flow rate, duration of sampling, and absolute sample volume to be
used.  Other preconcentration systems may be used provided performance standards (see Section 11) are
realized.]

10.1.2  Desorption Conditions

Cryogenic Trap Adsorbent Trap

Desorb Temperature 120EC Desorb Temperature Variable
Desorb Flow Rate - 3 mL/min He Desorb Flow Rate -3 mL/min He
Desorb Time <60 sec Desorb Time <60 sec

The adsorbent trap conditions depend on the specific solid adsorbents chosen (see manufacturers’ specifications).

10.1.3  Trap Reconditioning Conditions.

Cryogenic Trap Adsorbent Trap

Initial bakeout 120EC (24 hrs) Initial bakeout
Variable (24 hrs)
After each run 120EC (5 min) After each run Variable (5 min)

10.2  GC/MS System

10.2.1  Optimize GC conditions for compound separation and sensitivity.  Baseline separation of benzene
and carbon tetrachloride on a 100% methyl polysiloxane stationary phase is an indication of acceptable
chromatographic performance.

10.2.2  The following are the recommended gas chromatographic analytical conditions when using a 50-meter
by 0.3-mm I.D., 1 µm film thickness fused silica column with refocusing on the column.

Item Condition

Carrier Gas: Helium
Flow Rate: Generally 1-3 mL/min as recommended by manufacturer
Temperature Program: Initial Temperature: -50EC

Initial Hold Time: 2 min
Ramp Rate: 8E C/min 
Final Temperature: 200EC
Final Hold Time: Until all target compounds elute.

10.2.3  The following are the recommended mass spectrometer conditions:

Item Condition
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Electron Energy: 70 Volts (nominal)
Mass Range: 35-300 amu [the choice of 35 amu excludes the detection of some target compounds

such as methanol and formaldehyde, and the quantitation of others such as ethylene
oxide, ethyl carbamate, etc. (see Table 2).  Lowering the mass range and using special
programming features available on modern gas chromatographs will be necessary in
these cases, but are not considered here.

Scan Time: To give at least 10 scans per peak, not to exceed 1 second per scan].

A schematic for a typical GC/MS analytical system is illustrated in Figure 15.

10.3  Analytical Sequence

10.3.1  Introduction.  The recommended GC/MS analytical sequence for samples during each 24-hour time
period is as follows:

• Perform instrument performance check using bromofluorobenzene (BFB).
• Initiate multi-point calibration or daily calibration checks.
• Perform a laboratory method blank.
• Complete this sequence for analysis of #20 field samples.

10.4  Instrument Performance Check

10.4.1  Summary.  It is necessary to establish that a given GC/MS meets tuning and standard mass spectral
abundance criteria prior to initiating any data collection.  The GC/MS system is set up according to the
manufacturer's specifications, and the mass calibration and resolution of the GC/MS system are then verified by
the analysis of the instrument performance check standard, bromofluorobenzene (BFB).

10.4.2  Frequency.  Prior to the analyses of any samples, blanks, or calibration standards, the Laboratory
must establish that the GC/MS system meets the mass spectral ion abundance criteria for the instrument
performance check standard containing BFB.  The instrument performance check solution must be analyzed
initially and once per 24-hour time period of operation.

The 24-hour time period for GC/MS instrument performance check and standards calibration (initial calibration
or daily calibration check criteria) begins at the injection of the BFB which the laboratory records as
documentation of a compliance tune.

10.4.3  Procedure.  The analysis of the instrument performance check standard is performed by trapping 50
ng of BFB under the optimized preconcentration parameters.  The BFB is introduced from a cylinder into the
GC/MS via a sample loop valve injection system similar to that shown in Figure 13.

The mass spectrum of BFB must be acquired in the following manner.  Three scans (the peak apex scan and the
scans immediately preceding and following the apex) are acquired and averaged.  Background subtraction is
conducted using a single scan prior to the elution of BFB.

10.4.4  Technical Acceptance Criteria.  Prior to the analysis of any samples, blanks, or calibration
standards, the analyst must establish that the GC/MS system meets the mass spectral ion abundance criteria for
the instrument performance check standard as specified in Table 3.

10.4.5  Corrective Action.  If the BFB acceptance criteria are not met, the MS must be retuned.  It may be
necessary to clean the ion source, or quadrupoles, or take other necessary actions to achieve the acceptance
criteria.
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10.4.6  Documentation. Results of the BFB tuning are to be recorded and maintained as part of the
instrumentation log.

10.5  Initial Calibration

10.5.1  Summary.  Prior to the analysis of samples and blanks but after the instrument performance check
standard criteria have been met, each GC/MS system must be calibrated at five concentrations that span the
monitoring range of interest in an initial calibration sequence to determine instrument sensitivity and the linearity
of GC/MS response for the target compounds.  For example, the range of interest may be 2 to 20 ppbv, in which
case the five concentrations would be 1, 2, 5, 10 and 25 ppbv.

One of the calibration points from the initial calibration curve must be at the same concentration as the daily
calibration standard (e.g., 10 ppbv).

10.5.2  Frequency.  Each GC/MS system must be recalibrated following corrective action (e.g., ion source
cleaning or repair, column replacement, etc.) which may change or affect the initial calibration criteria or if the
daily calibration acceptance criteria have not been met.

If time remains in the 24-hour time period after meeting the acceptance criteria for the initial calibration, samples
may be analyzed.

If time does not remain in the 24-hour period after meeting the acceptance criteria for the initial calibration, a new
analytical sequence shall commence with the analysis of the instrument performance check standard followed by
analysis of a daily calibration standard.

10.5.3  Procedure.  Verify that the GC/MS system meets the instrument performance criteria in Section 10.4.

The GC must be operated using temperature and flow rate parameters equivalent to those in Section 10.2.2.
Calibrate the preconcentration-GC/MS system by drawing the standard into the system.  Use one of the standards
preparation techniques described under Section 9.2 or equivalent.

A minimum of five concentration levels are needed to determine the instrument sensitivity and linearity.  One of
the  calibration levels should be near the detection level for the compounds of interest.  The calibration range
should be chosen so that linear results are obtained as defined in Sections 10.5.1 and 10.5.5.  

Quantitation ions for the target compounds are shown in Table 2.  The primary ion should be used unless
interferences are present, in which case a secondary ion is used. 

10.5.4  Calculations.

[Note:  In the following calculations, an internal standard approach is used to calculate response factors.
The area response used is that of the primary quantitation ion unless otherwise stated.]

10.5.4.1  Relative Response Factor (RRF).  Calculate the relative response factors for each target
compound relative to the appropriate internal standard (i.e., standard with the nearest retention time) using the
following equation:
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where: RRF = Relative response factor.
A  = Area of the primary ion for the compound to be measured, counts.x

A  = Area of the primary ion for the internal standard, counts. is

C  = Concentration of internal standard spiking mixture, ppbv.is

C  = Concentration of the compound in the calibration standard, ppbv.x

[Note:  The equation above is valid under the condition that the volume of internal standard spiking mixture
added in all field and QC analyses is the same from run to run, and that the volume of field and QC sample
introduced into the trap is the same for each analysis.  C  and C  must be in the same units.]is x

10.5.4.2  Mean Relative Response Factor.  Calculate the mean RRF for each compound by averaging
the values obtained at the five concentrations using the following equation:

where:  = Mean relative response factor.

x  = RRF of the compound at concentration i.i

n = Number of concentration values, in this case 5.
10.5.4.3  Percent Relative Standard Deviation (%RSD).  Using the RRFs from the initial calibration,

calculate the %RSD for all target compounds using the following equations:

and

where: SD  = Standard deviation of initial response factors (per compound).RRF

RRF  = Relative response factor at a concentration level i.i

 = Mean of initial relative response factors (per compound).
10.5.4.4  Relative Retention Times (RRT).  Calculate the RRTs for each target compound over the initial

calibration range using the following equation:

where: RT  = Retention time of the target compound, secondsc

RT  = Retention time of the internal standard, seconds.is

10.5.4.5  Mean of the Relative Retention Times ( ).  Calculate the mean of the relative retention

times ( ) for each analyte target compound over the initial calibration range using the following equation:
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where:  = Mean relative retention time for the target compound for each initial calibration
standard.

RRT = Relative retention time for the target compound at each calibration level.
10.5.4.6  Tabulate Primary Ion Area Response (Y) for Internal Standard.  Tabulate the area response

(Y) of the primary ions (see Table 2) and the corresponding concentration for each compound and internal
standard.

10.5.4.7  Mean Area Response ( ) for Internal Standard.  Calculate the mean area response ( ) for
each internal standard compound over the initial calibration range using the following equation:

where:  = Mean area response.
Y = Area response for the primary quantitation ion for the internal standard for each initial

calibration standard.
10.5.4.8  Mean Retention Times ( ).  Calculate the mean of the retention times ( ) for each internal

standard over the initial calibration range using the following equation:

where:  = Mean retention time, seconds
RT = Retention time for the internal standard for each initial calibration standard, seconds.

10.5.5  Technical Acceptance Criteria for the Initial Calibration.  
10.5.5.1  The calculated %RSD for the RRF for each compound in the calibration table must be less than

30% with at most two exceptions up to a limit of 40%.

[Note: This exception may not be acceptable for all projects.  Many projects may have a specific target list
of compounds which would require the lower limit for all compounds.] 

10.5.5.2  The RRT for each target compound at each calibration level must be withiin 0.06 RRT units of
the mean RRT for the compound.

10.5.5.3  The area response Y of at each calibration level must be within 40% of the mean area response 
over the initial calibration range for each internal standard.

10.5.5.4  The retention time shift for each of the internal standards at each calibration level must be within
20 s of the mean retention time over the initial calibration range for each internal standard.

10.5.6  Corrective Action.  
10.5.6.1  Criteria.  If the initial calibration technical acceptance criteria are not met, inspect the system

for problems.  It may be necessary to clean the ion source, change the column, or take other corrective actions to
meet the initial calibration technical acceptance criteria.

10.5.6.2  Schedule.  Initial calibration acceptance criteria must be met before any field samples,
performance evaluation (PE) samples, or blanks are analyzed. 
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10.6  Daily Calibration

10.6.1  Summary.  Prior to the analysis of samples and blanks but after tuning criteria have been met, the
initial calibration of each GC/MS system must be routinely checked by analyzing a daily calibration standard to
ensure that the instrument continues to remain under control.  The daily calibration standard, which is the nominal
10 ppbv level calibration standard, should contain all the target compounds.

10.6.2  Frequency.  A check of the calibration curve must be performed once every 24 hours on a GC/MS
system that has met the tuning criteria.  The daily calibration sequence starts with the injection of the BFB.  If
the BFB analysis meets the ion abundance criteria for BFB, then a daily calibration standard may be analyzed.

10.6.3  Procedure.  The mid-level calibration standard (10 ppbv) is analyzed in a GC/MS system that has
met the tuning and mass calibration criteria following the same procedure in Section 10.5.

10.6.4  Calculations.  Perform the following calculations.

[Note:  As indicated earlier, the area response of the primary quantitation ion is used unless otherwise
stated.]

10.6.4.1  Relative Response Factor (RRF).  Calculate a relative response factor (RRF) for each target
compound using the equation in Section 10.5.4.1.

10.6.4.2  Percent Difference (%D).  Calculate the percent difference in the RRF of the daily RRF
(24-hour) compared to the mean RRF in the most recent initial calibration.  Calculate the %D for each target
compound using the following equation:

where: RRF  = RRF of the compound in the continuing calibration standard.c

 = Mean RRF of the compound in the most recent initial calibration.

10.6.5  Technical Acceptance Criteria.  The daily calibration standard must be analyzed at the
concentration level and frequency described in this Section 10.6 and on a GC/MS system meeting the BFB
instrument performance check criteria (see Section 10.4).

The %D for each target compound in a daily calibration sequence must be within ±30 percent in order to proceed
with the analysis of samples and blanks.  A control chart showing %D values should be maintained.

10.6.6  Corrective Action.  If the daily calibration technical acceptance criteria are not met, inspect the
system for problems.  It may be necessary to clean the ion source, change the column, or take other corrective
actions to meet the daily calibration technical acceptance criteria.

Daily calibration acceptance criteria must be met before any field samples, performance evaluation (PE) samples,
or blanks are analyzed.  If the % D criteria are not met, it will be necessary to rerun the daily calibration sample.

10.7  Blank Analyses

10.7.1  Summary.  To monitor for possible laboratory contamination, laboratory method blanks are analyzed
at least once in a 24-hour analytical sequence.  All steps in the analytical procedure are performed on the blank
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using all reagents, standards, equipment, apparatus, glassware, and solvents that would be used for a sample
analysis.

A laboratory method blank (LMB) is an unused, certified canister that has not left the laboratory.  The blank
canister is pressurized with humidified, ultra-pure zero air and carried through the same analytical procedure as
a field sample.  The injected aliquot of the blank must contain the same amount of internal standards that are
added to each sample.

10.7.2  Frequency.  The laboratory method blank must be analyzed after the calibration standard(s) and
before any samples are analyzed.

Whenever a high concentration sample is encountered (i.e., outside the calibration range), a blank analysis should
be performed immediately after the sample is completed to check for carryover effects.

10.7.3  Procedure.  Fill a cleaned and evacuated canister with humidified zero air (RH >20 percent, at 25EC).
Pressurize the contents to 2 atm.

The blank sample should be analyzed using the same procedure outlined under Section 10.8.
10.7.4  Calculations.  The blanks are analyzed similar to a field sample and the equations in Section 10.5.4

apply.
10.7.5  Technical Acceptance Criteria.  A blank canister should be analyzed daily.

The area response for each internal standard (IS) in the blank must be within ±40 percent of the mean area
response of the IS in the most recent valid calibration.

The retention time for each of the internal standards must be within ±0.33 minutes between the blank and the
most recent valid calibration.

The blank should not contain any target analyte at a concentration greater than its quantitation level (three times
the MDL as defined in Section 11.2) and should not contain additional compounds with elution characteristics
and mass spectral features that would interfere with identification and measurement of a method analyte.

10.7.6  Corrective Action.  If the blanks do not meet the technical acceptance criteria, the analyst should
consider the analytical system to be out of control.  It is the responsibility of the analyst to ensure that
contaminants in solvents, reagents, glassware, and other sample storage and processing hardware that lead to
discrete artifacts and/or elevated baselines in gas chromatograms be eliminated.  If contamination is a problem,
the source of the contamination must be investigated and appropriate corrective measures need to be taken and
documented before further sample analysis proceeds.

If an analyte in the blank is found to be out of control (i.e., contaminated) and the analyte is also found in
associated samples, those sample results should be "flagged" as possibly contaminated.

10.8  Sample Analysis

10.8.1  Summary.  An aliquot of the air sample from a canister (e.g., 500 mL) is preconcentrated and
analyzed by GC/MS under conditions stated in Sections 10.1 and 10.2.  If using the multisorbent/dry purge
approach, adjust the dry purge volume to reduce water effects in the analytical system to manageable levels.  

[Note:  The analyst should be aware that pressurized samples of high humidity samples will contain
condensed water.  As a result, the humidity of the sample released from the canister during analysis will vary
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in humidity, being lower at the higher canister pressures and increasing in humidity as the canister pressures
decreases.  Storage integrity of water soluble compounds may also be affected.]

10.8.2  Frequency.  If time remains in the 24-hour period in which an initial calibration is performed,
samples may be analyzed without analysis of a daily calibration standard.

If time does not remain in the 24-hour period since the injection of the instrument performance check standard
in which an initial calibration is performed, both the instrument performance check standard and the daily
calibration standard should be analyzed before sample analysis may begin.

10.8.3  Procedure for Instrumental Analysis.  Perform the following procedure for analysis.
10.8.3.1  All canister samples should be at temperature equilibrium with the laboratory.
10.8.3.2  Check and adjust the mass flow controllers to provide correct flow rates for the system.
10.8.3.3  Connect the sample canister to the inlet of the GC/MS analytical system, as shown in Figure 15

[Figure 16 shows an alternate two stage concentrator using multisorbent traps followed by a trap cooled by a
closed cycle cooler (15)].  The desired sample flow is established through the six-port chromatographic valve and
the preconcentrator to the downstream flow controller.  The absolute volume of sample being pulled through the
trap must be consistent from run to run.

10.8.3.4  Heat/cool the GC oven and cryogenic or adsorbent trap to their set points.  Assuming a six-port
value is being used, as soon as the trap reaches its lower set point, the six-port chromatographic valve is cycled
to the trap position to begin sample collection.  Utilize the sample collection time which has been optimized by
the analyst.

10.8.3.5  Use the arrangement shown in Figure 13, (i.e., a gastight syringe or some alternate method)
introduce an internal standard during the sample collection period.  Add sufficient internal standard equivalent
to 10 ppbv in the sample.  For example, a 0.5 mL volume of a mixture of internal standard compounds, each at
10 ppmv concentration, added to a sample volume of 500 mL, will result in 10 ppbv of each internal standard
in the sample.

10.8.3.6  After the sample and internal standards are preconcentrated on the trap, the GC sampling valve
is cycled to the inject position and the trap is swept with helium and heated.  Assuming a focusing trap is being
used, the trapped analytes are thermally desorbed onto a focusing trap and then onto the head of the capillary
column and are separated on the column using the GC oven temperature program.  The canister valve is closed
and the canister is disconnected from the mass flow controller and capped.  The trap is maintained at elevated
temperature until the beginning of the next analysis.

10.8.3.7  Upon sample injection onto the column, the GC/MS system is operated so that the MS scans the
atomic mass range from 35 to 300 amu.  At least ten scans per eluting chromatographic peak should be acquired.
Scanning also allows identification of unknown compounds in the sample through searching of library spectra.

10.8.3.8  Each analytical run must be checked for saturation.  The level at which an individual compound
will saturate the detection system is a function of the overall system sensitivity and the mass spectral
characteristics of that compound.

10.8.3.9  Secondary ion quantitation is allowed only when there are sample matrix interferences with the
primary ion.  If secondary ion quantitation is performed, document the reasons in the laboratory record book. 

10.8.4  Calculations.  The equation below is used for calculating concentrations.

where: C  = Compound concentration, ppbv.x 
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A  = Area of the characteristic ion for the compound to be measured, counts.x

A  = Area of the characteristic ion for the specific internal standard, counts.is

C  = Concentration of the internal standard spiking mixture, ppbvis

.

= Mean relative response factor from the initial calibration.

DF = Dilution factor calculated as described in section 2.  If no dilution is performed, DF

= 1.

[Note:  The equation above is valid under the condition that the volume (-500 µL) of internal standard
spiking mixture added in all field and QC analyses is the same from run to run, and that the volume (-500 mL)
of field and QC sample introduced into the trap is the same for each analysis.]

10.8.5  Technical Acceptance Criteria.

[Note:  If the most recent valid calibration is an initial calibration, internal standard area responses and RTs
in the sample are evaluated against the corresponding internal standard area responses and RTs in the mid
level standard (10 ppbv) of the initial calibration.]

10.8.5.1  The field sample must be analyzed on a GC/MS system meeting the BFB tuning, initial
calibration, and continuing calibration technical acceptance criteria at the frequency described in Sections 10.4,
10.5 and 10.6.

10.8.5.2  The field samples must be analyzed along with a laboratory method blank that met the blank
technical acceptance criteria.

10.8.5.3  All of the target analyte peaks should be within the initial calibration range.
10.8.5.4  The retention time for each internal standard must be within ±0.33 minutes of the retention time

of the internal standard in the most recent valid calibration.
10.8.6  Corrective Action.  If the on-column concentration of any compound in any sample exceeds the

initial calibration range, an aliquot of the original sample must be diluted and reanalyzed.  Guidance in
performing dilutions and exceptions to this requirement are given below.  

• Use the results of the original analysis to determine the approximate dilution factor required to get the
largest analyte peak within the initial calibration range.

• The dilution factor chosen should keep the response of the largest analyte peak for a target compound in
the upper half of the initial calibration range of the instrument.

[Note:  Analysis involving dilution should be reported with a dilution factor and nature of the dilution gas.]

10.8.6.1  Internal standard responses and retention times must be evaluated during or immediately after
data acquisition.  If the retention time for any internal standard changes by more than 20 sec from the latest daily
(24-hour) calibration standard (or mean retention time over the initial calibration range), the GC/MS system must
be inspected for malfunctions, and corrections made as required.

10.8.6.2  If the area response for any internal standard changes by more than ±40 percent between the
sample and the most recent valid calibration, the GC/MS system must be inspected for malfunction and
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corrections made as appropriate.  When corrections are made, reanalysis of samples analyzed while the system
was malfunctioning is necessary.

10.8.6.3  If, after reanalysis, the area responses or the RTs for all internal standards are inside the control
limits, then the problem with the first analysis is considered to have been within the control of the Laboratory.
Therefore, submit only data from the analysis with SICPs within the limits.  This is considered the initial analysis
and should be reported as such on all data deliverables.

11.  Requirements for Demonstrating Method Acceptability for VOC Analysis from Canisters

11.1  Introduction

11.1.1  There are three performance criteria which must be met for a system to qualify under Compendium
Method TO-15.  These criteria are: the method detection limit of #0.5 ppbv, replicate precision within 25 percent,
and audit accuracy within 30 percent for concentrations normally expected in contaminated ambient air (0.5 to
25 ppbv).  

11.1.2  Either SIM or SCAN modes of operation can be used to achieve these criteria, and the choice of mode
will depend on the number of target compounds, the decision of whether or not to determine tentatively identified
compounds along with other VOCs on the target list, as well as on the analytical system characteristics.  

11.1.3  Specific criteria for each Title III compound on the target compound list must be met by the analytical
system.  These criteria were established by examining summary data from EPA's Toxics Air Monitoring System
Network and the Urban Air Toxics Monitoring Program network.  Details for the determination of each of the
criteria follow.

11.2  Method Detection Limit

11.2.1  The procedure chosen to define the method detection limit is that given in the Code of Federal
Regulations (40 CFR 136 Appendix B).  

11.2.2  The method detection limit is defined for each system by making seven replicate measurements of the
compound of interest at a concentration near (within a factor of five) the expected detection limit, computing the
standard deviation for the seven replicate concentrations, and multiplying this value by 3.14 (i.e., the Student's
t value for 99 percent confidence for seven values).  Employing this approach, the detection limits given in
Table 4 were obtained for some of the VOCs of interest.  

11.3  Replicate Precision

11.3.1  The measure of replicate precision used for this program is the absolute value of the difference
between replicate measurements of the sample divided by the average value and expressed as a percentage as
follows:

where: x  = First measurement value.1

x  = Second measurement value.2

 = Average of the two values.
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11.3.2  There are several factors which may affect the precision of the measurement.  The nature of the
compound of interest itself such as molecular weight, water solubility, polarizability, etc., each have some effect
on the precision, for a given sampling and analytical system.  For example, styrene, which is classified as a polar
VOC, generally shows slightly poorer precision than the bulk of nonpolar VOCs.  A primary influence on
precision is the concentration level of the compound of interest in the sample, i.e., the precision degrades as the
concentration approaches the detection limit.  A conservative measure was obtained from replicate analysis of
"real world" canister samples from the TAMS and UATMP networks.  These data are summarized in Table 5
and suggest that a replicate precision value of 25 percent can be achieved for each of the target compounds. 

11.4  Audit Accuracy

11.4.1  A measure of analytical accuracy is the degree of agreement with audit standards.  Audit accuracy is
defined as the difference between the nominal concentration of the audit compound and the measured value
divided by the audit value and expressed as a percentage, as illustrated in the following equation:

11.4.2  Audit accuracy results for TAMS and UATMP analyses are summarized in Table 6 and were used
to form the basis for a selection of 30 percent as the performance criterion for audit accuracy.
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APPENDIX A.

LISTING OF SOME COMMERCIAL WATER 
MANAGEMENT SYSTEMS USED WITH AUTOGC SYSTEMS

Tekmar Dohrman Company XonTech Inc.
7143 East Kemper Road 6862 Hayenhurst Avenue
Post Office Box 429576 Van Nuys, CA  91406
Cincinnati, Ohio  45242-9576 (818) 787-7380
(513) 247-7000 (818) 787-4275 (Fax)
(513) 247-7050 (Fax) [Multi-adsorbent trap/dry purge]
(800) 543-4461
[Moisture control module] Graseby

Entech Laboratory Automation Smyrna, Georgia  30082
950 Enchanted Way No. 101 (770) 319-9999
Simi Valley, California  93065 (770) 319-0336 (Fax)
(805) 527-5939 (800) 241-6898
(805) 527-5687 (Fax) [Controlled Desorption Trap]
[Microscale Purge and Trap]

Dynatherm Analytical Instruments 2700 Mitchell Drive
Post Office Box 159 Walnut Creek, California  94898
Kelton, Pennsylvania  19346 (510) 945-2196
(215) 869-8702 (510) 945-2335 (FAX)
(215) 869-3885 (Fax) [Variable Temperature Adsorption Trap]
[Thermal Desorption System]

500 Technology Ct.

Varian Chromatography System
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APPENDIX B.

COMMENT ON CANISTER CLEANING PROCEDURES

The canister cleaning procedures given in Section 8.4 require that canister pressure be reduced to <0.05mm Hg
before the cleaning process is complete.  Depending on the vacuum system design (diameter of connecting tubing,
valve restrictions, etc.) and the placement of the vacuum gauge, the achievement of this value may take several
hours.  In any case, the pressure gauge should be placed near the canisters to determine pressure.  The objective
of requiring a low pressure evacuation during canister cleaning is to reduce contaminants.  If canisters can be
routinely certified (<0.2 ppbv for target compounds) while using a higher vacuum, then this criteria can be
relaxed.  However, the ultimate vacuum achieved during cleaning should always be  <0.2mm Hg. 

Canister cleaning as described in Section 8.4 and illustrated in Figure 10 requires components with special
features.  The vacuum gauge shown in Figure 10 must be capable of measuring  0.05mm Hg  with less than a
20% error. The vacuum pump used for evacuating the canister must be noncontaminating while being capable
of achieving the 0.05 mm Hg vacuum as monitored near the canisters.  Thermoelectric vacuum gauges and
turbomolecular drag pumps are typically being used for these two components.

An alternate to achieving the canister certification requirement of <0.2 ppbv for all target compounds is the
criteria used in Compendium Method TO-12 that the total carbon count be <10ppbC.  This check is less
expensive and typically more exacting than the current certification requirement and can be used if proven to be
equivalent to the original requirement.  This equivalency must be established by comparing the total nonmethane
organic carbon (TNMOC) expressed in ppbC to the requirement that individual target compounds be <0.2 ppbv
for a series of analytical runs.



VOCs Method TO-15

January 1999 Compendium of Methods for Toxic Organic Air Pollutants Page 15-35

APPENDIX C.

LISTING OF COMMERCIAL MANUFACTURERS AND RE-SUPPLIERS OF 
SPECIALLY-PREPARED CANISTERS

BRC/Rasmussen
17010 NW Skyline Blvd.
Portland, Oregon 97321
(503) 621-1435

Meriter
1790 Potrero Drive
San Jose, CA 95124
(408) 265-6482

Restek Corporation
110 Benner Circle
Bellefonte, PA 16823-8812
(814) 353-1300
(800) 356-1688

Scientific Instrumentation Specialists
P.O. Box 8941
815 Courtney Street
Moscow, ID 83843
(208) 882-3860

Graseby
500 Technology Ct.
Smyrna, Georgia  30082
(404) 319-9999
(800) 241-6898

XonTech Inc.
6862 Hayenhurst Avenue
Van Nuys, CA  91406
(818) 787-7380
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APPENDIX D.

LISTING OF COMMERCIAL SUPPLIERS OF PERMEATION TUBES AND SYSTEMS

Kin-Tek
504 Laurel St.
Lamarque, Texas  77568
(409) 938-3627
(800) 326-3627

Vici Metronics, Inc.
2991 Corvin Drive
Santa Clara, CA 95051
(408) 737-0550

Analytical Instrument Development, Inc.
Rt. 41 and Newark Rd.
Avondale, PA  19311
(215) 268-3181

Ecology Board, Inc.
9257 Independence Ave.
Chatsworth, CA 91311
(213) 882-6795

Tracor, Inc.
6500 Tracor Land
Austin, TX
(512) 926-2800

Metronics Associates, Inc.
3201 Porter Drive
Standford Industrial Park
Palo Alto, CA 94304
(415) 493-5632
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TABLE 2.  CHARACTERISTIC MASSES (M/Z) USED FOR QUANTIFYING 
THE TITLE III CLEAN AIR ACT AMENDMENT COMPOUNDS

Compound CAS No. Primary Ion Secondary Ion

Methyl chloride (chloromethane); CH3Cl 74-87-3 50 52

Carbonyl sulfide; COS 463-S8-1 60 62

Vinyl chloride (chloroethene); C2H3Cl 7S-01-4 62 64

Diazomethane; CH2N2 334-88-3 42 41

Formaldehyde; CH2O 50-00-0 29 30

1,3-Butadiene; C4H6 106-99-0 39 54

Methyl bromide (bromomethane); CH3Br 74-83-9 94 96

Phosgene; CCl2O 75-44-5 63 65

Vinyl bromide (bromoethene); C2H3Br 593-60-2 106 108

Ethylene oxide; C2H4O 75-21-8 29 44

Ethyl chloride (chloroethane); C2H5Cl 75-00-3 64 66

Acetaldehyde (ethanal); C2H4O 75-07-0 44 29, 43

Vinylidene chloride (1,1-dichloroethylene); C2H2Cl2 75-35-4 61 96

Propylene oxide; C3H6O 75-56-9 58 57

Methyl iodide (iodomethane); CH3I 74-88-4 142 127

Methylene chloride; CH2Cl2 75-09-2 49 84, 86

Methyl isocyanate; C2H3NO 624-83-9 57 56

Allyl chloride (3-chloropropene); C3H5Cl 107-05-1 76 41, 78

Carbon disulfide; CS2 75-15-0 76 44, 78

Methyl tert-butyl ether; C5H12O 1634-04-4 73 41, 53

Propionaldehyde; C2H5CHO 123-38-6 58 29, 57

Ethylidene dichloride (1,1-dichloroethane); C2H4Cl2 75-34-3 63 65, 27

Chloroprene (2-chloro-1,3-butadiene); C4H5Cl 126-99-8 88 53, 90

Chloromethyl methyl ether; C2H5ClO 107-30-2 45 29, 49

Acrolein (2-propenal); C3H4O 107-02-8 56 55

1,2-Epoxybutane (1,2-butylene oxide); C4H8O 106-88-7 42 41, 72

Chloroform; CHCl3 67-66-3 83 85, 47

Ethyleneimine (aziridine); C2H5N 151-56-4 42 43

1,1-Dimethylhydrazine; C2H8N2 57-14-7 60 45, 59

Hexane; C6H14 110-54-3 57 41, 43

1,2-Propyleneimine (2-methylazindine); C3H7N 75-55-8 56 57, 42

Acrylonitrile (2-propenenitrile); C3H3N 107-13-1 53 52

Methyl chloroform (1,1,1 trichloroethane); C2H3Cl3 71-55-6 97 99, 61

Methanol; CH4O 67-56-1 31 29

Carbon tetrachloride; CCl4 56-23-5 117 119

Vinyl acetate; C4H6O2 108-05-4 43 86

Methyl ethyl ketone (2-butanone); C4H8O 78-93-3 43 72
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TABLE 2.  (continued)

Compound CAS No. Primary Ion Secondary Ion

Benzene; C6H6 71-43-2 78 77,50

Acetonitrile (cyanomethane); C2H3N 75-05-8 41 40

Ethylene dichloride (1,2-dichloroethane); C2H4Cl2 107-06-2 62 64, 27

Triethylamine; C6H15N 121-44-8 86 58, 101

Methylhydrazine; CH6N2 60-34-4 46 31, 45

Propylene dichloride (1,2-dichloropropane); C3H6Cl2 78-87-5 63 41, 62

2,2,4-Trimethyl pentane; C8H18 540-84-1 57 41, 56

1,4-Dioxane (1,4 Diethylene oxide); C4H8O2 123-91-1 88 58

Bis(chloromethyl) ether; C2H4Cl2O 542-88-1 79 49, 81

Ethyl acrylate; C5H8O2 140-88-5 55 73

Methyl methacrylate; C5H8O2 80-62-6 41 69, 100

1,3-Dichloropropene; C3H4Cl2 (cis) 542-75-6 75 39, 77

Toluene; C7H8 108-88-3 91 92

Trichloethylene; C2HCl3 79-01-6 130 132, 95

1,1,2-Trichloroethane; C2H3Cl3 79-00-5 97 83, 61

Tetrachloroethylene; C2Cl4 127-18-4 166 164, 131

Epichlorohydrin (l-chloro-2,3-epoxy propane); C3H5ClO 106-89-8 57 49, 62

Ethylene dibromide (1,2-dibromoethane); C2H4Br2 106-93-4 107 109

N-Nitrso-N-methylurea; C2H5N3O2 684-93-5 60 44, 103

2-Nitropropane; C3H7NO2 79-46-9 43 41

Chlorobenzene; C6H5Cl 108-90-7 112 77, 114

Ethylbenzene; C8H10 100-41-4 91 106

Xylenes (isomer & mixtures); C8H10 1330-20-7 91 106

Styrene; C8H8 100-42-5 104 78, 103

p-Xylene; C8H10 106-42-3 91 106

m-Xylene; C8H10 108-38-3 91 106

Methyl isobutyl ketone (hexone); C6H12O 108-10-1 43 58, 100

Bromoform (tribromomethane); CHBr3 75-25-2 173 171, 175

1,1,2,2-Tetrachloroethane; C2H2Cl4 79-34-5 83 85

o-Xylene; C8H10 95-47-6 91 106

Dimethylcarbamyl chloride; C3H6ClNO 79-44-7 72 107

N-Nitrosodimethylamine; C2H6N2O 62-75-9 74 42

Beta-Propiolactone; C3H4O2 57-57-8 42 43

Cumene (isopropylbenzene); C9H12 98-82-8 105 120

Acrylic acid; C3H4O2 79-10-7 72 45, 55

N,N-Dimethylformamide; C3H7NO 68-12-2 73 42, 44

1,3-Propane sultone; C3H6O3S 1120-71-4 58 65, 122

TABLE 2.  (continued)
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Compound CAS No. Primary Ion Secondary Ion

Acetophenone; C8H8O 98-86-2 105 77,120

Dimethyl sulfate; C2H6O4S 77-78-1 95 66,96

Benzyl chloride (a-chlorotoluene); C7H7Cl 100-44-7 91 126

1,2-Dibromo-3-chloropropane; C3H5Br2Cl 96-12-8 57 155, 157

Bis(2-Chloroethyl)ether; C4H8Cl2O 111-44-4 93 63, 95

Chloroacetic acid; C2H3ClO2 79-11-8 50 45, 60

Aniline (aminobenzene); C6H7N 62-53-3 93 66

1,4-Dichlorobenzene (p-); C6H4Cl2 106-46-7 146 148, 111

Ethyl carbamate (urethane); C3H7NO2 51-79-6 31 44, 62

Acrylamide; C3H5NO 79-06-1 44 55, 71

N,N-Dimethylaniline; C8H11N 121-69-7 120 77, 121

Hexachloroethane; C2Cl6 67-72-1 201 199, 203

Hexachlorobutadiene; C4Cl6 87-68-3 225 227, 223

Isophorone; C9H14O 78-59-1 82 138

N-Nitrosomorpholine; C4H8N2O2 59-89-2 56 86, 116

Styrene oxide; C8H8O 96-09-3 91 120

Diethyl sulfate; C4H10O4S 64-67-5 45 59, 139

Cresylic acid (cresol isomer mixture); C7H8O 1319-77-3

o-Cresol; C7H8O 95-48-7 108 107

Catechol (o-hydroxyphenol); C6H6O2 120-80-9 110 64

Phenol; C6H6O 108-95-2 94 66

1,2,4-Trichlorobenzene; C6H3Cl3 120-82-1 180 182, 184

Nitrobenzene; C6H5NO2 98-95-3 77 51, 123
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TABLE 3.  REQUIRED BFB KEY IONS AND 
ION ABUNDANCE CRITERIA

Mass Ion Abundance Criteria1

50 8.0 to 40.0 Percent of m/e 95

75 30.0 to 66.0 Percent of m/e 95

95 Base Peak, 100 Percent Relative Abundance

96 5.0 to 9.0 Percent of m/e 95 (See note)

173 Less than 2.0 Percent of m/e 174

174 50.0 to 120.0 Percent of m/e 95

175 4.0 to 9.0 Percent of m/e 174

176 93.0 to 101.0 Percent of m/e 174

177 5.0 to 9.0 Percent of m/e 176

All ion abundances must be normalized to m/z 95, the1

 nominal base peak, even though the ion abundance of m/z
 174 may be up to 120 percent that of m/z 95.
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TABLE 4.  METHOD DETECTION LIMITS (MDL)1

TO-14A List Lab #1, SCAN Lab #2, SIM

Benzene 0.34 0.29

Benzyl Chloride -- --

Carbon tetrachloride 0.42 0.15

Chlorobenzene 0.34 0.02

Chloroform 0.25 0.07

1,3-Dichlorobenzene 0.36 0.07

1,2-Dibromoethane -- 0.05

1,4-Dichlorobenzene 0.70 0.12

1,2-Dichlorobenzene 0.44 --

1,1-Dichloroethane 0.27 0.05

1,2-Dichloroethane 0.24 --

1,1-Dichloroethene -- 0.22

cis-1,2-Dichloroethene -- 0.06

Methylene chloride 1.38 0.84

1,2-Dichloropropane 0.21 --

cis-1,3-Dichloropropene 0.36 --

trans-1,3-Dichloropropene 0.22 --

Ethylbenzene 0.27 0.05

Chloroethane 0.19 --

Trichlorofluoromethane -- --

1,1,2-Trichloro-1,2,2-trifluoroethane --

1,2-Dichloro-1,1,2,2-tetrafluoroethane -- --

Dichlorodifluoromethane -- --

Hexachlorobutadiene -- --

Bromomethane 0.53 --

Chloromethane 0.40 --

Styrene 1.64 0.06

1,1,2,2-Tetrachloroethane 0.28 0.09

Tetrachloroethene 0.75 0.10

Toluene 0.99 0.20

1,2,4-Trichlorobenzene -- --

1,1,1-Trichloroethane 0.62 0.21

1,1,2-Trichloroethane 0.50 --

Trichloroethene 0.45 0.07

1,2,4-Trimethylbenzene -- --

1,3,5-Trimethylbenzene -- --

Vinyl Chloride 0.33 0.48

m,p-Xylene 0.76 0.08

o-Xylene 0.57 0.28

Method Detection Limits (MDLs) are defined as the product of the standard1

 deviation of seven replicate analyses and the student's "t" test value for 99%
 confidence.  For Lab #2, the MDLs represent an average over four studies. 
 MDLs are for MS/SCAN for Lab #1 and for MS/SIM for Lab #2.
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TABLE 5.  SUMMARY OF EPA DATA ON REPLICATE PRECISION (RP)
FROM EPA NETWORK OPERATIONS1

Monitoring Compound
Identification %RP # ppbv %RP # ppbv

EPA's Urban Air Toxics Monitoring EPA's Toxics Air Monitoring Stations
Program (UATMP) (TAMS)

Dichlorodifluoromethane -- -- 13.9 47 0.9
Methylene chloride 16.3 07 4.3 19.4 47 0.6
1,2-Dichloroethane 36.2 31 1.6 -- -- --
1,1,1-Trichloroethane 14.1 44 1.0 10.6 47 2.0
Benzene 12.3 56 1.6 4.4 47 1.5
Trichloroethene 12.8 08 1.3 -- -- --
Toluene 14.7 76 3.1 3.4 47 3.1
Tetrachloroethene 36.2 12 0.8 -- -- --
Chlorobenzene 20.3 21 0.9 -- -- --
Ethylbenzene 14.6 32 0.7 5.4 47 0.5
m-Xylene 14.7 75 4.0 5.3 47 1.5
Styrene 22.8 59 1.1 8.7 47 0.2
o-Xylene -- -- 6.0 47 0.5
p-Xylene --
1,3-Dichlorobenzene 49.1 06 0.6 -- -- --
1,4-Dichlorobenzene 14.7 14 6.5 -- -- --

2 2

Denotes the number of replicate or duplicate analysis used to generate the statistic.  The replicate precision is1

 defined as the mean ratio of absolute difference to the average value.
Styrene and o-xylene coelute from the GC column used in UATMP.  For the TAMS entries, both values were2

 below detection limits for 18 of 47 replicates and were not included in the calculation.

TABLE 6.  AUDIT ACCURACY (AA) VALUES  FOR SELECTED 1

COMPENDIUM METHOD TO-14A COMPOUNDS

Selected Compounds From TO-14A List FY-88 TAMS AA(%), N=30 FY-88 UATMP AA(%), N=3

Vinyl chloride 4.6 17.9
Bromomethane -- 6.4
Trichlorofluoromethane 6.4 --
Methylene chloride 8.6 31.4
Chloroform -- 4.2
1,2-Dichloroethane 6.8 11.4
1,1,1-Trichloroethane 18.6 11.3
Benzene 10.3 10.1
Carbon tetrachloride 12.4 9.4
1,2-Dichloropropane -- 6.2
Trichloroethene 8.8 5.2
Toluene 8.3 12.5
Tetrachloroethene 6.2 --
Chlorobenzene 10.5 11.7
Ethylbenzene 12.4 12.4
o-Xylene 16.2 21.2

Audit accuracy is defined as the relative difference between the audit measurement result and its nominal value divided by1

the nominal value.  N denotes the number of audits averaged to obtain the audit accuracy value.  Information is not available
for other TO-14A compounds because they were not present in the audit materials.
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Figure 1.  Sampler configuration for subatmospheric pressure or pressurized canister sampling.
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Figure 2.  Electrical pulse circuits for driving Skinner magnelatch solenoid valve with
mechanical timer.
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Figure 3.  Alternative sampler configuration for pressurized canister sampling.
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Figure 4.  Illustration of three stages of dry purging of adsorbent trap.
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Figure 6.  Simplified diagram of a quadrupole mass spectrometer.

Figure 7.  Simplified diagram of an ion trap mass spectrometer.
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COMPENDIUM METHOD TO-15
CANISTER SAMPLING FIELD TEST DATA SHEET

A.GENERAL INFORMATION 

SITE LOCATION:  SHIPPING DATE:  

SITE ADDRESS:  CANISTER SERIAL NO.:  

SAMPLER ID:  

SAMPLING DATE:  OPERATOR:  

CANISTER LEAK

CHECK DATE:  

B. SAMPLING INFORMATION

TEMPERATURE PRESSURE

INTERIOR AMBIENT MAXIMUM MINIMUM CANISTER PRESSURE

START

STOP

SAMPLING TIMES FLOW RATES

LOCAL TIME ELAPSED TIME MANIFOLD CANISTER FLOW
METER READING FLOW RATE FLOW RATE CONTROLLER

READOUT

START

STOP

SAMPLING SYSTEM CERTIFICATION DATE:  
QUARTERLY RECERTIFICATION DATE:  

C. LABORATORY INFORMATION

DATA RECEIVED:  
RECEIVED BY:  
INITIAL PRESSURE:  
FINAL PRESSURE:  
DILUTION FACTOR:  
ANALYSIS

GC-FID-ECD DATE:  
GC-MSD-SCAN DATE:  
GC-MSD-SIM DATE:  

RESULTS*:  

GC-FID-ECD:  
GC-MSD-SCAN:  
GC-MSD-SIM:  

SIGNATURE/TITLE

Figure 9.  Canister sampling field test data sheet (FTDS).
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Figure 10.  Canister cleaning system.
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Figure 11.  Canister analysis utilizing GC/MS/SCAN/SIM analytical system with optional flame ionization detector with
6-port chromatographic valve in the sample desorption mode.  

[Alternative analytical system illustrated in Figure 16.]
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Figure 12.  Example of humid zero air test results for a clean sample canister
(a) and a contaminated sample canister (b).
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Figure 13.  Diagram of design for internal standard addition.
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Figure 14.  Water method of standard preparation in canisters.
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Figure 15.  Diagram of the GC/MS analytical system.
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METHOD TO-13A

Determination of Polycyclic Aromatic Hydrocarbons (PAHs) 
in Ambient Air Using Gas Chromatography/Mass Spectrometry (GC/MS)

1.  Scope

1.1  Polycyclic aromatic hydrocarbons (PAHs) have received increased attention in recent years in air pollution
studies because some of these compounds are highly carcinogenic or mutagenic.  In particular, benzo[a]pyrene
(B[a]P) has been identified as being highly carcinogenic.  To understand the extent of human exposure to B[a]P
and other PAHs, reliable sampling and analytical methods are necessary.  This document describes a sampling
and analysis procedure for common PAHs involving the use of a combination of quartz filter and sorbent
cartridge with subsequent analysis by gas chromatography with mass spectrometry (GC/MS) detection.  The
analytical methods are modifications of EPA Test Method 610 and 625, Methods for Organic Chemical Analysis
of Municipal and Industrial Wastewater, and Methods 8000, 8270, and 8310, Test Methods for Evaluation of
Solid Waste.

1.2  Fluorescence methods were among the very first methods used for detection of B[a]P and other PAHs as
carcinogenic constituents of coal tar (1-7).  Fluorescence methods are capable of measuring subnanogram
quantities of PAHs, but tend to be fairly non-selective.  The normal spectra obtained are often intense and lack
resolution.  Efforts to overcome this difficulty led to the use of ultraviolet (UV) absorption spectroscopy (8) as
the detection method coupled with pre-speciated techniques involving liquid chromatography (LC) and thin layer
chromatography (TLC) to isolate specific PAHs, particularly B[a]P.  As with fluorescence spectroscopy, the
individual spectra for various PAHs are unique, although portions of spectra for different compounds may be the
same.  As with fluorescence techniques, the possibility of spectral overlap requires complete separation of sample
components to ensure accurate measurement of component levels.  Hence, the use of UV absorption coupled with
pre-speciation involving LC and TLC and fluorescence spectroscopy declined and was replaced with the more
sensitive high performance liquid chromatography (HPLC) with UV/fluorescence detection (9) or highly sensitive
and specific gas chromatography/mass spectrometry (GC/MS) for detection (10-11).

1.3  The choice of GC/MS as the recommended procedure for analysis of B[a]P and other PAHs was influenced
by its sensitivity and selectivity, along with its ability to analyze complex samples.

1.4  The analytical methodology has consequently been defined, but the sampling procedures can reduce the
validity of the analytical results.  Recent studies (12-17) have indicated that non-volatile PAHs (vapor pressure
<10  mm Hg) may be trapped on the filter, but post-collection volatilization problems may distribute the PAHs-8

downstream of the filter to the back-up sorbent.  A wide variety of sorbents such as Tenax®, XAD-2® and
polyurethane foam (PUF) have been used to sample common PAHs.  All sorbents have demonstrated high
collection efficiency for B[a]P in particular.  In general, XAD-2® resin has a higher collection efficiency (18-21)
for volatile PAHs than PUF, as well as a higher retention efficiency.  PUF cartridges, however, are easier to
handle in the field and maintain better flow characteristics during sampling.  Likewise, PUF has demonstrated
(22) its capability in sampling organochlorine pesticides, polychlorinated biphenyls (22), and polychlorinated
dibenzo-p-dioxins (23).  PUF also has demonstrated a lower recovery efficiency and storage capability for
naphthalene than XAD-2®.  There have been no significant losses of PAHs up to 30 days of storage at room
temperature (23EC) using XAD-2®.  It also appears that XAD-2® resin has a higher collection efficiency for
volatile PAHs than PUF, as well as a higher retention efficiency for both volatile and reactive PAHs.
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Consequently, while the literature cites weaknesses and strengths of using either XAD-2® or PUF, this method
includes the utilization of PUF as the primary sorbent.

1.5  This method includes the qualitative and quantitative analysis of the following PAHs (see Figure 1)
specifically by utilizing PUF as the sorbent followed by GC/MS analysis:

Acenaphthene (low collection efficiency; Coronene
see Section 6.1.3) Dibenz(a,h)anthracene

Acenaphthylene (low collection efficiency; Fluoranthene
see Section 6.1.3) Fluorene

Anthracene Benzo(b)fluoranthene
Benz(a)anthracene Indeno(1,2,3-cd)pyrene
Benzo(a)pyrene Naphthalene (low collection efficiency; 
Benzo(e)pyrene   see Section 6.1.3)
Benzo(g,h,i)perylene Phenanthrene
Benzo(k)fluoranthene Pyrene
Chrysene Perylene

The GC/MS method is applicable to the determination of PAHs compounds involving three
member rings or higher.  Naphthalene, acenaphthylene, and acenaphthene have only ~35 percent recovery when
using PUF as the sorbent.  Nitro-PAHs have not been fully evaluated using this procedure; therefore, they are
not included in this method.

1.6  With optimization to reagent purity and analytical conditions, the detection limits for the GC/MS method
range from 1 ng to 10 pg based on field experience.

2.  Summary of Method

2.1  Filters and sorbent cartridges (containing PUF or XAD-2®) are cleaned in solvents and vacuum dried.  The
filters and sorbent cartridges are stored in screw-capped jars wrapped in aluminum foil (or otherwise protected
from light) before careful installation on the sampler.

2.2  Approximately 300 m  of air is drawn through the filter and sorbent cartridge using a high-volume flow rate3

air sampler or equivalent.

2.3  The amount of air sampled through the filter and sorbent cartridge is recorded, and the filter and cartridge
are placed in an appropriately labeled container and shipped along with blank filter and sorbent cartridges to the
analytical laboratory for analysis.

2.4  The filters and sorbent cartridge are extracted by Soxhlet extraction with appropriate solvent.  The extract
is concentrated by Kuderna-Danish (K-D) evaporator, followed by silica gel cleanup using column
chromatography to remove potential interferences prior to analysis by GC/MS.

2.5  The eluent is further concentrated by K-D evaporation, then analyzed by GC/MS.  The analytical system is
verified to be operating properly and calibrated with five concentration calibration solutions.
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2.6  A preliminary analysis of the sample extract is performed to check the system performance and to ensure that
the samples are within the calibration range of the instrument.  If the preliminary analysis indicates non-
performance, then recalibrate the instrument, adjust the amount of the sample injected, adjust the calibration
solution concentration, and adjust the data processing system to reflect observed retention times, etc.

2.7  The samples and the blanks are analyzed and used (along with the amount of air sampled) to calculate the
concentration of PAHs in the air sample.

3.  Significance

3.1  As discussed in Section 1, several documents have been published that describe sampling and analytical
approaches for common PAHs.  The attractive features of these methods have been combined in this procedure.
Although this method has been validated in the laboratory, one must use caution when employing it for specific
applications.

3.2  Because of the relatively low levels of common PAHs in the environment, the methodology suggest the use
of high volume (0.22 m /min) sampling technique to acquire sufficient sample for analysis.  However, the3

volatility of certain PAHs prevents efficient collection on filter media alone.  Consequently, this method utilizes
both a filter and a backup sorbent cartridge, which provides for efficient collection of most PAHs involving three
member rings or higher.

4.  Applicable Documents

4.1  ASTM Standards

• Method D1356 Definitions of Terms Relating to Atmospheric Sampling and Analysis.
• Method 4861-94 Standard Practice for Sampling and Analysis of Pesticides and Polychlorinated

Biphenyl in Air
• Method E260 Recommended Practice for General Gas Chromatography Procedures.
• Method E355 Practice for Gas Chromatography Terms and Relationships.
• Method E682 Practice for Liquid Chromatography Terms and Relationships.

4.2  EPA Documents

• Technical Assistance Document for Sampling and Analysis of Toxic Organic Compounds in Ambient
Air, U. S. Environmental Protection Agency, EPA-600/4-83-027, June 1983.

• Quality Assurance Handbook for Air Pollution Measurement Systems, U. S. Environmental Protection
Agency, EPA-600/R-94-038b, May 1994.

• Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air:
Method TO-13, Second Supplement, U. S. Environmental Protection Agency, EPA-600/-4-89-018,
March 1989.
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4.3  Other Documents

• Existing Procedures (24-32).
• Ambient Air Studies (33-50).
• General Metal Works, Inc., "Operating Procedures for Model PS-1 Sampler," Village of Cleves, OH

45002 (800-543-7412).
• Illinois Environmental Protection Agency, Division of Air Quality, "Chicago Air Quality:  PCB Air

Monitoring Plan (Phase 2)," Chicago, IL, IEAP/APC/86/011, April 1986.
• Thermo Environmental, Inc. (formerly Wedding and Associates), "Operating Procedures for the Thermo

Environmental Semi-Volatile Sampler," 8 West Forge Parkway, Franklin, MA 02038 (508-520-0430).
• American Chemical Society (ACS), "Sampling for Organic Chemicals in Air," ACS Professional Book,

ACS, Washington, D.C., 1996.
• International Organization for Standardization (ISO), "Determination of Gas and Particle-Phase

Polynuclear Aromatic Hydrocarbons in Ambient Air - Collected on Sorbent-Backed Filters with Gas
Chromatographic/Mass Spectrometric Analysis," ISO/TC 146/SC 3/WG 17N, Case Postale 56,
CH-1211, Genève 20, Switzerland.

5.  Definitions

[Note:  Definitions used in this document and in any user-prepared standard operating procedures (SOPs)
should be consistent with ASTM Methods D1356, E260, and E255.  All abbreviations and symbols are defined
within this document at point of use.]

5.1  Retention time (RT)-time to elute a specific chemical from a chromatographic column.  For a specific carrier
gas flow rate, RT is measured from the time the chemical is injected into the gas stream until it appears at the
detector.

5.2  Sampling efficiency (SE)-ability of the sampler to trap and retain PAHs.  The %SE is the percentage of the
analyte of interest collected and retained by the sampling medium when it is introduced into the air sampler and
the sampler is operated under normal conditions for a period of time equal to or greater than that required for the
intended use.

5.3  Dynamic retention efficiency-ability of the sampling medium to retain a given PAH that has been added
to the sorbent trap in a spiking solution when air is drawn through the sampler under normal conditions for a
period of time equal to or greater than that required for the intended use.

5.4  Polycyclic aromatic hydrocarbons (PAHs)-two or more fused aromatic rings.

5.5  Method detection limit (MDL)-the minimum concentration of a substance that can be measured and
reported with confidence and that the value is above zero.

5.6  Kuderna-Danish apparatus-the Kuderna-Danish (K-D) apparatus is a system for concentrating materials
dissolved in volatile solvents.

5.7  MS-SCAN-the GC is coupled to a mass spectrometer where the instrument is programmed to acquire all ion
data.  
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5.8  Sublimation-the direct passage of a substance from the solid state to the gaseous state and back into the
solid form without at any time appearing in the liquid state.  Also applied to the conversion of solid to vapor
without the later return to solid state, and to a conversion directly from the vapor phase to the solid state.

5.9  Surrogate standard-a chemically inert compound (not expected to occur in the environmental sample) that
is added to each sample, blank, and matrix-spiked sample before extraction and analysis.  The recovery of the
surrogate standard is used to monitor unusual matrix effects, gross sample processing errors, etc.  Surrogate
recovery is evaluated for acceptance by determining whether the measured concentration falls within acceptable
limits.

5.10  CAL-calibration standards are defined as five levels of calibration: CAL 1, CAL 2, CAL 3, CAL 4, and
CAL 5.  CAL 1 is the lowest concentration and CAL 5 is the highest concentration.  CAL 3, which is the mid-
level standard, is designated as the solution to be used for continuing calibrations.

5.11  Continuing calibration check-a solution of method analytes used to evaluate the mass spectrometer
response over a period of time.  A continuing calibration check (CCC) is performed once each 12-hour period.
The CCC solution (CAL 3) is the standard of the calibration curve. 

5.12  GC Response (A )-the peak area or height of analyte, x.x

5.13  Internal standard (IS)-a compound added to a sample extract in known amounts and used to calibrate
concentration measurements of other compounds that are sample components.  The internal standard must be a
compound that is not a sample component.

6.  Limitations and Interferences

6.1  Limitations

6.1.1  PAHs span a broad spectrum of vapor pressures (e.g., from 1.1 x 10  kPa for naphthalene to 2 x-2

10  kPa for coronene at 25EC).  PAHs that are frequently found in ambient air are listed in Table 1.  Those with-13

vapor pressures above approximately 10  kPa will be present in the ambient air substantially distributed between-8

the gas and particulate phases.  This method will permit the collection of both phases.
6.1.2  Particulate-phase PAHs will tend to be lost from the particle filter during sampling due to

volatilization.  Therefore, separate analysis of the filter will not reflect the concentrations of the PAHs originally
associated with particles, nor will analysis of the sorbent provide an accurate measure of the gas phase.
Consequently, this method calls for extraction of the filter and sorbent together to permit accurate measurement
of total PAH air concentrations.

6.1.3  Naphthalene, acenaphthylene, and acenaphthene possess relatively high vapor pressures and may
not be efficiently trapped by this method when using PUF as the sorbent.  The sampling efficiency for
naphthalene has been determined to be about 35 percent for PUF.  The user is encouraged to use XAD-2® as the
sorbent if these analytes are part of the target compound list (TCL).

6.2  Interferences
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6.2.1  Method interferences may be caused by contaminants in solvents, reagents, glassware, and other
sample processing hardware that result in discrete artifacts and/or elevated baselines in the detector profiles.  All
of these materials must be routinely demonstrated to be free from interferences under the conditions of the
analysis by running laboratory reagent blanks.

6.2.2  Glassware must be scrupulously cleaned (51).  All glassware should be cleaned as soon as possible
after use by rinsing with the last solvent used in it and then high-purity acetone and hexane.  These rinses should
be followed by detergent washing with hot water and rinsing with copious amounts of tap water and several
portions of reagent water.  The glassware should then be drained dry and heated in a muffle furnace at 400 C foro

four hours.  Volumetric glassware must not be heated in a muffle furnace; rather it should be solvent rinsed with
acetone and spectrographic grade hexane.  After drying and rinsing, glassware should be sealed and stored in a
clean environment to prevent any accumulation of dust or other contaminants.  Glassware should be stored
inverted or capped with aluminum foil.

[Note:  The glassware may be further cleaned by placing in a muffle furnace at 450EC for 8 hours to remove
trace organics.]

6.2.3  The use of high purity water, reagents, and solvents helps to minimize interference problems.
Purification of solvents by distillation in all-glass systems may be required.

6.2.4  Matrix interferences may be caused by contaminants that are coextracted from the sample. Additional
clean-up by column chromatography may be required (see Section 12.3).

6.2.5  During sample transport and analysis, heat, ozone, NO , and ultraviolet (UV) light may cause sample2

degradation.  Incandescent or UV-shielded fluorescent lighting in the laboratory should be used during analysis.
6.2.6  The extent of interferences that may be encountered using GC/MS techniques has not been fully

assessed.  Although GC conditions described allow for unique resolution of the specific PAH compounds covered
by this method, other PAH compounds may interfere.  The use of column chromatography for sample clean-up
prior to GC analysis will eliminate most of these interferences.  The analytical system must, however, be routinely
demonstrated to be free of internal contaminants such as contaminated solvents, glassware, or other reagents
which may lead to method interferences.  A laboratory reagent blank should be analyzed for each reagent used
to determine if reagents are contaminant-free.

6.2.7  Concern about sample degradation during sample transport and analysis was mentioned above.  Heat,
ozone, NO , and ultraviolet (UV) light also may cause sample degradation.  These problems should be addressed2

as part of the user-prepared standard operating procedure (SOP) manual.  Where possible, incandescent or UV-
shielded fluorescent lighting should be used during analysis.  During transport, field samples should be shipped
back to the laboratory chilled (~4EC) using blue ice/dry ice.

7.  Safety

7.1  The toxicity or carcinogenicity of each reagent used in this method has not been precisely defined;  however,
each chemical compound should be treated as a potential health hazard.  From this viewpoint, exposure to these
chemicals must be reduced to the lowest possible level by whatever means available.  The laboratory is
responsible for maintaining a current awareness file of Occupational Safety and Health Administration (OSHA)
regulations regarding the safe handling of the chemicals specified in this method.  A reference file of material
safety data sheets (MSDSs) should also be made available to all personnel involved in the chemical analysis.
Additional references to laboratory safety are available and are included in the reference list (52-54).
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7.2  B[a]P has been tentatively classified as a known or suspected, human or mammalian carcinogen.  Many of
the other PAHs have been classified as carcinogens.  Care must be exercised when working with these substances.
This method does not purport to address all of the safety problems associated with its use.  It is the responsibility
of whomever uses this method to consult and establish appropriate safety and health practices and determine the
applicability of regulatory limitations prior to use.  The user should be thoroughly familiar with the chemical and
physical properties of targeted substances (see Table 1 and Figure 1).

7.3  All PAHs should be treated as carcinogens.  Neat compounds should be weighed in a glove box.  Spent
samples and unused standards are toxic waste and should be disposed according to regulations.  Counter tops and
equipment should be regularly checked with "black light" for fluorescence as an indicator of contamination.

7.4  The sampling configuration (filter and backup sorbent) and collection efficiency for target PAHs has been
demonstrated to be greater than 95 percent (except for naphthalene, acenaphthylene and acenaphthene).
Therefore, no field recovery evaluation will be required as part of this procedure.

[Note:  Naphthalene, acenaphthylene and acenaphthene have demonstrated significant breakthrough using
PUF cartridges, especially at summer ambient temperatures.  If naphthalene, acenaphthylene and
acenaphthene are target PAHs, the user may want to consider replacing the PUF with XAD-2® in order to
minimize breakthrough during sampling.]

8.  Apparatus

[Note:  This method was developed using the PS-1 semi-volatile sampler provided by General Metal Works,
Village of Cleves, OH as a guideline.  EPA has experience in the use of this equipment during various field-
monitoring programs over the last several years.  Other manufacturers' equipment should work as well;
however, modifications to these procedures may be necessary if another commercially available sampler is
selected.]

8.1  Sampling

8.1.1  High-volume sampler (see Figure 2).  Capable of pulling ambient air through the filter/sorbent
cartridge at a flow rate of approximately 8 standard cubic feet per minute (scfm) (0.225 std m /min) to obtain3

a total sample volume of greater than 300 m  over a 24-hour period.  Major manufacturers are:3

• Tisch Environmental, Village of Cleves, OH 
• Andersen Instruments Inc., 500 Technology Ct., Smyrna, GA
• Thermo Environmental Instruments, Inc., 8 West Forge Parkway, Franklin, MA

Recent EPA studies have concluded that sample volumes less than 300 m  still collect enough PAHs on3

the filter/PUF for quantitation.  The user is encouraged to investigate appropriate sample volume needed to meet
project specific data quality objectives.

8.1.2  Sampling module (see Figure 3).  Metal filter holder (Part 2) capable of holding a 102-mm circular
particle filter supported by a 16-mesh stainless-steel screen and attaching to a metal cylinder (Part 1) capable of
holding a 65-mm O.D. (60-mm I.D.) x 125-mm borosilicate glass sorbent cartridge containing PUF or XAD-2®.
The filter holder is equipped with inert sealing gaskets (e.g., polytetrafluorethylene) placed on either side of the
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filter.  Likewise, inert, pliable gaskets (e.g., silicone rubber) are used to provide an air-tight seal at each end of
the glass sorbent cartridge.  The glass sorbent cartridge is indented 20 mm from the lower end to provide a
support for a 16-mesh stainless-steel screen that holds the sorbent.  The glass sorbent cartridge fits into Part 1,
which is screwed onto Part 2 until the sorbent cartridge is sealed between the silicone gaskets.  Major
manufacturers are:

• Tisch Environmental, Village of Cleves, OH
• Andersen Instruments Inc., 500 Technology Ct., Smyrna, GA
• Thermo Environmental Instruments, Inc., 8 West Forge Parkway, Franklin, MA

8.1.3  High-volume sampler calibrator.  Capable of providing multipoint resistance for the high-volume
sampler.  Major manufacturers are:

• Tisch Environmental, Village of Cleves, OH
• Andersen Instruments Inc., 500 Technology Ct., Smyrna, GA
• Thermo Environmental Instruments, Inc., 8 West Forge Parkway, Franklin, MA

8.1.4  Ice chest.  To hold samples at 4EC or below during shipment to the laboratory after collection.
8.1.5  Data sheets.  Used for each sample to record the location and sample time, duration of sample,

starting time, and volume of air sampled.

8.2  Sample Clean-Up and Concentration (see Figure 4).

8.2.1  Soxhlet apparatus extractor (see Figure 4a).  Capable of extracting filter and sorbent cartridges
(5.75-cm x 12.5-cm length), 1,000 mL flask, and condenser, best source.

8.2.2  Pyrex glass tube furnace system.  For activating silica gel at 180EC under purified nitrogen gas
purge for an hour, with capability of raising temperature gradually, best source.

8.2.3  Glass vial.  40 mL, best source.
8.2.4  Erlenmeyer flask.  50 mL, best source.

[Note:  Reuse of glassware should be minimized to avoid the risk of cross contamination.  All glassware that
is used must be scrupulously cleaned as soon as possible after use.  Rinse glassware with the last solvent used
in it and then with high-purity acetone and hexane.  Wash with hot water containing detergent.  Rinse with
copious amounts of tap water and several portions of distilled water.  Drain, dry, and heat in a muffle furnace
at 400EC for 4 hours.  Volumetric glassware must not be heated in a muffle furnace; rather, it should be
rinsed with high-purity acetone and hexane.  After the glassware is dry and cool, rinse it with hexane, and
store it inverted or capped with solvent-rinsed aluminum foil in a clean environment.]

8.2.5  White cotton gloves.  For handling cartridges and filters, best source.
8.2.6  Minivials.  2 mL, borosilicate glass, with conical reservoir and screw caps lined with Teflon®-faced

silicone disks, and a vial holder, best source.
8.2.7  Teflon®-coated stainless steel spatulas and spoons.  Best source.
8.2.8  Kuderna-Danish (K-D) apparatus (see Figure 4b).  500 mL evaporation flask (Kontes K-570001-

500 or equivalent), 10 mL graduated concentrator tubes (Kontes K570050-1025 or equivalent) with ground-glass
stoppers, 1 mL calibrated K-D concentration tubes, and 3-ball macro Snyder Column (Kontes K-570010500, K-
50300-0121, and K-569001-219, or equivalent), best source.

8.2.9  Adsorption column for column chromatography (see Figure 4c).  1-cm x 10-cm with stands.
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8.2.10  Glove box.  For working with extremely toxic standards and reagents with explosion-proof hood
for venting fumes from solvents, reagents, etc.

8.2.11  Vacuum oven.  Vacuum drying oven system capable of maintaining a vacuum at 240 torr (flushed
with nitrogen) overnight.

8.2.12  Concentrator tubes and a nitrogen evaporation apparatus with variable flow rate.  Best
source.

8.2.13  Laboratory refrigerator.  Best source.
8.2.14  Boiling chips.  Solvent extracted, 10/40 mesh silicon carbide or equivalent, best source.
8.2.15  Water bath.  Heated, with concentric ring cover, capable of ±5EC temperature control, best source.
8.2.16  Nitrogen evaporation apparatus.  Best source.
8.2.17  Glass wool.  High grade, best source.

8.3  Sample Analysis

8.3.1  Gas Chromatography with Mass Spectrometry Detection Coupled with Data Processing
System (GC/MS/DS).  The gas chromatograph must be equipped for temperature programming, and all required
accessories must be available, including syringes, gases, and a capillary column.  The gas chromatograph injection
port must be designed for capillary columns.  The use of splitless injection techniques is recommended. On-
column injection techniques can be used, but they may severely reduce column lifetime for nonchemically bonded
columns.  In this protocol, a 2 µL injection volume is used consistently to maximize auto sampler reproducibility.
With some gas chromatograph injection ports, however, 1 µL injections may produce some improvement in
precision and chromatographic separation.  A 1 µL  injection volume may be used if adequate sensitivity and
precision can be achieved.

[Note:  If 1 µL is used as the injection volume, the injection volumes for all extracts, blanks, calibration
solutions and performance check samples must be 1 µL.]

All GC carrier gas lines must be constructed from stainless steel or copper tubing.  Poly-tetrafluoroethylene
(PTFE) thread sealants or flow controllers should only be used.

8.3.2  Gas chromatograph-mass spectrometer interface. The GC is usually coupled directly to the MS
source.  The interface may include a diverter valve for shunting the column effluent and isolating the mass
spectrometer source.  All components of the interface should be glass or glass-lined stainless steel.  Glass can
be deactivated by silanizing with dichorodimethylsilane.  The interface components should be compatible with
320EC temperatures.  Cold spots and/or active surfaces (adsorption sites) in the GC/MS interface can cause peak
tailing and peak broadening.  It is recommended that the GC column be fitted directly into the MS source.
Graphite ferrules should be avoided in the gas chromatograph injection area since they may adsorb PAHs.
Vespel® or equivalent ferrules are recommended.

8.3.3  Mass spectrometer.  The MS should be operated in the full range data acquisition (SCAN) mode
with a total cycle time (including voltage reset time) of one second or less (see Section 13.3.2).  Operation of the
MS in the SCAN mode allows monitoring of all ions, thus assisting with the identification of other PAHs beyond
Compendium Method TO-13A target analyte list.  In addition, operating in the SCAN mode assists the analyst
with identification of possible interferences from non-target analytes due to accessibility of the complete mass
spectrum in the investigative process.  The MS must be capable of scanning from 35 to 500 amu every 1 sec or
less, using 70 volts (nominal) electron energy in the electron impact (EI) ionization mode.  The mass spectrometer
must be capable of producing a mass spectrum for a 50 ng injection of decafluorotriphyenyl phosphine (DFTPP)
which meets all of the response criteria (see Section 13.3.3).  To ensure sufficient precision of mass spectral data,
the MS scan rate must allow acquisition of at least five scans while a sample compound elutes from the GC.  The
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GC/MS system must be in a room with atmosphere demonstrated to be free of all potential contaminants which
will interfere with the analysis.  The instrument must be vented outside the facility or to a trapping system which
prevents the release of contaminants into the instrument room.

8.3.4  Data system.  A dedicated computer data system is employed to control the rapid multiple ion
monitoring process and to acquire the data.  Quantification data (peak areas or peak heights) and multi-ion
detector (MID) traces (displays of intensities of each m/z being monitored as a function of time) must be acquired
during the analyses.  Quantifications may be reported based upon computer generated peak areas or upon
measured peak heights (chart recording).  The detector zero setting must allow peak-to-peak measurement of the
noise on the baseline.  The computer should have software that allows searching the GC/MS data file for ions
of a specific mass and plotting such ion abundances versus time or scan number.  This type of plot is defined as
Selected Ion Current Profile (SICP).  The software used must allow integrating the abundance in any SICP
between specified time or scan number limits.  The data system should be capable of flagging all data files that
have been edited manually by laboratory personnel.

8.3.5  Gas chromatograph column.  A fused silica DB-5 column (30 m x 0.32 mm I.D.) crosslinked
5 percent phenyl methylsilicone, 1.0 µm film thickness is utilized to separate individual PAHs.  Other columns
may be used for determination of PAHs.  Minimum acceptance criteria must be determined as per Section 13.3.
At the beginning of each 12-hour period (after mass resolution has been demonstrated) during which sample
extracts or concentration calibration solutions will be analyzed, column operating conditions must be attained
for the required separation on the column to be used for samples.

8.3.6  Balance.  Mettler balance or equivalent.
8.3.7  All required syringes, gases, and other pertinent supplies.  To operate the GC/MS system.
8.3.8  Pipettes, micropipettes, syringes, burets, etc.  Used to make calibration and spiking solutions,

dilute samples if necessary, etc., including syringes for accurately measuring volumes such as 25 µL and 100 µL.

9.  Equipment and Materials

9.1  Materials for Sample Collection (see Figure 3)

9.1.1  Quartz fiber filter.  102 millimeter binderless quartz microfiber filter, Whatman Inc., 6 Just Road,
Fairfield, NJ 07004, Filter Type QMA-4.

9.1.2  Polyurethane foam (PUF) plugs (see Figure 5a).  3-inch thick sheet stock polyurethane type
(density .022 g/cm ).  The PUF should be of the polyether type used for furniture upholstery, pillows, and3

mattresses.  The PUF cylinders (plugs) should be slightly larger in diameter than the internal diameter of the
cartridge.  Sources of equipment are Tisch Environmental, Village of Cleves, OH; University Research
Glassware, 116 S. Merritt Mill Road, Chapel Hill, NC; Thermo Environmental Instruments, Inc., 8 West Forge
Parkway, Franklin, MA; Supelco, Supelco Park, Bellefonte, PA; and SKC Inc., 334 Valley View Road, Eighty
Four, PA.

9.1.3  XAD-2® resin (optional).  Supelco, Supelco Park, Bellefonte, PA.
9.1.4  Teflon® end caps (see Figure 5a).  For sample cartridge; sources of equipment are Tisch

Environmental, Village of Cleves, OH; and University Research Glassware, 116 S. Merritt Mill Road, Chapel
Hill, NC.

9.1.5  Sample cartridge aluminum shipping containers (see Figure 5b).  For sample cartridge shipping;
sources of equipment are Tisch Environmental, Village of Cleves, OH; and University Research Glassware, 116
S. Merritt Mill Road, Chapel Hill, NC.
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9.1.6  Glass sample cartridge (see Figure 5a).  For sample collection; sources of equipment are Tisch
Environmental, Village of Cleves, OH; Thermo Environmental Instruments, Inc., 8 West Forge Parkway,
Franklin, MA; and University Research Glassware, 116 S. Merritt Mill Road, Chapel Hill, NC.

9.1.7  Aluminum foil.  Best source.
9.1.8  Hexane, reagent grade.  Best source.

9.2  Sample Clean-up and Concentration

9.2.1  Methylene chloride (extraction solvent for XAD-2®; optional).  Chromatographic grade, glass-
distilled, best source.

9.2.2  Sodium sulfate-anhydrous (ACS).  Granular (purified by washing with methylene chloride followed
by heating at 400EC for 4 hours in a shallow tray).

9.2.3  Boiling chips.  Solvent extracted or heated in a muffle furnace at 450EC for 2 hours, approximately
10/40 mesh (silicon carbide or equivalent).

9.2.4  Nitrogen.  High purity grade, best source.
9.2.5  Hexane.  Chromatographic grade, glass-distilled, best source (extraction solvent for PUF).
9.2.6  Glass wool.  Silanized, extracted with methylene chloride and hexane, and dried.
9.2.7  Diethyl ether.  High purity, glass distilled (extraction solvent for PUF).
9.2.8  Pentane.  High purity, glass distilled.
9.2.9  Silica gel.  High purity, type 60, 70-230 mesh.

9.3  GC/MS Sample Analysis

9.3.1  Gas cylinder of helium.  Ultra high purity, best source.
9.3.2  Chromatographic-grade stainless steel tubing and stainless steel fitting.  For interconnections,

Alltech Applied Science, 2051 Waukegan Road, Deerfield, IL 60015, 312-948-8600, or equivalent.

[Note:  All such materials in contact with the sample, analyte, or support gases prior to analysis should be
stainless steel or other inert metal.  Do not use plastic or Teflon® tubing or fittings.]

9.3.3  Native and isotopically labeled PAH isomers for calibration and spiking standards.  Cambridge
Isotopes, 20 Commerce Way, Woburn, MA 01801 (617-547-1818).  Suggested isotopically labeled PAH isomers
are:  D -fluoranthene, D -benzo(a)pyrene, D -fluorene, D -pyrene, D -perylene, D -acenaphthene,10 12 10 10 12 10

D -chrysene, D -naphthalene and D -phenanthrene.12 8 10

9.3.4  Decafluorotriphenylphosphine (DFTPP).  Used for tuning GC/MS, best source.
9.3.5  Native stock pure standard PAH analytes.  For developing calibration curve for GC/MS analysis,

best source.

10.  Preparation of PUF Sampling Cartridge

[Note:  This method was developed using the PS-1 sample cartridge provider by General Metal Works, Village
of Cleves, OH as a guideline.  EPA has experience in use of this equipment during various field monitoring
program over the last several years.  Other manufacturers' equipment should work as well; however,
modifications to these procedures may be necessary if another commercially available sampler is selected.]
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10.1  Summary of Method

10.1.1  This part of the procedure discusses pertinent information regarding the preparation and cleaning
of the filter, sorbent, and filter/sorbent cartridge assembly.  The separate batches of filters and sorbents are
extracted with the appropriate solvent.  

10.1.2  At least one PUF cartridge assembly and one filter from each batch, or 10 percent of the batch,
whichever is greater, should be tested and certified before the batch is considered for field use. 

10.1.3  Prior to sampling, the cartridges are spiked with field surrogate compounds.

10.2  Preparation of Sampling Cartridge

10.2.1  Bake the Whatman QMA-4 quartz filters at 400EC for 5 hours before use.
10.2.2  Set aside the filters in a clean container for shipment to the field or prior to combining with the PUF

glass cartridge assembly for certification prior to field deployment.
10.2.3  The PUF plugs are 6.0-cm diameter cylindrical plugs cut from 3-inch sheet stock and should fit,

with slight compression, in the glass cartridge, supported by the wire screen (see Figure 5a).  During cutting,
rotate the die at high speed (e.g., in a drill press) and continuously lubricate with deionized or distilled water.  Pre-
cleaned PUF plugs can be obtained from commercial sources (see Section 9.1.2).

10.2.4  For initial cleanup, place the PUF plugs in a Soxhlet apparatus and extract with acetone for
16 hours at approximately 4 cycles per hour.  When cartridges are reused, use diethyl ether/hexane (5 to
10 percent volume/volume [v/v]) as the cleanup solvent.

[Note:  A modified PUF cleanup procedure can be used to remove unknown interference components of the
PUF blank.  This method consists of rinsing 50 times with toluene, acetone, and diethyl ether/hexane (5 to
10 percent v/v), followed by Soxhlet extraction.  The extracted PUF is placed in a vacuum oven connected to
a water aspirator and dried at room temperature for approximately 2 to 4 hours (until no solvent odor is
detected).  The extract from the Soxhlet extraction procedure from each batch may be analyzed to determine
initial cleanliness prior to certification.]

10.2.5  If using XAD-2® in the cartridge, initial cleanup of the resin is performed by placing approximately
50-60 grams in a Soxhlet apparatus and extracting with methylene chloride for 16 hours at approximately 4
cycles per hour.  At the end of the initial Soxhlet extraction, the spent methylene chloride is discarded and
replaced with a fresh reagent.  The XAD-2® resin is once again extracted for 16 hours at approximately 4 cycles
per hour.  The XAD-2® resin is removed from the Soxhlet apparatus, placed in a vacuum oven connected to an
ultra-pure nitrogen gas stream, and dried at room temperature for approximately 2-4 hours (until no solvent odor
is detected).

10.2.6  Fit a nickel or stainless steel screen (mesh size 200/200) to the bottom of a hexane-rinsed glass
sampling cartridge to retain the PUF or XAD-2® sorbents, as illustrated in Figure 5a.  If using XAD-2® alone,
then place a small diameter (~1/4") PUF plug on top of the nickel or stainless steel screen to retain the XAD-2®
in the glass cartridge.  Place the Soxhlet-extracted, vacuum-dried PUF (2.5-cm thick by 6.5-cm diameter) on top
of the screen in the glass sampling cartridge using polyester gloves.  Place ~200 g of the clean XAD-2® inside
the glass sampling cartridge on top of the small diameter PUF plug.

10.2.7  Wrap the sampling cartridge with hexane-rinsed aluminum foil, cap with the Teflon® end caps
(optional), place in a cleaned labeled aluminum shipping container, and seal with Teflon® tape.  Analyze at least
1 cartridge from each batch of cartridges prepared using the procedure described in Section 10.3, before the batch
is considered acceptable for field use.  
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The acceptance level of the cartridge is for each target PAH analyte to be less than or equal to the detection
limit requirements to meet the project data quality objectives.  It is generally not possible to eliminate the presence
of naphthalene, but the amount detected on the cleaned PUF cartridge should be less than five times the
concentration of the lowest calibration standard (~500 ng).  This amount is insignificant compared to the amount
collected from a typical air sample.  

In general, the following guidelines are provided in determining whether a cartridge is clean for field use:

• Naphthalene <500 ng/cartridge
• Other PAHs <200 ng total/cartridge

10.3  Procedure for Certification of PUF Cartridge Assembly

[Note:  The following procedure outlines the certification of a filter and PUF cartridge assembly.  If using
XAD-2® as the sorbent, the procedure remains the same, except the solvent is methylene chloride rather than
10 percent diethyl ether/hexane.]

10.3.1  Extract one filter and PUF sorbent cartridge by Soxhlet extraction and concentrate using a K-D
evaporator for each lot of filters and cartridges sent to the field.

10.3.2  Assemble the Soxhlet apparatus.  Charge the Soxhlet apparatus (see Figure 4a) with 700 mL of
the extraction solvent (10 percent v/v diethyl ether/hexane) and reflux for 2 hours.  Let the apparatus cool,
disassemble it, and discard the used extraction solvent.  Transfer the filter and PUF glass cartridge to the Soxhlet
apparatus (the use of an extraction thimble is optional).

[Note:  The filter and sorbent assembly are tested together in order to reach detection limits, to minimize cost
and to prevent misinterpretation of the data.  Separate analyses of the filter and PUF would not yield useful
information about the physical state of most of the PAHs at the time of sampling due to evaporative losses
from the filter during sampling.]

10.3.3  Add between 300 and 350 mL of diethyl ether/hexane (10 percent v/v) to the Soxhlet apparatus.
Reflux the sample for 18 hours at a rate of at least 3 cycles per hour.  Allow to cool, then disassemble the
apparatus.

10.3.4  Assemble a K-D concentrator (see Figure 4b) by attaching a 10-mL concentrator tube to a 500-mL
evaporative flask.

10.3.5  Transfer the extract by pouring it through a drying column containing about 10 cm of anhydrous
granular sodium sulfate (see Figure 4c) and collect the extract in the K-D concentrator.  Rinse the Erlenmeyer
flask and column with 20 to 30 mL of 10 percent diethyl ether/hexane to complete the quantitative transfer.

10.3.6  Add one or two clean boiling chips and attach a 3-ball Snyder column to the evaporative flask.  Pre-
wet the Snyder column by adding about 1 mL of the extraction solvent to the top of the column.  Place the K-D
apparatus on a hot water bath (~50EC) so that the concentrator tube is partially immersed in the hot water, and
the entire lower rounded surface of the flask is bathed with hot vapor.  Adjust the vertical position of the
apparatus and the water temperature as required to complete the concentration in 1 hour.  At the proper rate of
distillation, the balls of the column will actively chatter, but the chambers will not flood with condensed solvent.
When the apparent volume of liquid reaches approximately 5 mL, remove the K-D apparatus from the water bath
and allow it to drain and cool for at least 5 minutes.  Remove the Snyder column and rinse the flask and its lower
joint into the concentrator tube with 5 mL of cyclohexane.  A 1-mL syringe is recommended for this operation.

10.3.7  Concentrate the extract to 5 mL and analyze using GC/MS.
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10.3.8  The acceptance level of the cartridge is for each target PAH analyte to be less than or equal to the
detection limit requirements to meet the project data qulity objectives.  It is generally not possible to eliminate
the presence of naphthalene, but the amount detected on the cleaned PUF cartridge should be less than five times
the concentration of the lowest calibration standard (~500 ng).  This amount is insignificant compared to the
amount collected from a typical air sample.  

In general, the following guidelines are provided in determining whether a cartridge is clean for field use:

• Naphthalene <500 ng/cartridge
• Other PAHs <200 ng total/cartridge

Cartridges are considered clean for up to 30 days from date of certification when sealed in their containers.

10.4  Deployment of Cartridges for Field Sampling

10.4.1  Immediately prior to field deployment, add surrogate compounds (i.e., chemically inert compounds
not expected to occur in an environmental sample) to the center of the PUF cartridge, using a microsyringe.  Spike
20 FL of a 50 Fg/mL solution of the surrogates onto the center bed of the PUF trap to yield a final concentration
of 1 Fg.  The surrogate compounds must be added to each cartridge assembly.  The following field surrogate
compounds should be added to each PUF cartridge prior to field deployment to monitor matrix effects,
breakthrough, etc.

Field Surrogate Compound Total Spiked Amount (µg)

D -Fluoranthene 110

D -Benzo(a)pyrene 112

Fill out a "chain-of-custody" indicating cartridge number, surrogate concentration, date of cartridge certification,
etc.  The chain-of-custody must accompany the cartridge to the field and return to the laboratory.

10.4.2  Use the recoveries of the surrogate compounds to monitor for unusual matrix effects and gross sample
processing errors.  Evaluate surrogate recovery for acceptance by determining whether the measured concentration
falls within the acceptance limits of 60-120 percent.

10.4.3  Cartridges are placed in their shipping containers and shipped to the field.  Blank cartridges do not
need to be chilled when shipping to the field until after exposure to ambient air.

11.  Assembly, Calibration, and Collection Using Sampling System

[Note:  This method was developed using the PS-1 semi-volatile sampler provided by General Metal Works,
Village of Cleves, OH as a guideline.  EPA has experience in the use of this equipment during various field
monitoring programs over the last several years.  Other manufacturers' equipment should work as well;
however, modifications to these procedures may be necessary if another commercially available sampler is
selected.] 
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11.1  Sampling Apparatus

The entire sampling system is diagrammed in Figure 2.  This apparatus was developed to operate at a rate of 4
to 10 scfm (0.114 to 0.285 std m /min) and is used by EPA for high-volume sampling of ambient air.  The3

method write-up presents the use of this device.

The sampling module (see Figure 3) consists of a filter and a glass sampling cartridge containing the PUF utilized
to concentrate PAHs from the air.  A field portable unit has been developed by EPA (see Figure 6).

11.2  Calibration of Sampling System

Each sampler should be calibrated (1) when new, (2) after major repairs or maintenance, (3) whenever any audit
point deviates from the calibration curve by more than 7 percent, (4) before/after each sampling event, and
(5) when a different sample collection medium, other than that which the sampler was originally calibrated to,
will be used for sampling.

11.2.1  Calibration of Orifice Transfer Standard.  Calibrate the modified high volume air sampler in the field
using a calibrated orifice flow rate transfer standard.  Certify the orifice transfer standard in the laboratory against
a positive displacement rootsmeter (see Figure 7).  Once certified, the recertification is performed rather
infrequently if the orifice is protected from damage.  Recertify the orifice transfer standard performed once per
year utilizing a set of five multi-hole resistance plates.  

[Note:  The set of five multihole resistance plates is used to change the flow through the orifice so that several
points can be obtained for the orifice calibration curve.  The following procedure outlines the steps to
calibrate the orifice transfer standard in the laboratory.]

11.2.1.1  Record the room temperature (T  in EC) and barometric pressure (P  in mm Hg) on the Orifice1 b

Calibration Data Sheet (see Figure 8).  Calculate the room temperature in K (absolute temperature) and record
on Orifice Calibration Data Sheet.

T  in K = 273E + T  in EC1 1

11.2.1.2  Set up laboratory orifice calibration equipment as illustrated in Figure 7.  Check the oil level of
the rootsmeter prior to starting.  There are three oil level indicators, one at the clear plastic end, and two sight
glasses, one at each end of the measuring chamber.

11.2.1.3  Check for leaks by clamping both manometer lines, blocking the orifice with cellophane tape,
turning on the high-volume motor, and noting any change in the rootsmeter's reading.  If the rootsmeter's reading
changes, there is a leak in the system.  Eliminate the leak before proceeding.  If the rootsmeter's reading remains
constant, turn off the hi-vol motor, remove the cellophane tape, and unclamp both manometer lines.

11.2.1.4  Install the 5-hole resistance plate between the orifice and the filter adapter.
11.2.1.5  Turn manometer tubing connectors one turn counter-clockwise.  Make sure all connectors are

open.
11.2.1.6  Adjust both manometer midpoints by sliding their movable scales until the zero point corresponds

with the meniscus.  Gently shake or tap to remove any air bubbles and/or liquid remaining on tubing connectors.
(If additional liquid is required for the water manometer, remove tubing connector and add clean water.)

11.2.1.7  Turn on the high-volume motor and let it run for 5 minutes to set the motor brushes.  Turn the
motor off.  Ensure manometers are set to zero.  Turn the high-volume motor on.
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11.2.1.8  Record the time in minutes required to pass a known volume of air (approximately 5.6 to 8.4 m3

of air for each resistance plate) through the rootsmeter by using the rootsmeter's digital volume dial and a
stopwatch.

11.2.1.9  Record both manometer readings [orifice water manometer (ªH) and rootsmeter mercury
manometer (ªP)] on Orifice Calibration Data Sheet (see Figure 8).

[Note:  ªH is the sum of the difference from zero (0) of the two column heights.]

11.2.1.10  Turn off the high-volume motor.
11.2.1.11  Replace the 5-hole resistance plate with the 7-hole resistance plate.
11.2.1.12  Repeat Sections 11.2.1.3 through 11.2.1.11.
11.2.1.13  Repeat for each resistance plate.  Note results on Orifice Calibration Data Sheet (see Figure 8).

Only a minute is needed for warm-up of the motor.  Be sure to tighten the orifice enough to eliminate any leaks.
Also check the gaskets for cracks.  

[Note:  The placement of the orifice prior to the rootsmeter causes the pressure at the inlet of the rootsmeter
to be reduced below atmospheric conditions, thus causing the measured volume to be incorrect.  The volume
measured by the rootsmeter must be corrected.]

11.2.1.14  Correct the measured volumes on the Orifice Calibration Data Sheet:

where:
V  = standard volume, std mstd

3

V  = actual volume measured by the rootsmeter, mm
3

P  = barometric pressure during calibration, mm Hga

ªP = differential pressure at inlet to volume meter, mm Hg

P  = 760 mm Hgstd

T  = 298 Kstd

T  = ambient temperature during calibration, K.a

11.2.1.15  Record standard volume on Orifice Calibration Data Sheet.
11.2.1.16  The standard flow rate as measured by the rootsmeter can now be calculated using the following

formula:

where:
Q  = standard volumetric flow rate, std m /minstd

3

2 = elapsed time, min

11.2.1.17  Record the standard flow rates to the nearest 0.01 std m /min.3
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11.2.1.18  Calculate and record  value for each standard flow rate.

11.2.1.19  Plot each  value (y-axis) versus its associated standard flow rate (x-

axis) on arithmetic graph paper and draw a line of best fit between the individual plotted points. 

[Note:  This graph will be used in the field to determine standard flow rate.]

11.2.2  Calibration of the High-Volume Sampling System Utilizing Calibrated Orifice Transfer
Standard

For this calibration procedure, the following conditions are assumed in the field:

• The sampler is equipped with an valve to control sample flow rate.
• The sample flow rate is determined by measuring the orifice pressure differential using a Magnehelic

gauge.
• The sampler is designed to operate at a standardized volumetric flow rate of 8 ft /min (0.225 m /min), with3 3

an acceptable flow rate range within 10 percent of this value.
• The transfer standard for the flow rate calibration is an orifice device.  The flow rate through the orifice

is determined by the pressure drop caused by the orifice and is measured using a "U" tube water
manometer or equivalent.

• The sampler and the orifice transfer standard are calibrated to standard volumetric flow rate units (scfm
or scmm).

• An orifice transfer standard with calibration traceable to NIST is used.
• A "U" tube water manometer or equivalent, with a 0- to 16-inch range and a maximum scale division of

0.1 inch, will be used to measure the pressure in the orifice transfer standard.
• A Magnehelic gauge or equivalent with a 9- to 100-inch range and a minimum scale division of 2 inches

for measurements of the differential pressure across the sampler's orifice is used. 
• A thermometer capable of measuring temperature over the range of 32E to 122EF (0E to 50EC) to ±2EF

(±1EC) and referenced annually to a calibrated mercury thermometer is used.
• A portable aneroid barometer (or equivalent) capable of measuring ambient barometric pressure between

500 and 800 mm Hg (19.5 and 31.5 in. Hg) to the nearest mm Hg and referenced annually to a barometer
of known accuracy is used.

• Miscellaneous handtools, calibration data sheets or station log book, and wide duct tape are available.

11.2.2.1  Set up the calibration system as illustrated in Figure 9.  Monitor the airflow through the sampling
system with a venturi/Magnehelic assembly, as illustrated in Figure 9.  Audit the field sampling system once per
quarter using a flow rate transfer standard, as described in the EPA High-Volume Sampling Method, 40 CVR 50,
Appendix B.  Perform a single-point calibration before and after each sample collection, using the procedures
described in Section 11.2.3.

11.2.2.2  Prior to initial multi-point calibration, place an empty glass cartridge in the sampling head and
activate the sampling motor.  Fully open the flow control valve and adjust the voltage variator so that a sample
flow rate corresponding to 110 percent of the desired flow rate (typically 0.20 to 0.28 m /min) is indicated on the3

Magnehelic gauge (based on the previously obtained multipoint calibration curve).  Allow the motor to warm up
for 10 min and then adjust the flow control valve to achieve the desire flow rate.  Turn off the sampler.  Record
the ambient temperature and barometric pressure on the Field Calibration Data Sheet (see Figure 10).

11.2.2.3  Place the orifice transfer standard on the sampling head and attach a manometer to the tap on
the transfer standard, as illustrated in Figure 9.  Properly align the retaining rings with the filter holder and secure
by tightening the three screw clamps.  Connect the orifice transfer standard by way of the pressure tap to a
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manometer using a length of tubing.  Set the zero level of the manometer or Magnehelic.  Attach the Magnehelic
gauge to the sampler venturi quick release connections.  Adjust the zero (if needed) using the zero adjust screw
on face of the gauge.

11.2.2.4  To leak test, block the orifice with a rubber stopper, wide duct tape, or other suitable means.  Seal
the pressure port with a rubber cap or similar device.  Turn on the sampler.
Caution:  Avoid running the sampler for too long a time with the orifice blocked.  This precaution will reduce
the chance that the motor will be overheated due to the lack of cooling air.  Such overheating can shorten the
life of the motor.

11.2.2.5  Gently rock the orifice transfer standard and listen for a whistling sound that would indicate a
leak in the system.  A leak-free system will not produce an upscale response on the sampler's magnehelic.  Leaks
are usually caused either by damaged or missing gaskets, by cross-threading, and/or not screwing sample
cartridge together tightly.  All leaks must be eliminated before proceeding with the calibration.  When the sample
is determined to be leak-free, turn off the sampler and unblock the orifice.  Now remove the rubber stopper or
plug from the calibrator orifice.  

11.2.2.6  Turn the flow control valve to the fully open position and turn the sampler on.  Adjust the flow
control valve until a Magnehelic reading of approximately 70 in. is obtained.  Allow the Magnehelic and
manometer readings to stabilize and record these values on the orifice transfer Field Calibration Data Sheet (see
Figure 10).

11.2.2.7  Record the manometer reading under Y1 and the Magnehelic reading under Y2 on the Field
Calibration Data Sheet.  For the first reading, the Magnehelic should still be at 70 inches as set above.

11.2.2.8  Set the Magnehelic to 60 inches by using the sampler's flow control valve.  Record the
manometer (Y1) and Magnehelic (Y2) readings on the Field Calibration Data Sheet (see Figure 10).  

11.2.2.9  Repeat the above steps using Magnehelic settings of 50, 40, 30, 20, and 10 inches.
11.2.2.10  Turn the voltage variator to maximum power, open the flow control valve, and confirm that the

Magnehelic reads at least 100 inches.  Turn off the sampler and confirm that the Magnehelic reads zero.
11.2.2.11  Read and record the following parameters on the Field Calibration Data Sheet.  Record the

following on the calibration data sheet:

• Data, job number, and operator's signature.
• Sampler serial number.
• Ambient barometric pressure.
• Ambient temperature. 

11.2.2.12  Remove the "dummy" cartridge and replace with a sample cartridge.
11.2.2.13  Obtain the manufacturer high volume orifice calibration certificate.
11.2.2.14  If not performed by the manufacturer, calculate values for each calibrator orifice static pressure

(Column 6, inches of water) on the manufacturer's calibration certificate using the following equation:

where:
P  = the barometric pressure (mm Hg) at time of manufacturer calibration, mm Hga

T  = temperature at time of calibration, ECa

11.2.2.15  Perform a linear regression analysis using the values in Column 7 of the manufacturer's High
Volume Orifice Calibration Certificate for flow rate (Q ) as the "X" values and the calculated values as the Ystd
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values.  From this relationship, determine the correlation (CC1), intercept (B1), and slope (M1) for the Orifice
Transfer Standard.

11.2.2.16  Record these values on the Field Calibration Data Sheet (see Figure 10).
11.2.2.17  Using the Field Calibration Data Sheet values (see Figure 10), calculate the Orifice Manometer

Calculated Values (Y3) for each orifice manometer reading using the following equation:

Y3 Calculation

Y3 = {Y1(P /760)[298/(T  + 273)]}a a
½

11.2.2.18  Record the values obtained in Column Y3 on the Field Calibration Data Sheet (see Figure 10).
11.2.2.19  Calculate the Sampler Magnehelic Calculated Value (Y4) using the following equation:

Y4 Calculation

Y4 = {Y2(P /760)[298/(T  + 273)]}a a
½

11.2.2.20  Record the value obtained in Column Y4 on the Field Calibration Data Sheet (see Figure 10).
11.2.2.21  Calculate the Orifice Flow Rate (X1) in scm using the following equation:

X1 Calculation

11.2.2.22  Record the values obtained in Column X1 on the Field Calibration Data Sheet (see Figure 10).
11.2.2.23  Perform a linear regression of the values in Column X1 (as X) and the values in Column Y4 (as

Y).  Record the relationship for correlation (CC2), intercept (B2), and slope (M2) on the Field Calibration Data
Sheet.  The correlation coefficient must be 0.990 or greater.

11.2.2.24  Using the following equation, calculate a set point (SP) for the manometer to represent a desired
flow rate:

Set Point

Set point (SP) = [(Expected P )/(Expected T )(T /P )][M2 (Desired flow rate) + B2]a a std std
2

where:

P  = Expected atmospheric pressure (P ), mm Hga a

T  = Expected atmospheric temperature (T ), 273 + ECa a

M2 = Slope of developed relationship
B2 = Intercept of developed relationship
T  = Temperature standard, 273 + 25ECstd

P  = Pressure standard, 760 mm Hgstd
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11.2.2.25  During monitoring, calculate a flow rate from the observed Magnehelic reading using the
following equations:

Flow Rate

Y5 = [Average Magnehelic Reading (ªH) (P /T )(T /P )]a a std std
½

where:

Y5 = Corrected average magnehelic reading
X2 = Instant calculated flow rate, scm

11.2.2.26  The relationship in calibration of a sampling system between Orifice Transfer Standard and
flow rate through the sampler is illustrated in Figure 11.

11.2.3  Single-Point Audit of the High Volume Sampling System Utilizing Calibrated Orifice Transfer
Standard

Single point calibration checks are required as follows:
• Prior to the start of each 24-hour test period.
• After each 24-hour test period.  The post-test calibration check may serve as the pre-test calibration check

for the next sampling period if the sampler is not moved.
• Prior to sampling after a sample is moved.

For samplers, perform a calibration check for the operational flow rate before each 24-hour sampling event and
when required as outlined in the user quality assurance program.  The purpose of this check is to track the
sampler's calibration stability.  Maintain a control chart presenting the percentage difference between a sampler's
indicated and measured flow rates.  This chart provides a quick reference of sampler flow-rate drift problems and
is useful for tracking the performance of the sampler.  Either the sampler log book or a data sheet will be used
to document flow-check information.  This information includes, but is not limited to, sampler and orifice transfer
standard serial number, ambient temperature, pressure conditions, and collected flow-check data.

In this subsection, the following is assumed:

• The flow rate through a sampler is indicated by the orifice differential pressure;
• Samplers are designed to operate at an actual flow rate of 8 scfm, with a maximum acceptable flow-rate

fluctuation range of ±10 percent of this value;
• The transfer standard will be an orifice device equipped with a pressure tap.  The pressure is measured

using a manometer; and
• The orifice transfer standard's calibration relationship is in terms of standard volumetric flow rate (Q ).std
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11.2.3.1  Perform a single point flow audit check before and after each sampling period utilizing the
Calibrated Orifice Transfer Standard (see Section 11.2.1).

11.2.3.2  Prior to single point audit, place a "dummy" glass cartridge in the sampling head and activate the
sampling motor.  Fully open the flow control valve and adjust the voltage variator so that a sample flow rate
corresponding to 110 percent of the desired flow rate (typically 0.19 to 0.28 m /min) is indicated on the3

Magnehelic gauge (based on the previously obtained multipoint calibration curve).  Allow the motor to warm up
for 10 minutes and then adjust the flow control valve to achieve the desired flow rate.  Turn off the sampler.
Record the ambient temperature and barometric pressure on the Field Test Data Sheet (see Figure 12).

11.2.3.3  Place the flow rate transfer standard on the sampling head.
11.2.3.4  Properly align the retaining rings with the filter holder and secure by tightening the three screw

clamps.  Connect the flow rate transfer standard to the manometer using a length of tubing.
11.2.3.5  Using tubing, attach one manometer connector to the pressure tap of the transfer standard.  Leave

the other connector open to the atmosphere.
11.2.3.6  Adjust the manometer midpoint by sliding the movable scale until the zero point corresponds with

the water meniscus.  Gently shake or tap to remove any air bubbles and/or liquid remaining on tubing connectors.
(If additional liquid is required, remove tubing connector and add clean water.)

11.2.3.7  Turn on the high-volume motor and let run for 5 minutes.
11.2.3.8  Record the pressure differential indicated, ªH, in inches of water, on the Field Test Data Sheet.

Be sure a stable ªH has been established.
11.2.3.9  Record the observed Magnehelic gauge reading in inches of water on the Field Test Data Sheet.

Be sure stable ªM has been established.
11.2.3.10  Using previous established Orifice Transfer Standard curve, calculate Q  (seexs

Section 11.2.2.23).
11.2.3.11  This flow should be within ±10 percent of the sampler set point, normally, 0.224 m .  If not,3

perform a new multipoint calibration of the sampler.
11.2.3.12  Remove flow rate transfer standard and dummy sorbent cartridge.  

11.3  Sample Collection

11.3.1  General Requirements
11.3.1.1  The sampler should be located in an unobstructed area, at least 2 meters from any obstacle to air

flow.  The exhaust hose should be stretched out in the downwind direction to prevent recycling of air into the
sample head.

11.3.1.2  All cleaning and sample module loading and unloading should be conducted in a controlled
environment, to minimize any chance of potential contamination.

11.3.1.3  When new or when using the sampler at a different location, all sample contact areas need to be
cleaned.  Use triple rinses of reagent grade hexane or methylene chloride contained in Teflon® rinse bottles.
Allow the solvents to evaporate before loading the PUF modules.

11.3.2  Preparing Cartridge for Sampling
11.3.2.1  Detach the lower chamber of the cleaned sample head.  While wearing disposable, clean, lint-free

nylon, or cotton gloves, remove a clean glass sorbent module from its shipping container.  Remove the Teflon®
end caps (if applicable).  Replace the end caps in the sample container to be reused after the sample has been
collected.

11.3.2.2  Insert the glass module into the lower chamber and tightly reattach the lower chambers to the
module.

11.3.2.3  Using clean rinsed (with hexane) Teflon®-tipped forceps, carefully place a clean conditioned fiber
filter atop the filter holder and secure in place by clamping the filter holder ring over the filter.  Place the
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aluminum protective cover on top of the cartridge head.  Tighten the 3 screw clamps.  Ensure that all module
connections are tightly assembled.  Place a small piece of aluminum foil on the ball-joint of the sample cartridge
to protect from back-diffusion of semi-volatiles into the cartridge during transporting to the site.

[Note:  Failure to do so could expose the cartridge to contamination during transport.]

11.3.2.4  Place the cartridge in a carrying bag to take to the sampler.
11.3.3  Collection

11.3.3.1  After the sampling system has been assembled, perform a single point flow check as described
in Sections 11.2.3.  

11.3.3.2  With the empty sample module removed from the sampler, rinse all sample contact areas using
reagent grade hexane in a Teflon® squeeze bottle.  Allow the hexane to evaporate from the module before loading
the samples.

11.3.3.3  With the sample cartridge removed from the sampler and the flow control valve fully open, turn
the pump on and allow it to warm-up for approximately 5 minutes.

11.3.3.4  Attach a "dummy" sampling cartridge loaded with the exact same type of filter and PUF media
to be used for sample collection.

11.3.3.5  Turn the sampler on and adjust the flow control valve to the desired flow as indicated by the
Magnehelic gauge reading determined in Section 11.2.2.24.  Once the flow is properly adjusted, take extreme care
not to inadvertently alter its setting.

11.3.3.6  Turn the sampler off and remove the "dummy" module.  The sampler is now ready for field use.
11.3.3.7  Check the zero reading of the sampler Magnehelic.  Record the ambient temperature, barometric

pressure, elapsed time meter setting, sampler serial number, filter number, and PUF cartridge number on the Field
Test Data Sheet (see Figure 12).  Attach the loaded sampler cartridge assembly to the sampler.

11.3.3.8  Place the voltage variator and flow control valve at the settings used in Section 11.3.2, and the
power switch.  Activate the elapsed time meter and record the start time.  Adjust the flow (Magnehelic setting),
if necessary, using the flow control valve.

11.3.3.9  Record the Magnehelic reading every 6 hours during the sampling period.  Use the calibration
factors (see Section 11.2.2.24) to calculate the desired flow rate.  Record the ambient temperature, barometric
pressure, and Magnehelic reading at the beginning and during sampling period. 

11.3.4  Sample Recovery
11.3.4.1  At the end of the desired sampling period, turn the power off.  Carefully remove the sampling

head containing the filter and sorbent cartridge.  Place the protective "plate" over the filter to protect the cartridge
during transport to a clean recovery area.  Also, place a piece of aluminum foil around the bottom of the sampler
cartridge assembly.

11.3.4.2  Perform a final calculated sampler flow check using the calibration orifice, assembly, as described
in Section 11.3.2.  If calibration deviates by more than 10 percent from initial reading, mark the flow data for that
sample as suspect and inspect and/or remove from service, record results on Field Test Data Sheet, Figure 12.

11.3.4.3  Transport the sampler cartridge assembly to a clean recovery area.
11.3.4.4  While wearing white cotton gloves, remove the PUF glass cartridge from the lower module

chamber and lay it on the retained aluminum foil in which the sample was originally wrapped.
11.3.4.5  Carefully remove the quartz fiber filter from the upper chamber using clean Teflon®-tipped

forceps.
11.3.4.6  Fold the filter in half twice (sample side inward) and place it in the glass cartridge atop the PUF.
11.3.4.7  Wrap the combined samples in the original hexane-rinsed aluminum foil, attach Teflon® end caps

(if applicable) and place them in their original aluminum shipping container.  Complete a sample label and affix
it to the aluminum shipping container.
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11.3.4.8  Chain-of-custody should be maintained for all samples.  Store the containers under blue ice or
dry ice and protect from UV light to prevent possibly photo-decomposition of collected analytes.  If the time span
between sample collection and laboratory analysis is to exceed 24 hours, refrigerate sample at 4EC. 

11.3.4.9  Return at least one field blank filter/PUF cartridge to the laboratory with each group of samples.
Treat a field blank exactly as the sample except that air is not drawn through the filter/sorbent cartridge assembly.

11.3.4.10  Ship and store field samples chilled (<4EC) using blue ice until receipt at the analytical
laboratory, after which samples should be refrigerated at less than or equal to 4EC for up to 7 days prior to
extraction; extracts should be analyzed within 40 days of extraction. 

12.  Sample Extraction, Concentration, and Cleanup

[Note:  The following sample extraction, concentration, solvent exchange and analysis procedures are
outlined for user convenience in Figure 13.]

12.1  Sample Identification

12.1.1  The chilled (<4EC) samples are returned in the aluminum shipping container (containing the filter and
sorbents) to the laboratory for analysis.  The "chain-of-custody" should be completed.

12.1.2  The samples are logged in the laboratory logbook according to sample location, filter and sorbent
cartridge number identification, and total air volume sampled (uncorrected).

12.1.3  If the time span between sample registration and analysis is greater than 24-hours, then the sample
must be kept refrigerated at <4EC.  Minimize exposure of samples to fluorescent light.  All samples should be
extracted within one week (7 days) after sampling.  

12.2  Soxhlet Extraction and Concentration

[Note:  If PUF is the sorbent, the extraction solvent is 10 percent diethyl ether in hexane.  If XAD-2® resin
is the sorbent, the extraction solvent is methylene chloride.]

12.2.1  Assemble the Soxhlet apparatus (see Figure 4a).  Immediately before use, charge the Soxhlet
apparatus with 700 to 750 mL of 10 percent diethyl ether in hexane and reflux for 2 hours.  Let the apparatus
cool, disassemble it, transfer the diethyl ether in hexane to a clean glass container, and retain it as a blank for later
analysis, if required.  Place the sorbent and filter together in the Soxhlet apparatus (the use of an extraction
thimble is optional).

[Note:  The filter and sorbent are analyzed together in order to reach detection limits, avoid questionable
interpretation of the data, and minimize cost.]

12.2.1.1  Prior to extraction, add appropriate laboratory surrogate standards to the Soxhlet solvent.  A
surrogate standard (i.e., a chemically compound not expected to occur in an environmental sample) should be
added to each sample, blank, and matrix spike sample just prior to extraction or processing.  The recovery of the
laboratory surrogate standard is used to monitor for unusual matrix effects, gross sample processing errors, etc.
Surrogate recovery is evaluated for acceptance by determining whether the measure concentration falls within the
acceptance limits.  Spike 20 FL of a 50 Fg/mL solution of the surrogates onto the PUF cartridge, prior to Soxhlet
extraction, to yield a final concentration of 1 Fg.  The following laboratory surrogate standards have been
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successfully utilized in determining Soxhlet extraction effects, sample process errors, etc., for GC/MS/DS
analysis.

Laboratory Total
Surrogate Spiked
Standard Amount (µg)

D -Fluorene 110

D -Pyrene 110

Section 13.2 outlines preparation of the laboratory surrogates.  Add the laboratory surrogate compounds to the
PUF cartridge.  Add 700 mL of 10 percent diethyl ether in hexane to the apparatus and reflux for 18 hours at a
rate of at least 3 cycles per hour.  Allow to cool, then disassemble the apparatus.

12.2.1.2  Dry the extract from the Soxhlet extraction by passing it though a drying column containing about
10 grams of anhydrous sodium sulfate.  Collect the dried extract in a K-D concentrator assembly.  Wash the
extractor flask and sodium sulfate column with 100-125 mL of 10 percent diethyl ether/hexane to complete the
quantitative transfer.

12.2.2  Assemble a K-D concentrator (see Figure 4b) by attaching a 10 mL concentrator tube to a 500 mL
evaporative flask.

[Note:  Other concentration devices (vortex evaporator) or techniques may be used in place of the K-D as
long as qualitative and quantitative recovery can be demonstrated.]

12.2.2.1  Add two boiling chips, attach a three-ball macro-Snyder column to the K-D flask, and concentrate
the extract using a water bath at 60 to 65EC.  Place the K-D apparatus in the water bath so that the concentrator
tube is about half immersed in the water and the entire rounded surface of the flask is bathed with water vapor.
Adjust the vertical position of the apparatus and the water temperature as required to complete the concentration
in one hour.  At the proper rate of distillation, the balls of the column actively chatter but the chambers do not
flood.  When the liquid has reached an approximate volume of 5 mL, remove the K-D apparatus from the water
bath and allow the solvent to drain for at least 5 minutes while cooling.

12.2.2.2  Remove the Snyder column and rinse the flask and its lower joint into the concentrator tube with
5 mL of cyclohexane.  A 5 mL syringe is recommended for this operation.  The extract is now ready for further
concentration to 1.0 mL by nitrogen blowdown.

12.2.2.3  Place the 1 mL calibrated K-D concentrator tube with an open micro-Snyder attachment in a warm
water bath (30 to 3 5EC) and evaporate the solvent volume to just below 1 mL by blowing a gentle stream of
clean, dry nitrogen (filtered through a column of activated carbon) above the extract.

12.2.2.4   The internal wall of the concentrator tube must be rinsed down several times with hexane during
the operation.

12.2.2.5  During evaporation, the tube solvent level must be kept below the water level of the bath.  the
extract must never be allowed to become dry.

12.2.2.6  Bring the final volume back to 1.0 mL with hexane.  Transfer the extract to a Teflon®-sealed
screw-cap amber vial, label the vial, and store at 4EC (±2EC).

[Note:  It is not necessary to bring the volume to exactly 1.0 mL if the extract will be cleaned up by solid phase
extraction cleanup methods.  Final volume is brought to 1.0 mL after cleanup.]

12.3   Sample Cleanup
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12.3.1  If the extract is cloudy, impurities may be removed from the extract by solid phase extraction using
activated silica gel.  Clean-up procedures may not be needed for relatively clean matrix samples.

12.3.2  Approximately 10 grams of silica gel, type 60 (70-230 mesh), are extracted in a Soxhlet extractor
with 10 percent diethyl ether for 6 hours (minimum rate, 3 cycles/hr) and then activated by heating in a foil-
covered glass container for 16 hours at 150EC.

12.3.3  Using a disposable Pasteur pipette (7.5-mm x 14.6-cm), place a small piece of glass wool in the neck
of the pipette.  Prepare a slurry of activated silica gel in 10 percent diethyl ether.  Place 10 grams of the activated
silica gel slurry into the column using additional 10 percent diethyl ether.  Finally, 1 gram of anhydrous sodium
sulfate is added to the top of the silica gel.  Prior to use, the column is rinsed with 10 percent diethyl ether at
1 mL/min for 1 hour to remove any trace of contaminants.  It is then pre-eluted with 40 mL of pentane and the
eluate discarded.

12.3.4  While the pentane pre-elutant covers the top of the column, 1 mL of the sample extract is transferred
to the column, and washed on with 2 mL of n-hexane to complete the transfer.  Allow to elute through the column.
Immediately prior to exposure of the sodium sulfate layer the air, add 25 mL of pentane and continue the elution
process.  The pentane eluate is discarded.

12.3.5  The column is finally eluted at 2 mL/min with 25 mL of 10 percent diethyl ether in pentane (4:6 v/v)
and collected in a 50 mL K-D flask equipped with a 5 mL concentrator tube for concentration to less than 5 mL.
The concentrate is further concentrated to 1.0 mL under a gentle stream of nitrogen as previously described.

12.3.6  The extract is now ready for GC/MS analysis.  Spike the extract with internal standards (ISs) before
analysis.  The following internal standards (ISs) have been successfully used in PAH analysis by GC/MS.

                      Internal Total Spiked
Standard (IS) Amount (µg)
D -Naphthalene 0.58

D -Acenaphthene 0.510

D -Phenanthrene 0.510

D -Chrysene 0.512

D -Perylene 0.512

Section 13.2 outlines preparation of the ISs.

13.  Gas Chromatography with Mass Spectrometry Detection

13.1  General

13.1.1  The analysis of the extracted sample for benzo[a]pyrene and other PAHs is accomplished by an
electron ionization gas chromatograph/mass spectrometer (EI GC/MS) in the mode with a total cycle time
(including voltage reset time) of 1 second or less.  The GC is equipped with an DB-5 fused silica capillary column
(30-m x 0.32-mm I.D.) with the helium carrier gas for analyte separation.  The GC column is temperature
controlled and interfaced directly to the MS ion source.

13.1.2  The laboratory must document that the EI GC/MS system is properly maintained through periodic
calibration checks.  The GC/MS system should be operated in accordance with specifications outlined in Table
2.

13.1.3  The GC/MS is tuned using a 50 ng/µL solution of decafluorotriphenylphosphine (DFTPP).  The
DFTPP permits the user to tune the mass spectrometer on a daily basis.  If properly tuned, the DFTPP key ions
and ion abundance criteria should be met as outlined in Table 3.
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13.1.4  The GC/MS operating conditions are outlined in Table 2.  The GC/MS system should be calibrated
using the internal standard technique.  Figure 14 outlines the following sequence involving the GC/MS
calibration. 

13.2  Calibration of GC/MS/DS

13.2.1  Standard Preparation

Stock PAH Standards Including Surrogate Compounds
13.2.1.1  Prepare stock standards of B[a]P and other PAHs.  The stock standard solution of B[a]P (2.0

µg/µL) and other PAHs can be user prepared from pure standard materials or can be purchased commercially.
13.2.1.2  Place 0.2000 grams of native B[a]P and other PAHs on a tared aluminum weighing disk and

weigh on a Mettler balance.
13.2.1.3  Quantitatively transfer the material to a 100 mL volumetric flask.  Rinse the weighing disk with

several small portions of 10 percent diethyl ether/hexane.  Ensure all material has been transferred.
13.2.1.4  Dilute to mark with 10 percent diethyl ether/hexane.  
13.2.1.5  The concentration of the stock standard solution of B[a]P or other PAHs in the flask is 2.0 µg/µL.

[Note:  Commercially prepared stock PAH standards may be used at any concentration if they are certified
by the manufacturer or by an independent source.]

13.2.1.6  Transfer the stock standard solutions into Teflon®-sealed screw-cap bottles.  Store at 4EC and
protect from light.  Stock standard solutions should be checked frequently for signs of degradation or evaporation,
especially just prior to preparing calibration standards from them.

13.2.1.7  Stock PAH standard solutions must be replaced after 1 year or sooner if comparison with quality
control check samples indicates a problem.

Mix Internal Standard (IS) Solution
13.2.1.8  For PAH analysis, deuterated internal standards are selected that are similar in analytical behavior

to the compound of interest.  The following internal standards are suggested for PAH analysis:

D -Perylene D -Chrysene12

Benzo(e)pyrene Benz(a)anthracene
Benzo(a)pyrene Chrysene
Benzo(k)fluoranthene Pyrene

D -Acenaphthene D -Naphthalene10

Acenaphthene (if using XAD-2® as the sorbent) Naphthalene (if using XAD-2® as the
Acenaphthylene (if using XAD-2® as the sorbent) sorbent)
Fluorene
Benzo(g,h,i)perylene
Dibenz(a,h)anthracene Anthracene
Indeno(1,2,3-cd)pyrene Fluoranthene
Perylene Phenanthrene
Benzo(b)fluoranthene
Coronene

12

8

D -Phenanthrene10
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13.2.1.9  Purchase a mix IS solution containing specific IS needed for quantitation at a concentration of
2,000 ng/µL.

Mixed Stock PAH Standard Including Surrogate Compounds
13.2.1.10  Prepare a mixed stock PAH standard by taking 125 µL of the stock PAH standard(s) and

diluting to mark with hexane in a 10-mL volumetric flask.  The concentration of the mixed stock PAH standard(s)
is 25 ng/µL.

Calibration PAH Standards Including Surrogate Compounds
13.2.1.11  Calibration PAH standards can be generated from the stock PAH standard using serial dilution

utilizing the following equation:

where:
C  = Concentration of stock PAH standards, ng/µL1

V  = Volume of stock PAH standard solution taken to make calibration PAH standards, µL1

V  = Final volume diluted to generate calibration PAH standards, µL 2

C  = Final concentration of calibration PAH standards, ng/µL2

13.2.1.12  Using the above equation, prepare a series of calibration PAH standards which include the
surrogate compounds (i.e., 2.50 ng/µL, 1.25 ng/µL, 0.50 ng/µL, 0.25 ng/µL, and 0.10 ng/µL) according to the
scheme illustrated in Table 4 and described below.

• For CAL 5, transfer 1.00 mL of the mixed PAH stock standard in a 10-mL volumetric flask and dilute to
10.0 mL with hexane.  The resulting concentration is 2.5 ng/µL  for the PAH analytes.

• To prepare CAL 4, transfer 500 µL of the mixed PAH stock standard solution to a 10-mL volumetric flask
and dilute to 10.0 mL with hexane.  The resulting concentration is 1.25 ng/µL for PAH analytes.

• To prepare CAL 3, transfer 200 µL of the mixed PAH stock solution to a 10-mL volumetric flask and
dilute to 10-mL with hexane.  The resulting concentration is 0.50 ng/µL for PAH analytes.

• To prepare CAL 2, transfer 100 FL of the mixed PAH stock solution to a 10-mL volumetric flask and
dilute to 10-mL with hexane.  The resulting concentration is 0.25 ng/FL for PAH analytes.

• To prepare CAL 1, transfer 40 µL of the mixed PAH stock solution to a 10-mL volumetric flask and dilute
to 10-mL with hexane.  The resulting concentration is 0.10 ng/µL for PAH analytes.

13.2.2  Internal Standard Spiking
13.2.2.1  Prior to GC/MS analysis, each 1 mL aliquot of the five calibration standards is spiked with

internal standard to a final concentration of 0.5 ng/µL.  To do this, first prepare a 1:40 dilution of the
2,000 ng/µL mixed internal standard solution by diluting 250 µL to a volume of 10 mL to yield a concentration
of 50 ng/µL.

13.2.2.2  Each 1.0-mL portion of calibration standard and sample extract is then spiked with 10 µL  of the
internal standard solution prior to analysis by GC/MS/DS operated in the SCAN mode.

13.2.3  Storage, Handling, and Retention of Standards
13.2.3.1  Store the stock and mixed standard solutions at 4EC (±2EC) in Teflon®-lined screw-cap amber

bottles.  Store the working standard solutions at 4EC (±2EC) in Teflon®-lined screw-cap amber bottles.
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13.2.3.2  Protect all standards from light.  Samples, sample extracts, and standards must be stored
separately.

13.2.3.3  Stock standard solutions must be replaced every 12 months, or sooner, if comparison with quality
control check samples indicates a problem.  Diluted working standards are usable for 6 months.  Analysis
difficulties, which warrant investigation, may require preparation of new standards.  All standards are securely
stored at ~4EC (±2EC) but above freezing.  The concentration, preparation and expiration date, and solvent are
identified on standard vial labels.  Each standard is uniquely identified with its laboratory notebook number and
a prefix.  This procedure helps provide traceability to standard preparation.

13.2.3.4  Take care to maintain the integrity of each standard.  The solvent, hexane, is volatile and can
easily evaporate.  Make sure each vial is sealed after use, and mark the solvent level on the side of the vial.  When
retrieving a vial for use, if the solvent level does not match the mark, dispose of the standard and obtain a new
one.

13.3  GC/MS Instrument Operating Conditions

13.3.1  Gas Chromatograph (GC).  The following are the recommended GC analytical conditions, as also
outlined in Table 3, to optimize conditions for compound separation and sensitivity.

Carrier Gas: Helium
Linear Velocity: 28-29 cm /sec3

Injector Temperature: 250-300EC
Injector: Grob-type, splitless, 2 µL 
Temperature Program: Initial Temperature: 70EC
Initial Hold Time: 4.0 ± 0.1 min.
Ramp Rate: 10EC/min to 300EC, hold for 10 min
Final Temperature: 300EC
Final Hold Time: 10 min (or until all compounds of interest have eluted).
Analytical Time: Approximately 50 min.

13.3.2  Mass Spectrometer.  Following are the required mass spectrometer conditions for scan data
acquisition:

Transfer Line Temperature: 290EC
Source Temperature: According to manufacturer's specifications
Electron Energy: 70 volts (nominal)
Ionization Mode: EI
Mass Range: 35 to 500 amu, SCAN data acquisition
Scan Time: At least 5 scans per peak, not to exceed 1 second per scan

13.3.3  Instrument Performance Check for GC/MS.
13.3.3.1  Summary.  It is necessary to establish that the GC/MS meet tuning and standard mass spectral

abundance criteria prior to initiating any on-going data collection, as illustrated in Figure 14.  This is
accomplished through the analysis of decafluorotriphenylphosphine (DFTPP).

13.3.3.2  Frequency.  The instrument performance check solution of DFTPP will be analyzed initially and
once per 12-hour time period of operation.  Also, whenever the laboratory takes corrective action which may
change or affect the mass spectral criteria (e.g., ion source cleaning or repair, column replacement, etc.), the
instrument performance check must be verified irrespective of the 12-hour laboratory requirement.  The 12-hour
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time period for GC/MS analysis begins at the injection of the DFTPP, which the laboratory submits as
documentation of a compliance tune.  The time period ends after 12 hours have elapsed.  To meet instrument
performance check requirements, samples, blanks, and standards must be injected within 12 hours of the DFTPP
injection.

13.3.3.3  Procedure.  Inject 50 ng of DFTPP into the GC/MS system.  DFTPP may be analyzed separately
or as part of the calibration standard.

13.3.3.4  Technical Acceptance Criteria.  The following criteria have been established in order to
generate accurate data:

• Prior to the analysis of any samples, blanks, or calibration standards, the laboratory must establish that the
GC/MS system meets the mass spectral ion abundance criteria for the instrument performance check
solution containing DFTPP.

• The GC/MS system must be tuned to meet the manufacturer's specifications, using a suitable calibrant.
The mass calibration and resolution of the GC/MS system are verified by the analysis of the instrument
performance check solution.

• The abundance criteria listed in Table 3 must be met for a 50 ng injection of DFTPP.  The mass spectrum
of DFTPP must be acquired by averaging three scans (the peak apex scan and the scans immediately
preceding and following the apex).  Background subtraction is required, and must be accomplished using
a single scan prior to the elution of DFTPP.

[Note:  All ion abundance MUST be normalized to m/z 198, the nominal base peak, even though the ion
abundances of m/z 442 may be up to 110 percent of m/z 198.]

• The above criteria are based on adherence to the acquisition specifications identified in Table 4 and were
developed for the specific target compound list associated with this document.  The criteria are based on
performance characteristics of instruments currently utilized in routine support of ambient air program
activities.  These specifications, in conjunction with relative response factor criteria for target analytes, are
designed to control and monitor instrument performance associated with the requirements if this document.
As they are performance-based criteria for these specific analytical requirements, they may not be optimal
for additional target compounds.

• If the mass spectrometer has the ability for autotuning, then the user may utilize this function following
manufacturer's specifications.  Autotune automatically adjusts ion source parameters within the detector
using FC-43 (Heptacos).  Mass peaks at m/z 69, 219, and 502 are used for tuning.  After the tuning is
completed, the FC-43 abundances at m/z 50, 69, 131, 219, 414, 502, and 614 are further adjusted such that
their relative intensities match the selected masses of DFTPP.

13.3.3.5  Corrective Action.  If the DFTPP acceptance criteria are not met, the MS must be retuned.  It
may be necessary to clean the ion source, or quadrupoles, or take other actions to achieve the acceptance criteria.
DFTPP acceptance criteria MUST be met before any standards, or required blanks, are analyzed.  Any standards,
field samples, or required blanks analyzed when tuning criteria have not been met will require reanalysis.

13.3.4  Initial Calibration for GC/MS.
13.3.4.1  Summary.  Prior to the analysis of samples and required blanks, and after tuning criteria

(instrument performance check) have been met, each GC/MS system will be initially calibrated at a minimum of
five concentrations to determine instrument sensitivity and the linearity of GC/MS response for the analyte
compounds and the surrogates.

13.3.4.2  Frequency.  Each GC/MS system must be initially calibrated whenever the laboratory takes
corrective action, which may change or affect the initial calibration criteria (e.g., ion source cleaning or repair,
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column replacement, etc.), or if the continuing calibration acceptance criteria have not been met.  If time still
remains in the 12-hour time period after meeting the technical acceptance criteria for the initial calibration,
samples may be analyzed.  It is not necessary to analyze a continuing calibration standard within the 12-hour time
period if the initial calibration standard (CAL 3) is the same concentration as the continuing calibration standard
and both meet the continuing calibration technical acceptance criteria.  Quantify all sample results using the mean
of the relative response factors ( ) from the initial calibration.  

13.3.4.3  Procedure.  Perform the following activities to generate quantitative data:

• Set up the GC/MS system.
• Warm all standard/spiking solutions, sample extracts, and blanks to ambient temperature (~1 hour) before

analysis.
• Tune the GC/MS system to meet the technical acceptance criteria (see Section 13.3.3).
• Prepare five calibration standards containing the target compounds, internal standards, and surrogate

compounds at the concentrations outlined in Table 4.
• Calibrate the GC/MS by injecting 2.0 µL of each standard.  If a compound saturates when the CAL 5

standard is injected, and the system is calibrated to achieve a detection sensitivity of no less than the MDL
for each compound, the laboratory must document it and attach a quantitation report and chromatogram.
In this instance, the laboratory must calculate the results based on a four-point initial calibration for the
specific compound that saturates.  Secondary ion quantitation is only allowed when there are sample
interferences with the primary quantitation ion.  If secondary ion quantitation is used, calculate a relative
response factor using the area response from the most intense secondary ion which is free of interferences
and document the reasons for the use of the secondary ion.

• Record a mass spectrum of each target compound.  Figure 15(a) through 15(q) documents the mass
spectrum for each of the 16 target PAHs discussed in Compendium Method TO-13A. Judge the
acceptability of recorded spectra by comparing them to spectra in libraries.  If an acceptable spectrum of
a calibration standard component is not acquired, take necessary actions to correct GC/MS performance.
If performance cannot be corrected, report sample extract data for the particular compound(s), but
document the affected compound(s) and the nature of the problem.

13.3.4.4  Calculations.  Perform the following calculations to generate quantitative data:

[Note:  In the following calculations, the area response is that of the primary quantitation ion unless
otherwise stated.]

• Relative Response Factors (RRFs).  Calculate RRFs for each analyte target compound and surrogate
using the following equation with the appropriate internal standard.  Table 5 outlines characteristic ions
for the surrogate compounds and internal standards.  Table 6 outlines primary quantitation ions for each
PAH.  Use the following equation for RRF calculation.

where:
A   = area of the primary quantitation ion for the compound to be measured, countsx

A  = area of the primary quantitation ion for the internal standard, countsis

C  = concentration or amount of the internal standard, ng/µL is
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C   = concentration or amount of the compound to be measured, ng/µL x

• Percent Relative Standard Deviation (%RSD).  Using the RRFs from the initial calibration, calculate
the %RSD for all target compounds and surrogates using the following equations:

and

where:
SD  = standard deviation of initial response factors (per compound)RRF

x = mean of initial relative response factors (per compound)
X  = ith RRFi

N = number of determinations

• Relative Retention Times (RRT).  Calculate the RRTs for each target compound and surrogate over the
initial calibration range using the following equation:

where:
RT  = retention time of the target compound, minutesc

RT  = retention time of the internal standard, minutesis

• Mean of the Relative Retention Times ( ).  Calculate the mean of the relative retention times ( )
for each analyte target compound and surrogate over the initial calibration range using the following
equation:

where:
 = mean relative retention time for the target compound or surrogate for each initial calibration

standard, minutes
RRT = relative retention time for the target compound or surrogate for each initial calibration standard,

minutes
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• Mean Area Response ( ) for Internal Standard.  Calculate the area response (Y) mean for primary
quantitation ion each internal standard compound over the initial calibration range using the following
equation:

where:

 = mean area response, counts
Y  = area response for the primary quantitation ion for the internal standard for each calibration standard,i

counts

• Mean of the Retention Time ( ) For Internal Standard.  Calculate the mean of the retention times
( ) for each internal standard over the initial calibration range using the following equation:

where:
 = mean retention time, minutes

RT = retention time for the internal standard for each initial calibration standard, minutes

13.3.4.5  Technical Acceptance Criteria.  All initial calibration standards must be analyzed at the
concentration levels at the frequency described in Section 13.3.3 on a GC/MS system meeting the DFTPP
instrument performance check criteria.

• The relative response factor (RRF) at each calibration concentration for each target compound and
surrogate that has a required minimum response factor value must be greater than or equal to the minimum
acceptable relative response factor (see Table 7) of the compound.

• The percent relative standard deviation (%RSD) over the initial calibration range for each target compound
and surrogate that has a required maximum %RSD must be less than or equal to the required maximum
value (see Table 7).  For all the other target compounds, the value for %RSD must be less than or equal
to 30 percent.  When the value for %RSD exceeds 30 percent, analyze additional aliquots of appropriate
CALs to obtain an acceptable %RSD of RRFs over the entire concentration range, or take action to
improve GC/MS performance.

• The relative retention time for each of the target compounds and surrogates at each calibration level must
be within ±0.06 relative retention time units of the mean relative retention time for the compound.

• The retention time shift for each of the internal standards at each calibration level must be within ±20.0
seconds compared to the mean retention time ( ) over the initial calibration range for each internal
standard.

• The compounds must meet the minimum RRF and maximum %RSD criteria for the initial calibration.  

13.3.4.6  Corrective Action.  If the technical acceptance criteria for initial calibration are not met, the
system should be inspected for problems.  It may be necessary to clean the ion source, change the column, or take
other corrective actions to achieve the acceptance criteria.  Initial calibration technical acceptance criteria MUST
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be met before any samples or required blanks are analyzed in a 12-hour time period for an initial calibration
analytical sequence.

13.3.5  Continuing Calibration.
13.3.5.1  Summary.  Prior to the analysis of samples and required blanks and after tuning criteria have

been met, the initial calibration of each GC/MS system must be routinely checked by analyzing a continuing
calibration standard (see Table 4, CAL 3) to ensure that the instrument continues to meet the instrument
sensitivity and linearity requirements of the method.  The continuing calibration standard (CAL 3) shall contain
the appropriate target compounds, surrogates, and internal standards.

13.3.5.2  Frequency.  Each GC/MS used for analysis must be calibrated once every time period of
operation.  The 12-hour time period begins with injection of DFTPP.  If time still remains in the 12-hour time
period after meeting the technical acceptance criteria for the initial calibration, samples may be analyzed.  It is
not necessary to analyze a continuing calibration standard within this 12-hour time period, if the initial calibration
standard that is the same concentration as the continuing calibration standard meets the continuing calibration
technical acceptance criteria.

13.3.5.3  Procedure.  The following activities should be performed for continuing calibration:

• Set up the GC/MS system as specified by the manufacturer.
• Tune the GC/MS system to meet the technical acceptance criteria (see Section 13.3.3).
• Analyze the CAL 3 standard solution containing all the target analytes, surrogate compounds, and

internal standards using the procedure listed for the initial calibration.
• Allow all standard/spiking solutions and blanks to warm to ambient temperature (approximately 1 hour)

before preparation or analysis.
• Start the analysis of the continuing calibration by injecting 2.0 µL of the CAL 3 standard solution.

13.3.5.4  Calculations.  The following calculations should be performed:

• Relative Response Factor (RRF).  Calculate a relative response factor (RRF) for each target compound
and surrogate.

• Percent Difference (%D).  Calculate the percent difference between the mean relative response factor
( ) from the most recent initial calibration and the continuing calibration RRF for each analyte target
compound and surrogate using the following equation:

where:
%D  = percent difference between relative response factorsRRF

 = average relative response factor from the most recent initial calibration

RRF  = relative response factor from the continuing calibration standardc

13.3.5.5  Technical Acceptance Criteria.  The continuing calibration standard must be analyzed for the
compounds listed in concentration levels at the frequency described and on a GC/MS system meeting the DFTPP
instrument performance check and the initial calibration technical acceptance criteria.  The relative response
factor for each target analyte and surrogate that has a required minimum relative response factor value must be
greater than or equal to the compound's minimum acceptable relative response factor.  For an acceptable
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continuing calibration, the %D between the measured RRF for each target/surrogate compound of the CAL 3
standard and the mean value calculated during initial calibration must be within ±30 percent.  If the criteria for
%D are not met for the target or surrogate compounds, remedial action must be taken and recalibration may be
necessary.

13.3.5.6  Corrective Action.  If the continuing calibration technical acceptance criteria are not met,
recalibrate the GC/MS instrument.  It may be necessary to clean the ion source, change the column, or take other
corrective actions to achieve the acceptance criteria.  Continuing calibration technical acceptance criteria MUST
be met before any samples or required blanks are analyzed in a 12-hour continuing calibration analytical
sequence.  Any samples or required blanks analyzed when continuing calibration criteria were not met will require
reanalysis.  Remedial actions, which include but are not limited to the following, must be taken if criteria are not
met:

• Check and adjust GC and/or MS operating conditions.
• Clean or replace injector liner.
• Flush column with solvent according to manufacturers instructions.
• Break off a short portion (approximately 0.33 cm) of the column.
• Replace the GC column (performance of all initial calibration procedures are then required).
• Adjust MS for greater or lesser resolution.
• Calibrate MS mass scale.
• Prepare and analyze new continuing calibration.
• Prepare a new initial calibration curve.

13.3.6  Laboratory Method Blank (LMB).
13.3.6.1  Summary.  The purpose of the LMB is to monitor for possible laboratory contamination.

Perform all steps in the analytical procedure using all reagents, standards, surrogate compounds, equipment,
apparatus, glassware, and solvents that would be used for a sample analysis.  An LMB is an unused, certified
filter/cartridge assembly which is carried though the same extraction procedure as a field sample.  The LMB
extract must contain the same amount of surrogate compounds and internal standards that is added to each
sample.  All field samples must be extracted and analyzed with an associated LMB.

13.3.6.2  Frequency.  Analyze an LMB along with each batch of #20 samples through the entire
extraction, concentration, and analysis process.  The laboratory may also analyze a laboratory reagent blanks
which is the same as an LMB except that no surrogate compounds or internal standards are added.  This
demonstrates that reagents contain no impurities producing an ion current above the level of background noise
for quantitation ions for those compounds.

13.3.6.3  Procedure.  Extract and analyze a clean, unused filter and glass cartridge assembly.
13.3.6.4  Technical Acceptance Criteria.  Following are the technical criteria for the LMB:

• All blanks must be analyzed on a GC/MS system meeting the DFTPP instrument performance check
and initial calibration or continuing calibration technical acceptance criteria.

• The percent recovery for each of the surrogates in the blank must be within the acceptance windows.
• The area response change for each of the internal standards for the blank must be within -50 percent and

+100 percent compared to the internal standards in the most recent continuing calibration analysis.
• The retention time for each of the internal standards must be within ±20.0 seconds between the blank

and the most recent CAL 3 analysis.
• The LMB must not contain any target analyte at a concentration greater than the MDL and must not

contain additional compounds with elution characteristics and mass spectral features that would interfere



PAHs Method TO-13A

January 1999 Compendium of Methods for Toxic Organic Air Pollutants Page 13A-35

with identification and measurement of a method analyte at its MDL.  If the LMB that was extracted
along with a batch of samples is contaminated, the entire batch of samples must be flagged.

13.3.6.5  Corrective Action.  Perform the following if the LCBs exceed criteria:

• If the blanks do not meet the technical acceptance criteria, the analyst must consider the analytical
system to be out of control.  It is the analyst's responsibility to ensure that method interferences caused
by contaminants in solvents, reagents, glassware, and other sample storage and processing hardware
that lead to discrete artifacts and/or elevated baselines in gas chromatograms be eliminated.  If
contamination is a problem, the source of the contamination must be investigated and appropriate
corrective measure MUST be taken and documented before further sample analysis proceeds.

• All samples processed with a method blank that is out of control (i.e., contaminated) will require data
qualifiers to be attached to the analytical results.

13.3.7  Laboratory Control Spike (LCS).
13.3.7.1  Summary.  The purpose of the LCS is to monitor the extraction efficiency of Compendium

Method TO-13A target analytes from a clean, uncontaminated PUF cartridge.  An LCS is an unused, certified
PUF that is spiked with the target analytes (1 Fg) and carried through the same extraction procedures as the field
samples.  The LCS must contain the same amount of surrogate compounds and internal standards that is added
to each sample.  All field samples must be extracted and analyzed with an associated LCS.  All steps in the
analytical procedure must use the same reagents, standards, surrogate compounds, equipment, apparatus,
glassware, and solvents that would be used for a sample analysis.

13.3.7.2  Frequency.  Analyze an LCS along with each of <20 samples through the entire extraction,
concentration, and analysis.  (The laboratory may also analyze a laboratory reagent blank which is the same as
an LMB except that no surrogate compounds or internal standards are added.  This demonstrates that reagents
contain no impurities producing an ion current above the level of background noise for quantitation ions of those
compounds.)

13.3.7.3  Procedure.  Extract and analyze a clean, unused certified PUF cartridge assembly.  
13.3.7.4  Technical Acceptance Criteria.  Technical criteria for the LCS are:

• All LCSs must be analyzed on a GC/MS system meeting the DFTPP instrument performance check and
initial calibration or continuing calibration technical acceptance criteria.

• The percent recovery for each of the surrogates in the LCS must be within the acceptance windows.
• The area response change for each of the internal standards for the LCS must be within -50 percent and

+100 percent compared to the internal standards in the most recent continuing calibration analysis.
• The retention time for each of the internal standards must be within ±20.0 seconds between the LCS and

the most recent CAL 3 analysis.
• All target analytes spiked on the certified PUF cartridge must meet a percent recovery between 60-120

to be acceptable.

13.3.7.5  Corrective Action.  Perform the following if the LCS exceed criteria:

• If the LCS do not meet the technical acceptance criteria, the analyst must consider the analytical system
to be out of control.  It is the analyst's responsibility to ensure that method interferences caused by
contaminants in solvents, reagents, glassware, and other sample storage and processing hardware that
lead to discrete artifacts and/or elevated baselines in gas chromatograms be eliminated.  If contamination
is a problem, the source of the contamination must be investigated and appropriate corrective measure
MUST be taken and documented before further sample analysis proceeds.
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• All samples processed with a LCS that is out of control (i.e., contaminated) will require re-analysis or
data qualifiers to be attached to the analytical results.

13.4  Sample Analysis by GC/MS

13.4.1  Summary.  The sample extract is analyzed by GC/MS and quantitated by the internal standard
method.

13.4.2  Frequency.  Before samples can be analyzed, the instrument must meet the GC/MS tuning and initial
calibration or continuing calibration technical acceptance criteria.  If there is time remaining in the 12-hour time
period with a valid initial calibration or continuing calibration, samples may be analyzed in the GC/MS system
that meet the instrument performance check criteria.

13.4.3  Procedure.  For sample analysis, perform the following:

• Set up the GC/MS system.
• All sample extracts must be allowed to warm to ambient temperature (~1 hour) before analysis.  All sample

extracts must be analyzed under the same instrumental conditions as the calibration standards.
• Add the internal standard spiking solution to the 1.0 mL extract.  For sample dilutions, add an appropriate

amount of the internal standard spiking solution to maintain the concentration of the internal standards at
2 ng/µL in the diluted extract.

• Inject 2.0 µL  of sample extract into the GC/MS, and start data acquisition.
• When all semi-volatile target compounds have eluted from the GC, terminate the MS data acquisition and

store data files on the data system storage device.  Use appropriate data output software to display full
range mass spectra and SICPs.  The sample analysis using the GC/MS is based on a combination of
retention times and relative abundances of selected ions (see Table 6).  These qualifiers should be stored
on the hard disk of the GC/MS data computer and are applied for identification of each chromatographic
peak.  The retention time qualifier is determined to be +0.10 minute of the library retention time of the
compound.  The acceptance level for relative abundance is determined to be ±15% of the expected
abundance.  Three ions are measured for most of the PAH compounds.  When compound identification is
made by the computer, any peak that fails any of the qualifying tests is flagged (e.g., with an *).  The data
should be manually examined by the analyst to determine the reason for the flag and whether the compound
should be reported as found.  Although this step adds some subjective judgment to the analysis, computer-
generated identification problems can be clarified by an experienced operator.  Manual inspection of the
quantitative results should also be performed to verify concentrations outside the expected range.

13.4.4  Dilutions.  The following section provides guidance when an analyte exceeds the calibration curve.

• When a sample extract is analyzed that has an analyte target compound concentration greater than the
upper limit of the initial calibration range or saturated ions from a compound excluding the compound
peaks in the solvent front), the extract must be diluted and reanalyzed.  Secondary ion quantitation is only
allowed when there are sample interferences with the primary quantitation ion.  If secondary ion
quantitation is used, calculate a relative response factor using the area response for the most intense
secondary ion which is free of sample interferences, and document the reasons for the use of the secondary
ion.

• Calculate the sample dilution necessary to keep the semi-volatile target compounds that required dilution
within the upper half of the initial calibration range so that no compound has saturated ions (excluding the
compound peaks in the solvent front).  Dilute the sample in hexane in a volumetric flask.  Analyze the
sample dilution.
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• The dilution factor chosen should keep the response of the largest peak for a target compound in the upper
half of the initial calibration range of the instrument.

• If the on-column concentration of any target compound in any sample exceeds the initial calibration range,
that sample must be diluted, the internal standard concentration readjusted, and the sample extract
reanalyzed.

• Use the results of the original analysis to determine the approximate dilution factor required to get the
largest analyte peak within the initial calibration range.

13.4.5  Quantitation.  This section provides guidance for quantitating PAH analytes.

• Target components identified shall be quantified by the internal standard method.  The internal standards
used for the target compounds are the ones nearest the retention time of a given analyte.

• The relative response factor (RRF) from the daily continuing calibration standard analysis (or RRF of CAL
3) if the sample is analyzed in the same 12-hour sequence as the initial calibration) is used to calculate the
concentration in the sample.  Secondary ion quantitation is allowed only when there are sample
interferences with the primary ion.  If secondary ion quantitation is performed, document the reasons.  The
area of a secondary ion cannot be substituted for the area of a primary ion unless a relative response factor
is calculated using the secondary ion.

• A retention time window is calculated for each single component analyte and surrogate.  Windows are
established as ±0.01 RRT units of the retention time for the analyte in CAL 3 of the initial calibration or
the continuing calibration.

13.4.6  Calculations.  Perform the following calculations:
13.4.6.1  Calculation of Concentration.  Calculate target compound concentrations using the following

equation:

where:
A  = area response for the compound to be measured, countsx

A  = area response for the internal standard, countsis

I  = amount of internal standard, ng/µL s

 = the mean RRF from the most recent initial calibration, dimensionless
V  = volume of air sampled, std mi

3

V  = volume of final extract, µL t

D  = dilution factor for the extract.  If there was no dilution, D  equals 1.  If the sample was diluted, the Df f f

is greater than 1.

The concentrations calculated can be converted to ppb  for general reference.  The analyte concentration can bev

converted to ppb  using the following equation:v

where:
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C  = concentration of analyte calculated, ng/std. mA
3

MW  = molecular weight of analyte, g/g-moleA

24.4 = molar volume occupied by ideal gas at standard temperature and pressure (25EC and 760 mm Hg),
L/mole.

13.4.6.2  Estimated Concentration.  The equation in Section 13.4.6.1 is also used for calculating the
concentrations of the non-target compounds.  Total area counts (or peak heights) from the total ion chromatogram
generated by the mass spectrometer for Compendium Method TO-13A PAHs (see Figure 16) are to be used for
both the non-target compound to be measured (A ) and the internal standard (A ).  Associate the nearest internalx is

standard free of interferences with the non-target compound to be measured.  A relative response factor (RRF)
of one (1) is to be assumed.  The value from this quantitation shall be qualified as estimated ("J") (estimated, due
to lack of a compound-specific response factor) and "N" (presumptive evidence of presence), indicating the
quantitative and qualitative uncertainties associated with this non-target component.  An estimated concentration
should be calculated for all tentatively identified compounds (TICs) as well as those identified as unknowns.  

13.4.6.3  Surrogate Percent Recovery (%R).  Calculate the surrogate percent recovery using the
following equation:

where:
Q  = Quantity determined by analysis, ngd

Q  = Quantity added to sample/blank, nga

The surrogate percent recovery must fall between 60-120% to be acceptable.

13.4.6.4  Percent Area Response Change (%ARC).  Calculate the percent area response change
(%ARC) for the sample/blank analysis compared to the most recent CAL 3 analysis for each of the internal
standard compounds using the following equation:

where:
%ARC = percent area response change, %

A  = area response of the internal standard in the sample/blank analysis, countss

A  = area response of the internal standard in the most recent CAL 3 analysis, countsx

The area change for the internal standard must not exceed -50 to +100 percent.

13.4.6.5  Internal Standard Retention Time Shift (RTS).  Calculate the retention time shift (RTS)
between the sample/blank analysis and the most recent CAL 3 analysis for each of the internal standards using
the following equation:

where:
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RT  = retention time of the IS in the samples

RT  = retention time of the IS in the most recent CAL 3 analysis.x

13.4.7  Technical Acceptance Criteria.  The following guideline is provided as technical acceptance criteria.
13.4.7.1  All target compound concentrations must not exceed the upper limit of the initial calibration range

and no compound ion (excluding the compound peaks in the solvent front) may saturate the detector.
13.4.7.2  Internal standard responses and retention times in all samples must be evaluated during or

immediately after data acquisition.  If the retention time for any internal standard changes by more than 20
seconds from the latest continuing calibration standard or CAL 3 if samples are analyzed in the same 12-hour
sequence as the initial calibration, the chromatographic system must be inspected for malfunctions, and
corrections made as required.  The SICP of the internal standards must be monitored and evaluated for each field
and QC sample.  If the SICP area for any internal standard changes by more than a factor of -50 to +100 percent,
the mass spectrometric system must be inspected for malfunction and corrections made as appropriate.  If the
analysis of a subsequent sample or standard indicates that the system is functioning properly, then corrections
may not be required.

13.4.7.3  When target compounds are below the low standard, but the spectrum meets the identification
criteria, report the concentration/amount with a "J."  For example, if the low standard corresponds to 0.1Fg and
an amount of 0.05 Fg is calculated, report as "0.05J."

13.4.8  Corrective Action.  The following section provides guidance if analyte exceeds the technical criteria.

• If the sample technical acceptance criteria for the surrogates and internal standards are not met, check
calculations, surrogate and internal standard solutions, and instrument performance.  It may be necessary
to recalibrate the instrument or take other corrective action procedures to meet the surrogate and internal
standard technical acceptance criteria.

• Sample analysis technical acceptance criteria must be met before data are reported.  Samples contaminated
from laboratory sources, or associated with a contaminated method blank, or any samples analyzed that
are not meet the technical acceptance criteria will require reanalysis.

• The samples or standards with SICP areas outside the limits must be reanalyzed.  If corrections are made,
then the laboratory must demonstrate that the mass spectrometric system is functioning properly.  This
must be accomplished by the analysis of a standard or sample that meets the SICP criteria.  After
corrections are made, the reanalysis of samples analyzed while the system was malfunctioning is required.

• If after reanalysis, the SICP areas for all internal standards are inside the technical acceptance limits (-50
to +100 percent), then the problem with the first analysis is considered to have been within the control of
the laboratory.  Therefore, submit only data from the analysis with SICPs within the technical acceptance
limits.  This is considered the initial analysis and must be reported as such on all data deliverables.

• If the reanalysis of the sample does not solve the problem (i.e., the SICP areas are outside the technical
acceptance limits for both analyses) then the laboratory must submit the SICP data and sample data from
both analyses.  Distinguish between the initial analysis and the reanalysis on all data deliverables, using
the sample suffixes specified.

• Tentative identification of an analyte occurs when a peak from a sample extract falls within the daily
retention time window.

• If sample peaks are not detected, or all are less than full-scale deflection, the undiluted extract is acceptable
for GC/MS analysis.  If any sample ions are greater than the 120 percent of the initial calibration curve
range, calculate the dilution necessary to reduce the major ion to between half- and full-range response.
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14.  Quality Assurance/Quality Control (QA/QC)

14.1  General System QA/QC

14.1.1  Each laboratory that uses Compendium Method TO-13A must operate a formal quality control
program.  The minimum requirements of this program consist of an initial demonstration of laboratory capability
and an ongoing analysis of spiked samples to evaluate and document quality data.  The laboratory must maintain
records to document the quality of the data generated.  Ongoing data quality checks are compared with established
performance criteria to determine if the results of analyses meet the performance characteristics of the method.
When results of sample spikes indicate a typical method performance, a quality control check standard must be
analyzed to confirm that the measurements were performed in an in-control mode of operation.

14.1.2  Before processing any samples, the analyst should demonstrate, through the analysis of a reagent
solvent blank, that interferences from the analytical system, glassware, and reagents are under control.  Each time
a set of samples is extracted or there is a change in reagents, a reagent solvent blank should be processed as a
safeguard against chronic laboratory contamination.  The blank samples should be carried through all stages of
the sample preparation and measurement steps.

14.1.3  For each analytical batch (up to 20 samples), a reagent blank, matrix spike, and deuterated/surrogate
samples must be analyzed (the frequency of the spikes may be different for different monitoring programs).  The
blank and spiked samples must be carried through all stages of the sample preparation and measurement steps.

14.1.4  The experience of the analyst performing GC/MS is invaluable to the success of the methods.  Each
day that analysis is performed, the daily calibration sample should be evaluated to determine if the
chromatographic system is operating properly.  Questions that should be asked are:  Do the peaks look normal?
Are the response windows obtained comparable to the response from previous calibrations?  Careful examination
of the standard chromatogram can indicate whether the column is still good, the injector is leaking, the injector
septum needs replacing, etc.  If any changes are made to the system (e.g., column changed), recalibration of the
system must take place.

14.2  Process, Field, and Solvent Blanks

14.2.1  One PUF cartridge and filter from each batch of approximately 20 should be analyzed without
shipment to the field for the compounds of interest to serve as a process blank.  A blank level specified in
Section 10.2 for each cartridge/filter assembly is considered to be acceptable.

14.2.2  During each sampling episode, at least one cartridge and filter should be shipped to the field and
returned, without drawing air through the sampler, to serve as a field blank.

14.2.3  During the analysis of each batch of samples at least one solvent process blank (all steps conducted
but no cartridge or filter included) should be carried through the procedure and analyzed.  Blank levels should
be those specified in Section 10.2 for single components to be acceptable.

14.2.4  Because the sampling configuration (filter and backup sorbent) has been tested for targeted PAHs
in the laboratory in relationship to collection efficiency and has been demonstrated to be greater than 95 percent
for targeted PAHs (except naphthalene, acenaphthylene, and acenaphthene), no field recovery evaluation is
required as part of the QA/QC program outlined in this section.

15.  References



PAHs Method TO-13A

January 1999 Compendium of Methods for Toxic Organic Air Pollutants Page 13A-41

1.  Dubois, L., Zdrojgwski, A., Baker, C., and Monknao, J.L., "Some Improvement in the Determination of
Benzo[a]Pyrene in Air Samples,"  J. Air Pollut. Contr. Assoc., 17:818-821, 1967.

2.  Intersociety Committee, "Tentative Method of Analysis for Polynuclear Aromatic Hydrocarbon of
Atmospheric Particulate Matter," Health Laboratory Science, 7(1):31-40, 1970.

3.  Cautreels, W., and Van Cauwenberghe, K., "Experiments on the Distribution of Organic Pollutants Between
Airborne Particulate Matter and Corresponding Gas Phase,"  Atmos. Environ., 12:1133-1141, 1978.

4.  "Tentative Method of Microanalysis for Benzo[a]Pyrene in Airborne Particles and Source Effluents,"
American Public Health Association, Health Laboratory Science, 7(1):56-59, 1970.

5.  "Tentative Method of Chromatographic Analysis for Benzo[a]Pyrene and Benzo[k]Fluoranthene in
Atmospheric Particulate Matter," American Public Health Association, Health Laboratory Science, 7(1):60-67,
1970.

6.  "Tentative Method of Spectrophotometric Analysis for Benzo[a]Pyrene in Atmospheric Particulate Matter,"
American Public Health Association, Health Laboratory Science, 7(1):68-71, 1970.

7.  Jones, P.W., Wilkinson, J.E., and Strup, P.E., Measurement of Polycyclic Organic Materials and Other
Hazardous Organic Compounds in Stack Gases: State-of-the-Art, U. S. Environmental Protection Agency,
Research Triangle Park, NC, U.S. EPA-600/2-77-202, 1977.

8.  Walling, J.F., Standard Operating Procedure for Ultrasonic Extraction and Analysis of Residual
Benzo[a]Pyrene from Hi-Vol Filters via Thin-Layer Chromatography, U.S. Environmental Protection Agency,
Environmental Monitoring Systems Laboratory, Methods Development and Analysis Division, Research Triangle
Park, NC, EMSL/RTP-SOP-MDAD-015, December, 1986.

9.  Rasor, S., Standard Operating Procedure for Polynuclear Aromatic Hydrocarbon Analysis by High
Performance Liquid Chromatography Methods, Acurex Corporation, Research Triangle Park, NC, 1978.

10.  Rapport, S. W., Wang, Y. Y., Wei, E. T., Sawyer, R., Watkins, B. E., and Rapport, H., "Isolation and
Identification of a Direct-Acting Mutagen in Diesel Exhaust Particulates," Envir. Sci. Technol., 14:1505-1509,
1980.

11.  Konlg, J., Balfanz, E., Funcke, W., and Romanowski, T., "Determination of Oxygenated Polycyclic Aromatic
Hydrocarbons in Airborne Particulate Matter by Capillary Gas Chromatography and Gas Chromatography/Mass
Spectrometry," Anal. Chem., 55:599-603, 1983.

12.  Chuang, J. C., Bresler, W. E., and Hannan, S. W., Evaluation of Polyurethane Foam Cartridges for
Measurement of Polynuclear Aromatic Hydrocarbons in Air, U.S. Environmental Protection Agency,
Environmental Monitoring Systems Laboratory, Methods Development and Analysis Division, Research Triangle
Park, NC, EPA-600/4-85-055, September 1985.

13.  Chuang, J. C., Hannan, S. W., and Koetz, J. R., Stability of Polynuclear Aromatic Compounds Collected
from Air on Quartz Fiber Filters and XAD-2 Resin, U.S. Environmental Protection Agency, Environmental
Monitoring Systems Laboratory, Methods Development and Analysis Division, Research Triangle Park, NC,
EPA-600/4-86-029, September 1986.



Method TO-13A PAHs

Page 13A-42 Compendium of Methods for Toxic Organic Air Pollutants January 1999

14.  Feng, Y., and Bidleman, T. F., "Influence of Volatility on the Collection of Polynuclear Aromatic
Hydrocarbon Vapors with Polyurethane Foam," Envir. Sci. Technol., 18:330-333, 1984.

15.  Yamasaki, H., Kuwata, K., and Miyamoto, H., "Effects of Ambient Temperature on Aspects of Airborne
Polycyclic Aromatic Hydrocarbons," Envir. Sci. Technol., 16:89-194, 1982.

16.  Galasyn, J. F., Hornig, J. F., and Soderberg, R. H., "The Loss of PAH from Quartz Fiber High Volume
Filters," J. Air Pollut. Contr. Assoc., 34:57-59, 1984.

17.  You, F., and Bidleman, T. F., "Influence of Volatility on the Collection of Polynuclear Aromatic Hydrocarbon
Vapors with Polyurethane Foam," Envir. Sci. Technol., 18:330-333, 1984.

18.  Chuang, J. C., Hannan, S. W., and Koetz, J. R., Comparison of Polyurethane Foam and XAD-2 Resin as
Collection Media for Polynuclear Aromatic Hydrocarbons in Air, U.S. Environmental Protection Agency,
Environmental Monitoring Systems Laboratory, Methods Development and Analysis Division, Research Triangle
Park, NC, EPA-600/4-86-034, December 1986.

19.  Chuang, J. C., Mack, G. A., Mondron, P. J., and Peterson, B. A., Evaluation of Sampling and Analytical
Methodology for Polynuclear Aromatic Compounds in Indoor Air, U.S. Environmental Protection Agency,
Environmental Monitoring Systems Laboratory, Methods Development and Analysis Division, Research Triangle
Park, NC, EPA-600/4-85-065, January 1986.

20.  Lewis, R. G., Brown, A. R., and Jackson, M. D., "Evaluation of Polyurethane Foam for High-Volume Air
Sampling of Ambient Levels of Airborne Pesticides, Polychlorinated Biphenyls, and Polychlorinated
Naphthalenes," Anal. Chem., 49:1668-1672, 1977.

21.  Lewis, R. G., and Jackson, M. D., "Modification and Evaluation of a High-Volume Air Sampler for
Pesticides and Other Semi-volatile Industrial Organic Chemicals," Anal. Chem., 54:592-594, 1982.

22.  Winberry, W. T., and Murphy, N. T., Supplement to Compendium of Methods for the Determination of
Toxic Organic Compounds in Ambient Air, U.S. Environmental Protection Agency, Environmental Monitoring
Systems Laboratory, Quality Assurance Division, Research Triangle Park, NC, EPA-600/4-87-006, September
1986.

23.  Winberry, W. T., and Murphy, N. T., Second Supplement to Compendium of Methods for the
Determination of Toxic Organic Compounds in Ambient Air, U.S. Environmental Protection Agency,
Environmental Monitoring Systems Laboratory, Quality Assurance Division, Research Triangle Park, NC, EPA
600/4-89-018, June 1989.

24.  Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater, U.S. Environmental
Protection Agency, Environmental Monitoring and Support Laboratory, Cincinnati, OH, EPA-600/4-82-057, July
1982.

25.  ASTM Annual Book of Standards, Part 31, D 3694, "Standard Practice for Preparation of Sample Containers
and for Preservation," American Society for Testing and Materials, Philadelphia, PA, p. 679, 1980.

26.  Burke, J. A., "Gas Chromatography for Pesticide Residue Analysis; Some Practical Aspects," Journal of
the Association of Official Analytical Chemists, 48:1037, 1965.



PAHs Method TO-13A

January 1999 Compendium of Methods for Toxic Organic Air Pollutants Page 13A-43

27.  Cole, T., Riggin, R., and Glaser, J., Evaluation of Method Detection Limits:  Analytical Curve for EPA
Method 610 - PNAs, 5th International Symposium on Polynuclear Aromatic Hydrocarbons, Battelle,  Columbus,
OH, 1980.

28.  Handbook of Analytical Quality Control in Water and Wastewater Laboratories, U.S. Environmental
Protection Agency, Environmental Monitoring and Support Laboratory, Cincinnati, OH, EPA-600/4-79-019,
March 1979.

29.  ASTM Annual Book of Standards, Part 31, D 3370, "Standard Practice for Sampling Water," American
Society for Testing and Materials, Philadelphia, PA, p. 76, 1980.

30.  Protocol for the Collection and Analysis of Volatile POHC's (Principal Organic Hazardous Constituents)
Using VOST (Volatile Organic Sampling Train), U. S. Environmental Protection Agency, Research Triangle
Park, NC, EPA-600/8-84-007, March 1984.

31.  Sampling and Analysis Methods for Hazardous Waste Combustion - Methods 3500, 3540, 3610, 3630,
8100, 8270, and 8310; Test Methods for Evaluating Solid Waste (SW-846), U.S. Environmental Protection
Agency, Office of Solid Waste, Washington, D.C.

32.  Riggin, R. M., Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient
Air, U.S. Environmental Protection Agency, Environmental Monitoring Systems Laboratory, Quality Assurance
Division, Research Triangle Park, NC, EPA-600/4-84-041, April 1984.

33.  Chuang, C. C., and Peterson, B. A., Review of Sampling and Analysis Methodology for Polynuclear
Aromatic Compounds in Air from Mobile Sources, Final Report, U. S. Environmental Protection Agency,
Research Triangle Park, NC, EPA-600/S4-85-045, August 1985.

34.  Measurement of Polycyclic Organic Matter for Environmental Assessment, U.S. Environmental Protection
Agency, Industrial Environmental Research Laboratory, Research Triangle Park, NC, EPA-600/7-79-191, August
1979.

35.  Hudson, J. L., Standard Operating Procedure No. FA 113C: Monitoring for Particulate and Vapor Phase
Pollutants Using the Portable Particulate/Vapor Air Sampler, U.S. Environmental Protection Agency, Region
VII, Environmental Monitoring and Compliance Branch, Environmental Services Division, Kansas City, KS,
March 1987.

36.  Trane, K. E., and Mikalsen, A., "High-Volume Sampling of Airborne Polycyclic Aromatic Hydrocarbons
Using Glass Fibre Filters and Polyurethane Foam," Atmos. Environ., 15:909-918, 1981.

37.  Keller, C. D., and Bidleman, T. F., "Collection of Airborne Polycyclic Hydrocarbons and Other Organics with
a Glass Fiber Filter - Polyurethane Foam System," Atmos. Environ., 18:837-845, 1984.

38.  Hunt, G. T., and Pangaro, N., "Ambient Monitoring of Polynuclear Aromatic Hydrocarbons (PAHs)
Employing High Volume Polyurethane Foam (PUF) Samplers," In Polynuclear Aromatic Hydrocarbons, Cooke,
M., Dennis, and A. J., Eds, Battelle Press, Columbus, OH, pp. 583-608, 1985.



Method TO-13A PAHs

Page 13A-44 Compendium of Methods for Toxic Organic Air Pollutants January 1999

39.  Alfeim, I., and Lindskog, A., "A Comparison Between Different High Volume Sampling Systems for
Collecting Ambient Airborne Particles for Mutagenicity Testing and for Analysis of Organic Compounds," Sci.
Total Environ., 34:203-222, 1984.

40.  Umlauf, G., and Kaupp, H., "A Sampling Device for Semivolatile Organic Compounds in Ambient Air,"
Chemosphere, 27:1293-1296, 1993.

41.  Hippelein, M., Kaupp, H., Dorr, G., and McLachlan, M. S., "Testing of a Sampling System and Analytical
Method for Determination of Semivolatile Organic Chemicals in Air," Chemosphere, 26:2255-2263, 1993.

42.  Ligocki, M. P., and Ponkow, J. F., "Assessment of Adsorption/Solvent Extraction with Polyurethane Foam
and Adsorption/Thermal Desorption with Tenax-GC for Collection and Analysis of Ambient Organic Vapors,"
Anal. Chem., 57:1138-1144, 1985.

43.  Yamasaki, H., Kuwata, K., and Miyamoto, H., "Effects of Ambient Temperature on Aspects of Airborne
Polycyclic Aromatic Hydrocarbons," Envir. Sci. Technol., 16:189-194, 1982.

44.  Hart, K. M., and Pankow, J. F., "High-Volume Air Sampler for Particle and Gas Sampling:  Use of Backup
Filters to Correct for the Adsorption of Gas-Phase Polycyclic Aromatic Hydrocarbons to the Front Filter," Envir.
Sci. Technol., 28:655-661, 1994.

45.  Kaupp, H., and Umlauf, G., "Atmospheric Gas-Particle Partitioning of Organic Compounds:  Comparison
of Sampling Methods," Atmos. Environ., 13:2259-2267, 1992.

46.  Coutant, R. W., Brown, L., Chuang, J. C., Riggin, R. M., and Lewis, R. G., "Phase Distribution and Artifact
Formation in Ambient Air Sampling for Polynuclear Aromatic Hydrocarbons," Atmos. Environ., 22:403-409,
1988.

47.  Coutant, R. W., Callahan, P. J., Kuhlman, M. R., and Lewis, R. G., "Design and Performance of a High-
Volume Compound Annular Denuder," Atmos. Environ., 23:2205-2211.

48.  Lewis, R. G., Kelly, T. J., Chuang, J. C., Callahan, P. J., and Coutant, R. W., "Phase Distributions of
Airborne Polycyclic Aromatic Hydrocarbons in Two U.S. Cities," In Proceedings of the 9th World Clean Air
Congress & Exhibition, Montreal, Ontario, Canada, 1991, Vol., Paper IU-11E.02.

49.  Kaupp, H., and Umlauf, G., "Atmospheric Gas-Particle Partitioning of Organic Compounds: Comparison
of Sampling Methods," Atmos. Environ., 26A:2259-2267, 1992.

50.  Riggin, R. M., Technical Assistance Document for Sampling and Analysis of Toxic Organic Compounds
in Ambient Air, U.S. Environmental Protection Agency, Environmental Monitoring Systems Laboratory, Quality
Assurance Division, Research Triangle Park, NC, EPA-600/4-83-027, June 1983.

51.  ASTM Annual Book of Standards, Part 31, D 3694, "Standard Practice for Preparation of Sample Containers
and for Preservation," American Society for Testing and Materials, Philadelphia, PA, p. 679, 1980.

52.  Carcinogens - Working with Carcinogens, Department of Health, Education, and Welfare, Public Health
Service, Center for Disease Control, National Institute for Occupational Safety and Health, Publication No. 77-
206, August 1977.



PAHs Method TO-13A

January 1999 Compendium of Methods for Toxic Organic Air Pollutants Page 13A-45

53.  OSHA Safety and Health Standards, General Industry, (29CFR1910), Occupational Safety and Health
Administration, OSHA, 2206, Revised, January 1976.

54.  "Safety in Academic Chemistry Laboratories," American Chemical Society Publication, Committee on
Chemical Safety, 3rd Edition, 1979.



Method TO-13A PAHs

Page 13A-46 Compendium of Methods for Toxic Organic Air Pollutants January 1999

T
A

B
L

E
 1

.  
FO

R
M

U
L

A
E

 A
N

D
 P

H
Y

SI
C

A
L

 P
R

O
PE

R
T

IE
S 

O
F 

SE
L

E
C

T
E

D
 P

A
H

s

C
om

po
un

d
Fo

rm
ul

a
M

ol
ec

ul
ar

 W
ei

gh
t

M
el

tin
g 

Po
in

t, 
EC

B
oi

lin
g 

Po
in

t, 
EC

V
ap

or
 P

re
ss

ur
e,

kP
a

C
A

S 
R

N
 #

N
ap

ht
ha

le
ne

C
H

10
8

12
8.

18
80

,2
21

8
1.

1x
10

91
-2

0-
3

A
ce

na
ph

th
yl

en
e

C
H

12
8

15
2.

20
92

-9
3

26
5-

28
0

3.
9x

10
20

8-
96

-8

A
ce

na
ph

th
en

e
C

H
12

10
15

4.
20

90
-9

6
27

8-
27

9
2.

1x
10

83
-3

2-
9

Fl
uo

re
ne

C
H

13
10

16
6.

23
11

6-
11

8
29

3-
29

5
8.

7x
10

86
-7

3-
7

A
nt

hr
ac

en
e

C
H

14
10

17
8.

24
21

6-
21

9
34

0
36

x1
0

12
0-

12
-7

Ph
en

an
th

re
ne

C
H

14
10

17
8.

24
96

-1
01

33
9-

34
0

2.
3x

10
85

-0
1-

8

Fl
uo

ra
nt

he
ne

C
H

16
10

20
2.

26
10

7-
11

1
37

5-
39

3
6.

5x
10

20
6-

44
-0

Py
re

ne
C

H
16

10
20

2.
26

15
0-

15
6

36
0-

40
4

3.
1x

10
12

9-
00

-0

B
en

z(
a)

an
th

ra
ce

ne
C

H
18

12
22

8.
30

15
7-

16
7

43
5

1.
5x

10
56

-5
5-

3

C
hr

ys
en

e
C

H
18

12
22

8.
30

25
2-

25
6

44
1-

44
8

5.
7x

10
21

8-
01

-9

B
en

zo
(b

)f
lu

or
an

th
en

e
C

H
20

12
25

2.
32

16
7-

16
8

48
1

6.
7x

10
20

5-
99

-2

B
en

zo
(k

)f
lu

or
an

th
en

e
C

H
20

12
25

2.
32

19
8-

21
7

48
0-

47
1

2.
1x

10
20

7-
08

-9

Pe
ry

le
ne

C
H

20
12

25
2.

32
27

3-
27

8
50

0-
50

3
7.

0x
10

19
8-

55
-8

B
en

zo
(a

)p
yr

en
e

C
H

20
12

25
2.

32
17

7-
17

9
49

3-
49

6
7.

3x
10

50
-3

2-
8

B
en

zo
(e

)p
yr

en
e

C
H

20
12

25
2.

32
17

8-
17

9
49

3
7.

4x
10

19
2-

92
-2

B
en

zo
(g

,h
,i)

pe
ry

le
ne

C
H

22
1227

6.
34

27
5-

27
8

52
5

1.
3x

10
19

1-
24

-2

In
de

no
(1

,2
,3

-c
d)

py
re

ne
C

H
22

12
27

6.
34

16
2-

16
3

--
ca

.1
0

19
3-

39
-5

D
ib

en
z(

a,
h)

an
th

ra
ce

ne
C

H
22

14
27

8.
35

26
6-

27
0

52
4

1.
3x

10
53

-7
0-

3

C
or

on
en

e
C

H
24

12
30

0.
36

43
8-

44
0

52
5

2.
0x

10
19

1-
07

-1

m
po

un
ds

 s
ub

lim
e.

M
an

y 
of

 th
es

e 
co

1



PAHs Method TO-13A

January 1999 Compendium of Methods for Toxic Organic Air Pollutants Page 13A-47

TABLE 2.  GC-MS OPERATING CONDITIONS

Activity Conditions

Gas Chromatography

Column

Carrier Gas

Injection Volume

Injector Temperature

J&W Scientific, DB-5 crosslinked 5% phenylmethyl silicone 
(30 m x 0.32 mm, 1.0 µm film thickness) or equivalent

Helium, velocity between 28-30 cm /sec at 250EC3

2 µL, Grob-type, splitless

290EC

Temperature Program

Initial Column Temperature

Initial Hold Time

Program

Final Temperature

Final Hold Time

70EC

4 ± 0.1 min.

10EC/min to 300EC and hold 10 min.

300EC

10 min. or until all compounds of interest have eluted

Mass Spectrometer

Transfer Line Temperature

Source Temperature

Electron Energy

Ionization Mode

Mass Range

290EC or According to Manufacturer's Specification

According to Manufacturer's Specifications

70 volts (nominal)

EI

35 to 500 amu, full range data acquisition (SCAN) mode

Scan Time At least 5 scans per peak, not to exceed 1 second per scan.

TABLE 3.  DFTPP KEY IONS & ION 
ABUNDANCE CRITERIA

Mass Ion Abundance Criteria

51 30 to 60% of mass 198

68
70

Less than 2% of mass 69
Less than 2% of mass 69

127 40 to 60% of mass 198

197
198
199

Less than 2% of mass 198
Base peak, 100% relative abundance
5 to 9% of mass 198

275 10 to 30% of mass 198

365 Greater than 1.0% of mass 198

441
442
443

Present but less than mass 443
40% of mass 198
17 to 23% of mass 442
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TABLE 4.  COMPOSITION AND APPROXIMATE CONCENTRATION 
OF CALIBRATION SOLUTIONS

Target Compound

Concentration, ng/µL 

CAL 1 CAL 2 CAL 3 CAL 4 CAL 5

PAHs 0.10 0.25 0.50 1.25 2.50

Acenaphthene 0.10 0.25 0.50 1.25 2.50

Acenaphthylene 0.10 0.25 0.50 1.25 2.50

Anthracene 0.10 0.25 0.50 1.25 2.50

Benz(a)anthracene 0.10 0.25 0.50 1.25 2.50

Benzo(a)pyrene 0.10 0.25 0.50 1.25 2.50

Benzo(b)fluoranthene 0.10 0.25 0.50 1.25 2.50

Benzo(e)pyrene 0.10 0.25 0.50 1.25 2.50

Benzo(g,h,i)perylene 0.10 0.25 0.50 1.25 2.50

Benzo(k)fluoranthene 0.10 0.25 0.50 1.25 2.50

Chrysene 0.10 0.25 0.50 1.25 2.50

Perylene 0.10 0.25 0.50 1.25 2.50

Dibenz(a,h)anthracene 0.10 0.25 0.50 1.25 2.50

Fluoranthene 0.10 0.25 0.50 1.25 2.50

Fluorene 0.10 0.25 0.50 1.25 2.50

Indeno(1,2,3-c,d)pyrene 0.10 0.25 0.50 1.25 2.50

Naphthalene 0.10 0.25 0.50 1.25 2.50

Coronene 0.10 0.25 0.50 1.25 2.50

Phenanthrene 0.10 0.25 0.50 1.25 2.50

Pyrene 0.10 0.25 0.50 1.25 2.50
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TABLE 4.  (Continued)

Target Compound

Concentration, ng/µL 

CAL 1 CAL 2 CAL 3 CAL 4 CAL 5

SUGGESTED INTERNAL
STANDARDS

D -Naphthalene8 0.5 0.5 0.5 0.5 0.5

D -Acenaphthene10 0.5 0.5 0.5 0.5 0.5

D -Phenanthrene10 0.5 0.5 0.5 0.5 0.5

D -Chrysene12 0.5 0.5 0.5 0.5 0.5

D -Perylene12 0.5 0.5 0.5 0.5 0.5

SUGGESTED SURROGATE
COMPOUNDS

D -Fluoranthene (field)10 0.10 0.25 0.50 1.25 2.50

D -Benzo[a]pyrene (field)12 0.10 0.25 0.50 1.25 2.50

D -Fluorene (lab)10 0.10 0.25 0.50 1.25 2.50

D -Pyrene (lab)10 0.10 0.25 0.50 1.25 2.50
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TABLE 5.  CHARACTERISTIC IONS FOR SURROGATE SUGGESTED STANDARDS

Classification Primary Ion Secondary Ion

Internal Standards

D -Naphthalene8

D -Acenaphthene10

D -Phenanthrene10

D -Chrysene12

D -Perylene12

136
164
188
240
264

68,137
162,165
94,189
120,241
260,265

Laboratory Surrogates

D -Fluorene10

D -Pyrene10

176
212

88,177
106,213

Field Surrogates

D -Fluoranthene10

D -Benzo(a)pyrene12

212
264

106,213
132,265
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TABLE 6.  EXAMPLE OF CHARACTERISTIC IONS FOR COMMON PAHs

Analyte Primary Ion Secondary Ion(s)

Pyrene 202 101,203

Benz(a)anthracene 228 229,226

Chrysene 228 226,229

Benzo(a)pyrene 252 253,126

Benzo(b)fluoranthene 252 253,126

Benzo(k)fluoranthene 252 253,126

Benzo(g,h,i)perylene 276 138,277

Dibenz(a,h)anthracene 278 139,279

Anthracene 178 179,176

Phenanthrene 178 179,176

Acenaphthene 154 153,152

Acenaphthylene 152 151,153

Benzo(e)pyrene 252 253,126

Fluoranthene 202 101,203

Fluorene 166 165,167

Ideno(1,2,3-cd)pyrene 276 138,227

Naphthalene 128 129,127

Perylene 252 253,126

Coronene 300 150,301
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TABLE 7.  EXAMPLE OF RELATIVE RESPONSE FACTOR CRITERIA 
FOR INITIAL AND CONTINUING CALIBRATION OF 

COMMON SEMI-VOLATILE COMPOUNDS

Semi-volatile
Compounds

          Minimum          
 RRF

Maximum
%RSD

Maximum
%Difference

Naphthalene 0.700 30 30

Acenaphthylene 1.300 30 30

Acenaphthene 0.800 30 30

Fluorene 0.900 30 30

Phenanthrene 0.700 30 30

Anthracene 0.700 30 30

Fluoranthene 0.600 30 30

Pyrene 0.600 30 30

Benz(a)anthracene 0.800 30 30

Chrysene 0.700 30 30

Benzo(b)fluoranthene 0.700 30 30

Benzo(k)fluoranthene 0.700 30 30

Benzo(a)pyrene 0.700 30 30

Indeno(1,2,3-cd)pyrene 0.500 30 30

Dibenz(a,h)anthracene 0.400 30 30

Benzo(g,h,i)perylene 0.500 30 30

Perylene 0.500 30 30

Coronene 0.700 30 30
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TABLE 8.  MINIMUM SAMPLING EQUIPMENT CALIBRATION AND 
ACCURACY REQUIREMENTS

Equipment Acceptance limits
Frequency and method of
measurement

Action if require-
ments are not met

Sampler Indicated flow rate =
true flow rate, ±10%.

Calibrate with certified
transfer standard on
receipt, after
maintenance on sampler,
and any time audits or
flow checks deviate more
than ±10% from the
indicated flow rate or
+10% from the design
flow rate.

Recalibrate

Associated equipment

Sampler on/off timer ±30 min/24 hour Check at purchase and
routinely on sample-
recovery days

Adjust or replace

Elapsed-time meter ±30 min/24 hour Compare with a standard
time-piece of known
accuracy at receipt and at
6-month intervals

Adjust or replace

Flowrate transfer
standard (orifice
device)

Check at receipt for
visual damage

Recalibrate annually
against positive
displacement standard
volume meter

Adopt new
calibration curve
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Figure 1.  Ring structure of common PAHs.
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Figure 2.  Typical high volume air sampler for PAHs.
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Figure 3.  Typical absorbent cartridge assembly for sampling PAHs.
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Figure 4.  Apparatus used for sample clean-up and extraction.
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Figure 5.  Glass PUF cartridge (5a) and shipping container 
(5b) for use with Compendium Method TO-13A.
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Figure 6.  Example of a field portable high volume air sampler for 
sampling PAHs developed by EPA.



Method TO-13A PAHs

Page 13A-60 Compendium of Methods for Toxic Organic Air Pollutants January 1999

Figure 7.  Positive displacement rootsmeter used to calibrate orifice transfer standard 
used in Compendium Method TO-13A.
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Figure 9.  Typical field calibration configuration for Compendium Method TO-13A sampler.
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FIELD CALIBRATION DATA SHEET FOR COMPENDIUM METHOD TO-13A PAH
SAMPLER CALIBRATION

Sampler ID: 

Sampler Location: 

Calibration Orifice ID:  

Job No.:  
High Volume Transfer Orifice Data:

Correlation Coefficient (CC1): Slope (M1): 
(CC2): (M2): 

Intercept (B1): 
(B2): 

Calibration Date:         Time: 
Calibration Ambient Temperature:         EF          EC CALIBRATOR'S SIGNATURE
Calibration Ambient Barometric Pressure:         "Hg          mm Hg
Calibration set point (SP):                            

SAMPLER CALIBRATION

Actual values from calibration Calibrated values

Orifice manometer,
inches
(Y1)

Monitor magnehelic,
inches
(Y2)

Orifice manometer
(Y3)

Monitor magnehelic
(Y4)

Calculated value
orifice flow, scm

(X1)

70

60

50

40

30

20

10

Definitions

Y1 = Calibration orifice reading, in. H O2

Y2 = Monitor magnehelic reading, in. H O2

P = Barometric pressure actual, mm Hga

B1 = Manufacturer's Calibration orifice Intercept 

M1 = Manufacturer's Calibration orifice manometer

slope 

Y3 = Calculated value for orifice manometer

= {Y1(Pa/760)[298/(Ta + 273)]}½

Y4 = Calculated value for magnehelic

= {Y2(Pa/760)[298/(Ta + 273)]}½

X1 = Calculated value orifice flow, scm

= (Y3 - B1)/M1

P = Barometric pressure standard, 760 mm Hgstd

T = Temperature actual, ECa

T = Temperature standard, 25ECstd

Figure 10.  Typical orifice transfer field calibration data sheet for Compendium Method TO-13A.
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Figure 11.  Example of relationship between orifice transfer standard and flow rate through
Compendium Method TO-13A sampler.
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COMPENDIUM METHOD TO-13A
FIELD TEST DATA SHEET
GENERAL INFORMATION

CC Sampler I.D. No.:
CC Lab PUF Sample No.: 
CC Sample location:

CC Operator:  
CC Other:  

CC PUF Cartridge Certification Date:
CC Date/Time PUF Cartridge Installed:
CC Elapsed Timer:

Start 
Stop  
Diff. 

CC Sampling

M1  B1  
M2  B2  

Start Stop
CC Barometric pressure ("Hg) ________ _______
CC Ambient Temperature (EEF) ________ _______
CC Rain Yes _____ Yes _____

No _____  No _____ 
CC Sampling time

Start  
Stop  
Diff. 

CC Audit flow check within ±10 of set point
_____ Yes
_____ No

TIME TEMP
BAROMETRIC

PRESSURE
MAGNEHELIC

READING

CALCULATED
FLOW RATE

(std. m )3 READ BY

Avg.

C Comments

Figure 12.  Example of typical Compendium Method TO-13A field test data sheet (FTDS).
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Figure 13.  Sample clean-up, concentration, separation and analysis sequence for common PAHs.
[Note: XAD-2 sequence is similar to PUF except methylene chloride is the solvent.]
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Figure 14.  Typical quality assurance specifications for GC/MS/DS operation.
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Figure 15.  Mass spectra of Compendium Method TO-13A compounds
for (a) naphthalene and (b) acenaphthylene.



PAHs Method TO-13A

January 1999 Compendium of Methods for Toxic Organic Air Pollutants Page 13A-69

Figure 15 (Cont).  Mass spectra of Compendium Method TO-13A
 compounds for (c) acenaphthene and (d) fluorene.
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Figure 15 (Cont).  Mass spectra of Compendium Method TO-13A
 compounds for (e) anthracene and (f) phenanthrene.
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Figure 15 (Cont).  Mass spectra of Compendium Method TO-13A
 compounds for (g) fluoranthene and (h) pyrene.
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Figure 15 (Cont).  Mass spectra of Compendium Method TO-13A
 compounds for (i) benz(a)anthracene and (j) chrysene.
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Figure 15 (Cont).  Mass spectra of Compendium Method TO-13A
 compounds for (k) benzo(b)fluoranthene and (l) benzo(k)fluoranthene.
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Figure 15 (Cont).  Mass spectra of Compendium Method TO-13A
 compounds for (m) benzo(a)pyrene and (n) benzo(e)pyrene.
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Figure 15 (Cont).  Mass spectra of Compendium Method TO-13A
 compounds for (o) benzo(g,h,i)perylene and (p) indeno(1,2,3-cd)pyrene.
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Figure 15 (Cont).  Mass spectra of Compendium Method TO-13A
 compounds for (q) dibenz(a,h)anthracene.
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Figure 16.  Total ion chromatogram (TIC) of Compendium Method TO-13A target PAHs.
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METHOD TO-9A

Determination Of Polychlorinated, Polybrominated And
Brominated/Chlorinated Dibenzo-p-Dioxins 

And Dibenzofurans In Ambient Air

1.  Scope

1.1  This document describes a sampling and analysis method for the quantitative determination of
polyhalogenated dibenzo-p-dioxins and dibenzofurans (PHDDs/PHDFs) in ambient air, which include the
polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDDs/PCDFs), polybrominated dibenzo-p-dioxins and
dibenzofurans (PBDDs/PBDFs), and bromo/chloro dibenzo-p-dioxins and dibenzofurans (BCDDs/BCDFs).  The
method uses a high volume air sampler equipped with a quartz-fiber filter and polyurethane foam (PUF)
adsorbent for sampling 325 to 400 m  ambient air in a 24-hour sampling period.  Analytical procedures based3

on high resolution gas chromatography-high resolution mass spectrometry (HRGC-HRMS) are used for analysis
of the sample.

1.2  The sampling and analysis method was evaluated using mixtures of PHDDs and PHDFs, including the
2,3,7,8-substituted congeners (1,2).  It has been used extensively in the U.S. Environmental Protection Agency
(EPA) ambient air monitoring studies (3,4) for determination of PCDDs and PCDFs.

1.3  The method provides accurate quantitative data for tetra- through octa-PCDDs/PCDFs (total concentrations
for each isomeric series).

1.4  Specificity is attained for quantitative determination of the seventeen 2,3,7,8-substituted PCDDs/PCDFs and
specific 2,3,7,8-substituted PBDD/PBDF and BCDD/BCDF congeners.

1.5  Minimum detection limits (MDLs) in the range of 0.01 to 0.2 picograms/meter  (pg/m ) can be achieved for3 3

these compounds in ambient air.

1.6  Concentrations as low as 0.2 pg/m  can be accurately quantified.3

1.7  The method incorporates quality assurance/quality control (QA/QC) measures in sampling, analysis, and
evaluation of data.

1.8  The analytical procedures also have been used for the quantitative determination of these types of compounds
in sample matrices such as stack gas emissions, fly ash, soil, sediments, water, and fish and human tissue (5-9).

1.9  The method is similar to methods used by other EPA, industry, commercial, and academic laboratories for
determining PCDDs and PCDFs in various sample matrices (10-25).  This method is an update of the original
EPA Compendium Method TO-9, originally published in 1989 (26).

1.10  The method does not separately quantify gaseous PHDDs and PHDFs and particulate-associated PHDDs
and PHDFs because some of the compounds volatilize from the filter and are collected by the PUF adsorbent.
For example, most of the OCDD is collected by the filter and most of the TCDDs are collected by the PUF during
sampling.  PCDDs/PCDFs may be distributed between the gaseous and particle-adsorbed phases in ambient air.
Therefore, the filter and PUF are combined for extraction in this method.
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1.11  The sampling and analysis method is very versatile and can be used to determine other brominated and
brominated/chlorinated dioxins and furans in the future when more analytical standards become available for use
in the method.  A recent modification of the sample preparation procedure provides the capability required to
determine PCDDs, PCDFs, PCBs, and PAHs in the same sample (27).

2.  Summary of Method

2.1  Quartz-fiber filters and glass adsorbent cartridges are pre-cleaned with appropriate solvents and dried in a
clean atmosphere.  The PUF adsorbent plugs are subjected to 4-hour Soxhlet extraction using an oversized
extractor to prevent distortion of the PUF plug.  The PUF plugs are then air dried in a clean atmosphere and
installed in the glass cartridges.  A 50 microliter (FL) aliquot of a 16 picogram/microliter (pg/FL) solution of

Cl -2,3,7,8-TCDD is spiked to the PUF in the laboratory prior to field deployment.  (Different amounts and37
4

additional C -labeled standards such as C -1,2,3,6,7,8-HxCDF may also be used if desired.)  The cartridges13 13
12 12

are then wrapped in aluminum foil to protect from light, capped with Teflon® end caps, placed in a cleaned
labeled shipping container, and tightly sealed with Teflon® tap until needed.

2.2  For sampling, the quartz-fiber filter and glass cartridge containing the PUF are installed in the high-volume
air sampler.

2.3  The high-volume sampler is then immediately put into operation, usually for 24 hours, to sample 325 to
400 m  ambient air.3

[Note:  Significant losses were not detected when duplicate samplers were operated 7 days and sampled 2660
m  ambient air (1-4).]3

2.4  The amount of ambient air sampled is recorded at the end of the sampling session.  Sample recovery involves
placing the filter on top of the PUF.  The glass cartridge is then wrapped with the original aluminum foil, capped
with Teflon® end caps, placed back into the original shipping container, identified, and shipped to the analytical
laboratory for sample processing.

2.5  Sample preparation typically is performed on a "set" of 12 samples, which consists of 9 test samples, a field
blank, a method blank, and a matrix spike.  

2.6  The filter and PUF are combined for sample preparation, spiked with 9 C -labeled PCDD/PCDF and 413
12

PBDD/PBDF internal standards (28), and Soxhlet extracted for 16 hours.  The extract is subjected to an acid/base
clean-up procedure followed by clean-up on micro columns of silica gel, alumina, and carbon.  The extract is then
spiked with 0.5 ng C -1,2,3,4-TCDD (to determine extraction efficiencies achieved for the C -labeled13 13

12 12

internal standards) and then concentrated to 10 FL for HRGC-HRMS analysis in a 1 mL conical reactivial. 

2.7  The set of sample extracts is subjected to HRGC-HRMS selected ion monitoring (SIM) analysis using a 60-
m DB-5 or 60-m SP-2331 fused silica capillary column to determine the sampler efficiency, extraction efficiency,
and the concentrations or the MDLs achieved for the PHDDs/PHDFs (28).  Defined identification criteria and
QA/QC criteria and requirements are used in evaluating the analytical data.  The analytical results along with the
volume of air sampled are used to calculate the concentrations of the respective tetra- through octa-isomers, the
concentrations of the 2,3,7,8-chlorine or -bromine substituted isomers, or the MDLs.  The concentrations and/or
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MDLs are reported in pg/m .  The EPA toxicity equivalence factors (TEFs) can be used to calculate the 2,3,7,8-3

TCDD toxicity equivalents (TEQs) concentrations, if desired (18). 

3.  Significance

3.1  The PHDDs and PHDFs may enter the environment by two routes:  (1) manufacture, use and disposal of
specific chemical products and by-products and (2) the emissions from combustion and incineration processes.
Atmospheric transport is considered to be a major route for widespread dispersal of these compounds in stack
gas emissions throughout the environment.  The PCDDs/PCDFs are found as complex mixtures of all isomers
in emissions from combustion sources.  The isomer profiles of PCDDs/PCDFs found in ambient air are similar
to those found in combustion sources.  Isomer profiles of PCDDs/PCDFs related to chemical products and by-
products are quite different in that only a few specific and characteristic isomers are detectable, which clearly
indicate they are not from a combustion source.

3.2  The 2,3,7,8-substituted PCDDs/PCDFs are considered to be the most toxic isomers.  Fortunately, they
account for the smallest percentage of the total PCDD/PCDF concentrations found in stack gas emissions from
combustion sources and in ambient air.  The 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD), 1 of 22 TCDD
isomers and the most toxic member of PCDDs/PCDFs, is usually found as a very minor component in stack gas
emissions (0.5 to 10 percent of total TCDD concentration) and is seldom found in ambient air samples.  All of
the 2,3,7,8-substituted PCDDs/PCDFs are retained in tissue of life-forms such as humans, fish, and wildlife, and
the non 2,3,7,8-substituted PCDDs/PCDFs are rapidly metabolized and/or excreted.

3.3  Attention has been focused on determining PHDDs/PHDFs in ambient air only in recent years.  The analyses
are time-consuming, complex, difficult, and expensive.  Extremely sensitive, specific, and efficient analytical
procedures are required because the analysis must be performed for very low concentrations in the pg/m  and sub3

pg/m  range.  The MDLs, likewise, must be in the range of 0.01 to 0.2 pg/m  for the results to have significant3 3

meaning for ambient air monitoring purposes.  The background level of total PCDDs/PCDFs detected in ambient
air is usually in the range of 0.5 to 3 pg/m , and the PBDFs is in the range of 0.1 to 0.2 pg/m  (2,3,14).  Because3 3

PCDDs/PCDFs, PBDDs/PBDFs, and BCDDs/BCDFs can be formed by thermal reactions, there has been an
increasing interest in ambient air monitoring, especially in the vicinities of combustion and incineration processes
such as municipal waste combustors and resource recovery facilities (19,20).  PBDDs/PBDFs can be created
thermally (22,23), and they may also be formed in certain chemical processes (21).  BCDDs/BCDFs have been
detected in ash from combustion/incineration processes (9).  The sampling and analysis method described here
can be used in monitoring studies to accurately determine the presence or absence of pg/m  and sub pg/m  levels3 3

of these compounds in ambient air (26,27).

4.  Safety

4.1  The 2,3,7,8-TCDD and other 2,3,7,8-chlorine or bromine substituted isomers are toxic and can pose health
hazards if handled improperly.  Techniques for handling radioactive and infectious materials are applicable to
2,3,7,8-TCDD and the other PHDDs and PHDFs.  Only highly trained individuals who are thoroughly versed in
appropriate laboratory procedures and familiar with the hazards of 2,3,7,8-TCDD should handle these substances.
A good laboratory practice involves routine physical examinations and blood checks of employees working with
2,3,7,8-TCDD.  It is the responsibility of the laboratory personnel to ensure that safe handling procedures are
employed.
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4.2  The toxicity or carcinogenicity of the other penta-, hexa-, hepta-, and octa-PHDDs/PHDFs with chlorine or
bromine atoms in positions 2,3,7,8 are known to have similar, but lower, toxicities.  However, each compound
should be treated as a potential health hazard and exposure to these compounds must be minimized.

4.3  While the procedure specifies benzene as the extraction solution, many laboratories have substituted toluene
for benzene (28).  This is due to the carcinogenic nature of benzene.  The EPA is presently studying the
replacement of benzene with toluene.

4.4  A laboratory should develop a strict safety program for working with these compounds, which would include
safety and health protocols; work performed in well ventilated and controlled access laboratory; maintenance of
current awareness file of OSHA regulations regarding the safe handling of chemicals specified in the method;
protective equipment; safety training; isolated work area; waste handling and disposal procedures;
decontamination procedures; and laboratory wipe tests.  Other safety practices as described in EPA Method 613,
Section 4, July 1982 version, EPA Method 1613 Revision A, April 1990, Office of Water and elsewhere (29,30).

5.  Applicable Documents

5.1  ASTM Standards

• Method D1365 Definitions of Terms Relating to Atmospheric Sampling and Analysis.
• Method E260 Recommended Practice for General Gas Chromatography Procedures.
• Method E355 Practice for Gas Chromatography Terms and Relationships.

5.2  EPA Documents

• Quality Assurance Handbook for Air Pollution Measurement Systems, Volume II, U. S. Environmental
Protection Agency, EPA 600/R-94-038b, May 1994. 
• Protocol for the Analysis of 2,3,7,8-Tetrachlorodibenzo-p-Dioxin by High Resolution Gas
Chromatography-High Resolution Mass Spectrometry, U. S. Environmental Protection Agency,
EPA 600/40-86-004, January 1986.
• "Evaluation of an EPA High Volume Air Sampler for Polychlorinated Dibenzo-p-Dioxins and
Polychlorinated Dibenzofurans," undated report by Battelle under Contract No. 68-02-4127, Project Officers
Robert G. Lewis and Nancy K. Wilson, U. S. Environmental Protection Agency, Research Triangle Park,
North Carolina.
• Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air:
Method TO-9, Second Supplement, U. S. Environmental Protection Agency, EPA 600/4-89-018,
March 1989. 
• Technical Assistance Document for Sampling and Analysis of Toxic Organic Compounds in Ambient
Air, U. S. Environmental Protection Agency, EPA 600/4-83-027, June 1983.
• "Analytical Procedures and Quality Assurance for Multimedia Analysis of Polychlorinated Dibenzo-p-
Dioxins and Dibenzofurans by High Resolution Gas Chromatography - Low Resolution Mass Spectrometry,"
U. S. Environmental Protection Agency/OSW, SW-846, RCRA 8280 HRGC-LRMS, January 1987.
• "Analytical Procedures and Quality Assurance for Multimedia Analysis of Polychlorinated Dibenzo-p-
Dioxins and Dibenzofurans by High Resolution Gas Chromatography - High Resolution Mass Spectrometry,"
U. S. Environmental Protection Agency/OSW, SW-846, RCRA 8290 HRGC-HRMS, June 1987.
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• Harless, R., "Analytical Procedures and Quality Assurance Plan for the Determination of PCDDs and
PCDFs Ambient Air near the Rutland, Vermont Municipal Incinerator," Final Report, U. S. Environmental
Protection Agency, AREAL, RTP, NC, 1988.
• Feasibility of Environmental Monitoring and Exposure Assessment for a Municipal Waste Combustor:
Rutland, Vermont Pilot Study, U. S. Environmental Protection Agency, EPA 600/8-91/007, March 1991.
• "Method 23, Determination of Polychlorinated Dibenzo-p-Dioxins (PCDDs) and Dibenzofurans (PCDFs)
from Stationary Sources."  Federal Register, Vol. 56, No. 30, February 13, 1991.
• Method 1613 Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution HRGC-HRMS,
U. S. Environmental Protection Agency, Office of Solid Waste, Washington, DC, April 1990.

 
5.3  Other Documents

• "Operating Procedures for Model PS-1 Sampler," Graseby/General Metal Works, Inc., Village of Cleves,
OH 45002 (800-543-7412).
• "Chicago Air Quality:  PCB Air Monitoring Plan, Phase 2," IEAP/APC/86-011, Illinois Environmental
Protection Agency, Division of Air Pollution Control, April 1986.
• "Operating Procedures for the Thermo Environmental Semi-volatile Sampler," Thermo Environmental
Instruments, Inc. (formerly Wedding and Associates), 8 West Forge Parkway, Franklin, MA 02038 (508-520-
0430).

6.  Definitions

[Note:  Definitions used in this document and any user-prepared Standard Operating Procedures (SOPs)
should be consistent with those used in ASTM D1356.  All abbreviations and symbols are defined within this
document at the point of first use.]

6.1  Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs)—compounds
that contain from 1 to 8 chlorine atoms, resulting in a total of 75 PCDDs and 135 PCDFs. The structures are
shown in Figure 1.  The numbers of isomers at different chlorination levels are shown in Table 1.  The seventeen
2,3,7,8-substituted PCDDs/PCDFs are shown in Table 2.

6.2  Polybrominated dibenzo-p-dioxins (PBDDs) and polybrominated dibenzofurans (PBDFs)—compounds
that have the same structure and contain from 1 to 8 bromine atoms, resulting in a total of 75 PBDDs and 135
PBDFs.  The structures and isomers are the same as those of the PCDDs/PCDFs shown in Figure 1 and Tables 1
and 2.

6.3  Brominated/chlorinated dibenzo-p-dioxins (BCDDs) and brominated/chlorinated dibenzofurans
(BCDFs)—compounds with the same structures and may contain from 1 to 8 chlorine and bromine atoms,
resulting in 1550 BCDD congeners and 3050 BCDF congeners.

6.4  Polyhalogenated dibenzo-p-dioxins (PHDDs) and polyhalogenated dibenzofurans (PHDFs)—dibenzo-
p-dioxins and dibenzofurans substituted with 1 or more halogen atoms.

6.5  Isomer—compounds having the sample number and type of halogen atoms, but substituted in different
positions.  For example, 2,3,7,8-TCDD and 1,2,3,4-TCDD are isomers.  Additionally, there are 22 isomers that
constitute the homologues of TCDDs.
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6.6  Isomeric group—a group of dibenzo-p-dioxins or dibenzofurans having the same number of halogen atoms.
For example, the tetra-chlorinated dibenzo-p-dioxins.

6.7  Internal Standard—is an isotopically-labeled analog that is added to all samples, including method blanks
(process and field) and quality control samples, before extraction.  They are used along with response factors to
measure the concentration of the analytes.  Nine PCDD/PCDF and 4 PBDD/PBDF internal standards are used
in this method.  There is one for each of the chlorinated dioxin and furan isomeric groups with a degree of
halogenation ranging from four to eight, with the exception of OCDF.

6.8  High-Resolution Calibration Solutions (see Table 3)—solutions in tridecane containing known amounts
of 17 selected PCDDs and PCDFs, 9 internal standards ( C -labeled PCDDs/PCDFs), 2 field standards, 413

12

surrogate standards, and 1 recovery standard.  The set of 5 solutions is used to determine the instrument response
of the unlabeled analytes relative to the C -labeled internal standards and of the C -labeled internal standards13 13

12 12

relative to the surrogate, field and recovery standards. Different concentrations and other standards may be used,
if desired.  Criteria for acceptable calibration as outlined in Section 13.5 should be met in order to use the analyte
relative response factors.

6.9  Sample Fortification Solutions (see Table 4)—solutions (in isooctane) containing the C -labeled internal13
12

standards that are used to spike all samples, field blanks, and process blanks before extraction.  Brominated
standards used only when desired.

6.10  Recovery Standard Solution (see Table 5)—Recovery Standard Solution (see Table 5)—an isooctane
solution containing the C -1,2,3,4-TCDD ( C -2,3,7,8,9-HxDD optional) recovery standards that are added13 13

12 12

to the extract before final concentration for HRGC-HRMS analysis to determine the recovery efficiencies
achieved for the C -labeled internal standards.13

12

6.11  Air Sampler Field Fortification Solution (see Table 6)—an isooctane solution containing the Cl -37
4

2,3,7,8-TCDD standard that is spiked to the PUF plugs prior to shipping them to the field for air sampling.

6.12  Surrogate Standard Solution (see Table 7)—an isooctane solution containing 4 C -labeled standards13
12

that may be spiked to the filter or PUF prior to air sampling, to the sample prior to extraction, or to the sample
extract before cleanup or before HRGC-HRMS analysis to determine sampler efficiency method efficiency or
for identification purposes (28).  Other standards and different concentrations may be used, if desired.

6.13  Matrix Spike and Method Spike Solutions (see Table 8)—isooctane solutions of native (non-labeled)
PCDDs and PCDFs and PBDDs and PBDFs that are spiked to a clean PUF prior to extraction.

6.14  Sample Set—consists of nine test samples, field blank, method blank, and matrix spiked with native
PHDDs/PHDFs.  Sample preparation, HRGC-HRMS analysis, and evaluation of data is performed on a sample
set.  

6.15  Lab Control Spike—standard that is prepared during sample preparation and that contains exactly the
same amounts of all of the labeled and unlabeled standards that were used in extraction and cleanup of the sample
set for HRGC-HRMS analysis.
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6.16  Field Blank—consists of a sample cartridge containing PUF and filter that is spiked with the filed
fortification solution, shipped to the field, installed on the sampler, and passively exposed at the sampling area
(the sampler is not operated).  It is then sealed and returned to the laboratory for extraction, cleanup, and
HRGC-HRMS analysis.  It is treated in exactly the same manner as a test sample.  A field blank is processed with
each sampling episode.  The field blank represents the background contributions from passive exposure to
ambient air, PUF, quartz fiber filter, glassware, and solvents.

6.17  Laboratory Method Blank—represents the background contributions from glassware, extraction and
cleanup solvents.  A Soxhlet extractor is spiked with a solution of C -labeled internal standards, extracted,13

12

cleaned up, and analyzed by HRGC-HRMS in exactly the same manner as the test samples. 

6.18  Solvent Blank—an aliquot of solvent (the amount used in the method) that is spiked with the C -labeled13
12

internal standards and concentrated to 60 FL for HRGC-HRMS analysis.  The analysis provides the background
contributions from the specific solvent.

6.19  GC Column Performance Evaluation Solution (see Table 9)—a solution containing a mixture of
selected PCDD/PCDF isomers, including the first and last chromatographic eluters for each isomeric group.  Used
to demonstrate continued acceptable performance of the capillary column and to define the PCDD/PCDF
retention time windows.  Also includes a mixture of tetradioxin isomers that elute closest to 2,3,7,8-TCDD.

6.20  QA/QC Audit Samples—samples of PUF that contain known amounts of unlabeled PCDDS and PCDFs.
These samples are submitted as "blind" test samples to the analytical laboratory.  The analytical results can then
be used to determine and validate the laboratory's accuracy, precision and overall analytical capabilities for
determination of PCDDs/PCDFs.

6.21  Relative Response Factor—response of the mass spectrometer to a known amount of an analyte relative
to a known amount of a labeled internal standard.

6.22  Method Blank Contamination—the method blank should be free of interferences that affect the
identification and quantification of PHDDs and PHDFs.  A valid method blank is an analysis in which all internal
standard signals are characterized by S/N ratio greater than 10:1 and the MDLs are adequate for the study.  The
set of samples must be extracted and analyzed again if a valid method blank cannot be achieved.

6.23  Sample Rerun—additional cleanup of the extract and reanalysis of the extract.

6.24  Extract Reanalysis—analysis by HRGC-HRMS of another aliquot of the final extract.

6.25  Mass Resolution Check—a standard method used to demonstrate a static HRMS resolving power of
10,000 or greater (10 percent valley definition).

6.26  Method Calibration Limits (MCLs)—for a given sample size, a final extract volume, and the lowest and
highest calibration solutions, the lower and upper MCLs delineate the region of quantitation for which the
HRGC-HRMS system was calibrated with standard solutions.

6.27  HRGC-HRMS Solvent Blank—a 1 or 2 FL aliquot of solvent that is analyzed for tetra- through octa-
PCDDs and PCDFs following the analysis of a sample that contains high concentrations of these compounds.



Method TO-9A Dioxins and Furans

Page 9A-8 Compendium of Methods for Toxic Organic Air Pollutants January 1999

An acceptable solvent blank analysis (free of PHDDs/PHDFs) should be achieved before continuing with analysis
of the test samples.

6.28  Sampler Spike (SS)—a sampler that is spiked with known amounts of the air sampler field fortification
solution (see Table 6) and the matrix spike solutions (see Table 8) prior to operating the sampler for 24 hours
to sample 325-400 std m  ambient air.  The results achieved for this sample can be used to determine the3

efficiency, accuracy and overall capabilities of the sampling device and analytical method.

6.29  Collocated Samplers (CS)—two samplers installed close together at the same site that can be spiked with
known amounts of the air sampler field fortification solution (see Table 6) prior to operating the samplers for 24
hours to sample 325-400 std m  ambient air.  The analytical results for these two samples can be used to3

determine and evaluate efficiency, accuracy, precision, and overall capabilities of the sampling device and
analytical method.

6.30  Congener—a term which refers to any one particular member of the same chemical family.  As an example,
there are 75 congeners of chlorinated dibenzo-p-dioxins.  A specific congener is denoted by unique chemical
notations.  For example, 2,4,8,9-tetrachlorodibenzofuran is referred to as 2,4,8,9-TCDF.

6.31  Homologue—a term which refers to a group of structurally related chemicals that have the same degree
of chlorination.  For example, there are eight homologues of CDDs, monochlorinated through octochlorinated.
Notation for homologous classes is as follows:

Class Acronym

Dibenzo-p-dioxin D
Dibenzofuran F

No. of halogens Acronym Example

1 M
2 D 2,4-DCDD
3 Tr
4 T 1,4,7,8-TCDD
5 Pe
6 Hx
7 Hp
8 O

1 through 8 CDDs and CDFs

7.  Interferences And Contamination

7.1  Any compound having a similar mass and mass/charge (m/z) ratio eluting from the HRGC column within
± 2 seconds of the PHDD/PHDF of interest is a potential interference.  Also, any compound eluting from the
HRGC column in a very high concentration will decrease sensitivity in the retention time frame.  Some commonly
encountered interferences are compounds that are extracted along with the PCDDs and PCDFs or other
PHDDs/PHDFs, e.g., polychlorinated biphenyls (PCBs), methoxybiphenyls, polychlorinated diphenylethers,
polychlorinated naphthalenes, DDE, DDT, etc.  The cleanup procedures are designed to eliminate the majority
of these substances.  The capillary column resolution and mass spectrometer resolving power are extremely
helpful in segregating any remaining interferences from PCDDs and PCDFs.  The severity of an interference
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problem is usually dependent on the concentrations and the mass spectrometer and chromatographic resolutions.
However, polychlorinated diphenylethers are extremely difficult to resolve from PCDFs because they elute in
retention time windows of PCDFs, and their fragment ion resulting from the loss of 2 chlorine atoms is identical
to that of the respective PCDF.  For example, the molecular ions of hexachlorodiphenylethers must be monitored
to confirm their presence or absence in the analysis for TCDFs.  This requirement also applies to the other PCDFs
and PBDFs. 

7.2  Since very low levels of PCDDs and PCDFs must be determined, the elimination of interferences is essential.
High purity reagents and solvents must be used, and all equipment must be scrupulously cleaned.  All materials,
such as PUF, filter solvents, etc., used in the procedures are monitored and analyzed frequently to ensure the
absence of contamination.  Cleanup procedures must be optimized and performed carefully to minimize the loss
of analyte compounds during attempts to increase their concentrations relative to other sample components.  The
analytical results achieved for the field blank, method blank, and method spike in a "set" of samples is extremely
important in evaluating and validating the analytical data achieved for the test samples.

8.  Apparatus

[Note:  This method was developed using the PS-1 semi-volatile sampler provided by General Metal Works,
Village of Cleves, OH as a guideline.  EPA has experience in use of this equipment during various field
monitoring programs over the last several years.  Other manufacturers' equipment should work as well.
However, modifications to these procedures may be necessary if another commercially available sampler is
selected.] 

8.1  High-Volume Sampler (see Figure 2).  Capable of pulling ambient air through the filter/adsorbent cartridge
at a flow rate of approximately 8 standard cubic feet per minute (scfm) (0.225 std m \min) to obtain a total3

sample volume of greater than 325 scm over a 24-hour period.  Major manufacturers are:

- Tisch Environmental, Village of Cleves, OH
- Andersen Instruments Inc., 500 Technology Ct., Smyrna, GA
- Thermo Environmental Instruments, Inc., 8 West Forge Parkway, Franklin, MA

8.2  High-Volume Sampler Calibrator.  Capable of providing multipoint resistance for the high-volume
sampler.  Major manufacturers are:

- Tisch Environmental, Village of Cleves, OH
- Andersen Instruments Inc., 500 Technology Ct., Smyrna, GA
- Thermo Environmental Instruments, Inc., 8 West Forge Parkway, Franklin, MA

8.3  High Resolution Gas Chromatograph-High Resolution Mass Spectrometer-Data System
(HRGC-HRMS-DS)

8.3.1  The GC should be equipped for temperature programming and all of the required accessories, such as
gases and syringes, should be available.  The GC injection port should be designed for capillary columns.
Splitless injection technique, on-column injections, or moving needle injectors may be used.  It is important to
use the same technique and injection volume at all times.
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8.3.2  The HRGC-HRMS interface, if used, should be constructed of fused silica tubing or all glass or glass
lined stainless steel and should be able to withstand temperatures up to 340EC.  The interface should not degrade
the separation of PHDD/PHDF isomers achieved by the capillary column.  Active sites or cold spots in the
interface can cause peak broadening and peak tailing.  The capillary column should be fitted directly into the
HRMS ion source to avoid these types of problems.  Graphite ferrules can adsorb PHDDs/PHDFs and cause
problems.  Therefore, Vespel® or equivalent ferrules are recommended.

8.3.3  The HRMS system should be operated in the electron impact ionization mode.  The static resolving
power of the instrument should be maintained at 10,000 or greater (10% valley definition).  The HRMS should
be operated in the selected ion monitoring (SIM) mode with a total cycle time of one second or less.  At a
minimum, the ions listed in Tables 10, 11, and 12 for each of the select ion monitoring (SIM) descriptors should
be monitored.  It is important to use the same set of ions for both calibration and sample analysis.

8.3.4  The data system should provide for control of mass spectrometer, data acquisition, and data processing.
The data system should have the capability to control and switch to different sets of ions (descriptors/mass menus
shown in Tables 10, 11, and 12) at different times during the HRGC-HRMS SIM analysis.  The SIM
traces/displays of ion signals being monitored can  be displayed on the terminal in real time and sorted for
processing.  Quantifications are reported based on computer generated peak areas.  The data system should be
able to provide hard copies of individual ion chromatograms for selected SIM time intervals, and it should have
the capability to allow measurement of noise on the baseline.  It should also have the capability to acquire mass-
spectral peak profiles and provide hard copies of the peak profiles to demonstrate the required mass resolution.

8.3.5  HRGC columns, such as the DB-5 (28) and SP-2331 fused silica capillary columns, and the operating
parameters known to produce acceptable results are shown in Tables 13 and 14.  Other types of capillary columns
may also be used as long as the performance requirements can be successfully demonstrated.

9.  Equipment And Materials 

9.1  Materials for Sample Collection (see Figure 3a) 

9.1.1  Quartz fiber filter.  102 millimeter bindless quartz microfiber filter, Whatman International Ltd,
QMA-4.  

9.1.2  Polyurethane foam (PUF) plugs.  3-inch thick sheet stock polyurethane type (density 0.022 g/cm ).3

The PUF should be of the polyether type used for furniture upholstery, pillows, and mattresses.  The PUF
cylinders (plugs) should be slightly larger in diameter than the internal diameter of the cartridge.  Sources of
equipment are Tisch Environmental, Village of Cleves, OH; University Research Glassware, 116 S. Merritt Mill
Road, Chapel Hill, NC; Thermo Environmental Instruments, Inc., 8 West Forge Parkway, Franklin, MA; Supelco,
Supelco Park, Bellefonte, PA; and SKC Inc., 334 Valley View Road, Eighty Four, PA (see Figure 3b).

9.1.3  Teflon® end caps.  For sample cartridge.  Sources of equipment are Tisch Environmental, Village of
Cleves, OH; and University Research Glassware, 116 S. Merritt Mill Road, Chapel Hill, NC (see Figure 3b).

9.1.4  Sample cartridge aluminum shipping containers.  For sample cartridge shipping.  Sources of
equipment are Tisch Environmental, Village of Cleves, OH; and University Research Glassware, 116 S. Merritt
Mill Road, Chapel Hill, NC (see Figure 3b).

9.1.5  Glass sample cartridge.  For sample collection.  Sources of equipment are Tisch Environmental,
Village of Cleves, OH; Thermo Environmental Instruments, Inc., 8 West Forge, Parkway, Franklin, MA; and
University Research Glassware, 116 S. Merritt Mill Road, Chapel Hill, NC (see Figure 3b). 
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9.2  Laboratory Equipment

9.2.1  Laboratory hoods.
9.2.2  Drying oven.
9.2.3  Rotary evaporator.  With temperature-controlled water bath.
9.2.4  Balances.
9.2.5  Nitrogen evaporation apparatus.
9.2.6  Pipettes.  Disposal Pasteur, 150-mm long x 5-mm i.d.
9.2.7  Soxhlet apparatus.  500-mL.
9.2.8  Glass funnels.
9.2.9  Desiccator.
9.2.10  Solvent reservoir.  125-mL, Kontes, 12.35-cm diameter.
9.2.11  Stainless steel spoons and spatulas.
9.2.12  Glass wool.  Extracted with methylene chloride, stored in clean jar.
9.2.13  Laboratory refrigerator.
9.2.14  Chromatographic columns.
9.2.15  Perfluorokerosenes.

9.3  Reagents and Other Materials

9.3.1  Sulfuric acid.  Ultrapure, ACS grade, specific gravity 1.84, acid silica.
9.3.2  Sodium hydroxide.  Potassium hydroxide, reagent grade, base silica.
9.3.3  Sodium sulfate.
9.3.4  Anhydrous, reagent grade.
9.3.5  Glass wool.  Silanized, extracted with methylene chloride and hexane, and dried.
9.3.6  Diethyl ether.  High purity, glass distilled.
9.3.7  Isooctane.  Burdick and Jackson, glass-distilled.
9.3.8  Hexane.  Burdick and Jackson, glass-distilled.
9.3.9  Toluene.  Burdick and Jackson, glass-distilled, or equivalent.
9.3.10  Methylene chloride.  Burdock and Jackson, chromatographic grade, glass distilled.
9.3.11  Acetone.  Burdick and Jackson, high purity, glass distilled.
9.3.12  Tridecane.  Aldrich, high purity, glass distilled.
9.3.13  Isooctane.  Burdick and Jackson, high purity, glass distilled.
9.3.14  Alumina.  Acid, pre-extracted (16-21 hours) and activated.
9.3.15  Silica gel.  High purity grade, type 60, 70-230 mesh; extracted in a Soxhlet apparatus with methylene

chloride (see Section 8.18) for 16-24 hours (minimum of 3 cycles per hour) and activated by heating in a foil-
covered glass container for 8 hours at 130EC.

9.3.16  18 percent Carbopack C/Celite 545.  
9.3.17  Methanol.  Burdick and Jackson, high purity, glass distilled.  
9.3.18  Nonane.  Aldrich, high purity, glass distilled.
9.3.19  Benzene.  High purity, glass distilled.
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9.4  Calibration Solutions and Solutions of Standards Used in the Method

9.4.1  HRGC-HRMS Calibration Solutions (see Table 3).  Solutions containing C -labeled and13
12

unlabeled PCDDs and PCDFs at known concentrations are used to calibrate the instrument.  These standards can
be obtained from various commercial sources such as Cambridge Isotope Laboratories, 50 Frontage Road,
Andover, MA 01810, 508-749-8000.

9.4.2  Sample Fortification Solutions (see Table 4).  An isooctane solution (or nonane solution) containing
the C -labeled PCDD/PCDF and PBDD/PBDF internal standards at the listed concentrations.  The internal13

12

standards are spiked to all samples prior to extraction and are used to measure the concentration of the unlabeled
native analytes and to determine MDLs.

9.4.3  Recovery Standard Spiking Solution (see Table 5).  An isooctane solution containing C -1,2,3,4-13
12

TCDD at a concentration of 10 pg/FL.  Additional recovery standards may be used if desired.
9.4.4  Sampler Field Fortification Solution (see Table 6).  An isooctane solution containing 10 pg/FL

Cl -2,3,7,8-TCDD.37
4

9.4.5  Surrogate Standards Solution (see Table 7).  An isooctane solution containing the four C -labeled13
12

standards at a concentration of 100 pg/FL.
9.4.6  Matrix/Method Spike Solution (see Table 8).  An isooctane solution containing the unlabeled

PCDDs/PCDFs and PBDDs/PBDFs at the concentrations listed.

[Note:  All PHDD/PHDF solutions listed above should be stored in a refrigerator at less than or equal to 4EC
in the dark.  Exposure of the solutions to light should be minimized.]

9.4.7  Column Performance Evaluation Solutions (see Table 9).  Isooctane solutions of first and last
chromatographic eluting isomers for each isomeric group of tetra- through octa-CDDs/CDFs.  Also includes a
mixture of tetradioxin isomers that elute closest to 2,3,7,8-TCDD.

10.  Preparation Of PUF Sampling Cartridge

10.1  Summary of Method

10.1.1  This part of the procedure discusses pertinent information regarding the preparation and cleaning of
the filter, adsorbents, and filter/adsorbent cartridge assembly.  The separate batches of filters and adsorbents are
extracted with the appropriate solvent.  

10.1.2  At least one PUF cartridge assembly and one filter from each batch, or 10 percent of the batch,
whichever is greater, should be tested and certified before the batch is considered for field use. 

10.1.3  Prior to sampling, the cartridges are spiked with surrogate compounds.

10.2  Preparation of Sampling Cartridge

10.2.1  Bake the quartz filters at 400EC for 5 hours before use.
10.2.2  Set aside the filters in a clean container for shipment to the field or prior to combining with the PUF

glass cartridge assembly for certification prior to field deployment.
10.2.3  The PUF plugs are 6.0-cm diameter cylindrical plugs cut from 3-inch sheet stock and should fit, with

slight compression, in the glass cartridge, supported by the wire screen (see Figure 2).  During cutting, rotate the
die at high speed (e.g., in a drill press) and continuously lubricate with deionized or distilled water.  Pre-cleaned
PUF plugs can be obtained from commercial sources (see Section 9.1.2).
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10.2.4  For initial cleanup, place the PUF plugs in a Soxhlet apparatus and extract with acetone for 16 hours
at approximately 4 cycles per hour.  When cartridges are reused, use diethyl ether/hexane (5 to 10 percent
volume/volume [v/v]) as the cleanup solvent.

[Note:  A modified PUF cleanup procedure can be used to remove unknown interference components of the
PUF blank.  This method consists of rinsing 50 times with toluene, acetone, and diethyl ether/hexane (5 to
10 percent v/v), followed by Soxhlet extraction.  The extracted PUF is placed in a vacuum oven connected to
a water aspirator and dried at room temperature for approximately 2 to 4 hours (until no solvent odor is
detected).  The extract from the Soxhlet extraction procedure from each batch may be analyzed to determine
initial cleanliness prior to certification.]

10.2.5  Fit a nickel or stainless steel screen (mesh size 200/200) to the bottom of a hexane-rinsed glass
sampling cartridge to retain the PUF adsorbents, as illustrated in Figure 2.  Place the Soxhlet-extracted, vacuum-
dried PUF (2.5-cm thick by 6.5-cm diameter) on top of the screen in the glass sampling cartridge using polyester
gloves.

10.2.6  Wrap the sampling cartridge with hexane-rinsed aluminum foil, cap with the Teflon® end caps, place
in a cleaned labeled aluminum shipping container, and seal with Teflon® tape.  Analyze at least 1 PUF plug from
each batch of PUF plugs using the procedures described in Section 10.3, before the batch is considered acceptable
for field use.  A level of 2 to 20 pg for tetra-,penta-, and hexa- and 40 to 150 pg for hepta- and octa-CDDs similar
to that occasionally detected in the method blank (background contamination) is considered to be acceptable.
Background levels can be reduced further, if necessary.  Cartridges are considered clean for up to 30 days from
date of certification when stored in their sealed containers.

10.3  Procedure for Certification of PUF Cartridge Assembly

10.3.1  Extract 1 filter and PUF adsorbent cartridge by Soxhlet extraction and concentrate using a Kuderna-
Danish (K-D) evaporator for each lot of filters and cartridges sent to the field.

10.3.2  Assemble the Soxhlet apparatus.  Charge the Soxhlet apparatus with 300 mL of the extraction solvent
(10 percent v/v diethyl ether/hexane) and reflux for 2 hours.  Let the apparatus cool, disassemble it, and discard
the used extraction solvent.  Transfer the filter and PUF glass cartridge to the Soxhlet apparatus (the use of an
extraction thimble is optional).

[Note:  The filter and adsorbent assembly are tested together in order to reach detection limits, to minimize
cost and to prevent misinterpretation of the data.  Separate analyses of the filter and PUF would not yield
useful information about the physical state of most of the PHDDs and PHDFs at the time of sampling due to
evaporative losses from the filter during sampling.]

10.3.3  Add 300 mL of diethyl ether/hexane (10 percent v/v) to the Soxhlet apparatus.  Reflux the sample
for 18 hours at a rate of at least 3 cycles per hour.  Allow to cool; then disassemble the apparatus.

10.3.4  Assemble a K-D concentrator by attaching a 10-mL concentrator tube to a 500-mL evaporative flask.
10.3.5  Transfer the extract by pouring it through a drying column containing about 10 cm of anhydrous

granular sodium sulfate and collect the extract in the K-D concentrator.  Rinse the Erlenmeyer flask and column
with 20 to 30 mL of 10 percent diethylether/hexane to complete the quantitative transfer.

10.3.6  Add 1 or 2 clean boiling chips and attach a 3-ball Snyder column to the evaporative flask.  Pre-wet
the Snyder column by adding about 1 mL of the extraction solvent to the top of the column.  Place the K-D
apparatus on a hot water bath (50EC) so that the concentrator tube is partially immersed in the hot water, and the
entire lower rounded surface of the flask is bathed with hot vapor.  Adjust the vertical position of the apparatus
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and the water temperature as required to complete the concentration in one hour.  At the proper rate of distillation,
the balls of the column will actively chatter but the chambers will not flood with condensed solvent.  When the
apparent volume of liquid reaches approximately 5 mL, remove the K-D apparatus from the water bath and allow
it to drain and cool for at least 5 minutes.  Remove the Snyder column and rinse the flask and its lower joint into
the concentrator tube with 5 mL of hexane.  A 5-mL syringe is recommended for this operation.

10.3.7  Concentrate the extract to 1 mL, cleanup the extract (see Section 12.2.2), and analyze the final extract
using HRGC-HRMS.

10.3.8  The level of target compounds must be less than or equal to 2 to 20 pg for tetra-, penta-, and hexa-
and 40 to 150 pg for hepta- and octa-CDDs for each pair of filter and adsorbent assembly analyzed is considered
to be acceptable.  

10.4  Deployment of Cartridges for Field Sampling

10.4.1  Prior to field deployment, add surrogate compounds (i.e., chemically inert compounds not expected
to occur in an environmental sample) to the center bed of the PUF cartridge, using a microsyringe.  The surrogate
compounds (see Table 3) must be added to each cartridge assembly.

10.4.2  Use the recoveries of the surrogate compounds to monitor for unusual matrix effects and gross
sampling processing errors.  Evaluate surrogate recovery for acceptance by determining whether the measured
concentration falls within the acceptance limits.

11.  Assembly, Calibration And Collection Using Sampling System

[Note:  This method was developed using the PS-1 semi-volatile sampler provided by General Metal Works,
Village of Cleves, OH as a guideline.  EPA has experience in use of this equipment during various field
monitoring programs over the last several years.  Other manufacturers' equipment should work as well.
However, modifications to these procedures may be necessary if another commercially available sampler is
selected.] 

11.1  Description of Sampling Apparatus

The entire sampling system is diagrammed in Figure 1.  This apparatus was developed to operate at a rate of 4
to 10 scfm (0.114 to 0.285 std m /min) and is used by EPA for high-volume sampling of ambient air.  The3

method write-up presents the use of this device.

The sampling module (see Figure 2) consists of a filter and a glass sampling cartridge containing the PUF utilized
to concentrate dioxins/furans from the air.  A field portable unit has been developed by EPA (see Figure 4).

11.2  Calibration of Sampling System

Each sampler should be calibrated (1) when new, (2) after major repairs or maintenance, (3) whenever any audit
point deviates from the calibration curve by more than 7 percent, (4) before/after each sampling event, and
(5) when a different sample collection media, other than that which the sampler was originally calibrated to, will
be used for sampling.

11.2.1  Calibration of Orifice Transfer Standard.  Calibrate the modified high volume air sampler in the
field using a calibrated orifice flow rate transfer standard.  Certify the orifice transfer standard in the laboratory
against a positive displacement rootsmeter (see Figure 5).  Once certified, the recertification is performed rather
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infrequently if the orifice is protected from damage.  Recertify the orifice transfer standard performed once per
year utilizing a set of five multiple resistance plates.  

[Note:  The set of five multihole resistance plates are used to change the flow through the orifice so that
several points can be obtained for the orifice calibration curve.  The following procedure outlines the steps
to calibrate the orifice transfer standard in the laboratory.]

11.2.1.1  Record the room temperature (T  in EC) and barometric pressure (P  in mm Hg) on the Orifice1 b

Calibration Data Sheet (see Figure 6).  Calculate the room temperature in K (absolute temperature) and record
on Orifice Calibration Data Sheet.

T  in K = 273E + T  in EC1 1

11.2.1.2  Set up laboratory orifice calibration equipment as illustrated in Figure 5.  Check the oil level of
the rootsmeter prior to starting.  There are 3 oil level indicators, 1 at the clear plastic end and 2 site glasses, 1 at
each end of the measuring chamber.

11.2.1.3  Check for leaks by clamping both manometer lines, blocking the orifice with cellophane tape,
turning on the high volume motor, and noting any change in the rootsmeter's reading.  If the rootsmeter's reading
changes, there is a leak in the system.  Eliminate the leak before proceeding.  If the rootsmeter's reading remains
constant, turn off the hi-vol motor, remove the cellophane tape, and unclamp both manometer lines.

11.2.1.4  Install the 5-hole resistance plate between the orifice and the filter adapter.
11.2.1.5  Turn manometer tubing connectors 1 turn counter-clockwise.  Make sure all connectors are open.
11.2.1.6  Adjust both manometer midpoints by sliding their movable scales until the zero point corresponds

with the meniscus.  Gently shake or tap to remove any air bubbles and/or liquid remaining on tubing connectors.
(If additional liquid is required for the water manometer, remove tubing connector and add clean water.)

11.2.1.7  Turn on the high volume motor and let it run for 5 minutes to set the motor brushes.  Turn the
motor off.  Insure manometers are set to zero.  Turn the high volume motor on.

11.2.1.8  Record the time, in minutes, required to pass a known volume of air (approximately 200 to 300 ft3

of air for each resistance plate) through the rootsmeter by using the rootsmeter's digital volume dial and a
stopwatch.

11.2.1.9  Record both manometer readings-orifice water manometer (ªH) and rootsmeter mercury
manometer (ªP) on Orifice Calibration Data Sheet (see Figure 6).

[Note:  ªH is the sum of the difference from zero (0) of the two column heights.]

11.2.1.10  Turn off the high volume motor.
11.2.1.11  Replace the 5-hole resistance plate with the 7-hole resistance plate.
11.2.1.12  Repeat Sections 11.2.1.3 through 11.2.1.11.
11.2.1.13  Repeat for each resistance plate.  Note results on Orifice Calibration Data Sheet (see Figure 6).

Only a minute is needed for warm-up of the motor.  Be sure to tighten the orifice enough to eliminate any leaks.
Also check the gaskets for cracks.  

[Note:  The placement of the orifice prior to the rootsmeter causes the pressure at the inlet of the rootsmeter
to be reduced below atmospheric conditions, thus causing the measured volume to be incorrect.  The volume
measured by the rootsmeter must be corrected.]
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11.2.1.14  Correct the measured volumes on the Orifice Calibration Data Sheet:

where:
V  = standard volume, std mstd

3

V  = actual volume measured by the rootsmeter, mm
3

P  = barometric pressure during calibration, mm Hga

ªP = differential pressure at inlet to volume meter, mm Hg

P  = 760 mm Hgstd

T  = ambient temperature during calibration, K.a

11.2.1.15  Record standard volume on Orifice Calibration Data Sheet.
11.2.1.16  The standard flow rate as measured by the rootsmeter can now be calculated using the following

formula:

where:
Q  = standard volumetric flow rate, std m /minstd

3

2 = elapsed time, min

11.2.1.17  Record the standard flow rates to the nearest 0.01 std m /min.3

11.2.1.18  Calculate and record  value for each standard flow rate.

11.2.1.19  Plot each  value (y-axis) versus its associated standard flow rate (x-

axis) on arithmetic graph paper and draw a line of best fit between the individual plotted points. 

[Note:  This graph will be used in the field to determine standard flow rate.]

11.2.2  Calibration of the High Volume Sampling System Utilizing Calibrated Orifice Transfer
Standard

For this calibration procedure, the following conditions are assumed in the field:
• The sampler is equipped with an valve to control sample flow rate.
• The sample flow rate is determined by measuring the orifice pressure differential, using a magnehelic

gauge.
• The sampler is designed to operate at a standardized volumetric flow rate of 8 ft /min (0.225 m /min), with3 3

an acceptable flow rate range within 10 percent of this value.
• The transfer standard for the flow rate calibration is an orifice device.  The flow rate through the orifice

is determined by the pressure drop caused by the orifice and is measured using a "U" tube water
manometer or equivalent.

• The sampler and the orifice transfer standard are calibrated to standard volumetric flow rate units (scfm
or scmm).
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• An orifice transfer standard with calibration traceable to NIST is used.
• A "U" tube water manometer or equivalent, with a 0- to 16-inch range and a maximum scale division of

0.1 inch, will be used to measure the pressure in the orifice transfer standard.
• A magnehelic gauge or equivalent, with a 9- to 100-inch range and a minimum scale division of 2 inches

for measurements of the differential pressure across the sampler's orifice is used. 
• A thermometer capable of measuring temperature over the range of 32E to 122EF (0E to 50EC) to ±2EF

(±1EC) and referenced annually to a calibrated mercury thermometer is used.
• A portable aneroid barometer (or equivalent) capable of measuring ambient barometric pressure between

500 and 800 mm Hg (19.5 and 31.5 in. Hg) to the nearest mm Hg and referenced annually to a barometer
of known accuracy is used.

• Miscellaneous handtools, calibration data sheets or station log book, and wide duct tape are available.
11.2.2.1  Monitor the airflow through the sampling system with a venturi/Magnehelic assembly, as

illustrated in Figure 7.  Set up the calibration system as illustrated in Figure 7.  Audit the field sampling system
once per quarter using a flow rate transfer standard, as described in the EPA High Volume-Sampling Method,
40 CVR 50, Appendix B.  Perform a single-point calibration before and after each sample collection, using the
procedures described in Section 11.2.3.

11.2.2.2  Prior to initial multi-point calibration, place an empty glass cartridge in the sampling head and
activate the sampling motor.  Fully open the flow control valve and adjust the voltage variator so that a sample
flow rate corresponding to 110 percent of the desired flow rate (typically 0.20 to 0.28 m /min) is indicated on the3

Magnehelic gauge (based on the previously obtained multipoint calibration curve).  Allow the motor to warm up
for 10 minutes and then adjust the flow control valve to achieve the desire flow rate.  Turn off the sampler.
Record the ambient temperature and barometric pressure on the Field Calibration Data Sheet (see Figure 8).

11.2.2.3  Place the orifice transfer standard on the sampling head and attach a manometer to the tap on
the transfer standard, as illustrated in Figure 7.  Properly align the retaining rings with the filter holder and secure
by tightening the three screw clamps.  Connect the orifice transfer standard by way of the pressure tap to a
manometer using a length of tubing.  Set the zero level of the manometer or magnehelic.  Attach the magnehelic
gauge to the sampler venturi quick release connections.  Adjust the zero (if needed) using the zero adjust screw
on face of the gauge.

11.2.2.4  To leak test, block the orifice with a rubber stopper, wide duct tape, or other suitable means.  Seal
the pressure port with a rubber cap or similar device.  Turn on the sampler.
Caution:  Avoid running the sampler from too long a time with the orifice blocked.  This precaution will
reduce the chance that the motor will be overheated due to the lack of cooling air.  Such overheating can
shorten the life of the motor.

11.2.2.5  Gently rock the orifice transfer standard and listen for a whistling sound that would indicate a
leak in the system.  A leak-free system will not produce an upscale response on the sampler's magnehelic.  Leaks
are usually caused either by damaged or missing gaskets by cross-threading and/or not screwing sample cartridge
together tightly.  All leaks must be eliminated before proceeding with the calibration.  When the sample is
determined to be leak-free, turn off the sampler and unblock the orifice.  Now remove the rubber stopper or plug
from the calibrator orifice.  

11.2.2.6  Turn the flow control valve to the fully open position and turn the sampler on.  Adjust the flow
control valve until a Magnehelic reading of approximately 70 in. is obtained.  Allow the Magnehelic and
manometer readings to stabilize and record these values on the Field Calibration Data Sheet (see Figure 8).

11.2.2.7  Record the manometer reading under Y1 and the Magnehelic reading under Y2 on the Field
Calibration Data Sheet.  For the first reading, the Magnehelic should still be at 70 inches as set above.

11.2.2.8  Set the magnehelic to 60 inches by using the sampler's flow control valve.  Record the manometer
(Y1) and Magnehelic (Y2) readings on the Field Calibration Data Sheet.  

11.2.2.9  Repeat the above steps using Magnehelic settings of 50, 40, 30, 20, and 10 inches.
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11.2.2.10  Turn the voltage variator to maximum power, open the flow control valve, and confirm that the
Magnehelic reads at least 100 inches.  Turn off the sampler and confirm that the magnehelic reads zero.

11.2.2.11  Read and record the following parameters on the Field Calibration Data Sheet.  Record the
following on the calibration data sheet:

Data, job number, and operator's signature;
• Sampler serial number;
• Ambient barometric pressure; and
• Ambient temperature. 

11.2.2.12  Remove the "dummy" cartridge and replace with a sample cartridge.
11.2.2.13  Obtain the Manufacturer High Volume Orifice Calibration Certificate.
11.2.2.14  If not performed by the manufacturer, calculate values for each calibrator orifice static pressure

(Column 6, inches of water) on the manufacturer's calibration certificate using the following equation:

where:
P  = the barometric pressure (mm Hg) at time of manufacturer calibration, mm Hga

T  = temperature at time of calibration, ECa

11.2.2.15  Perform a linear regression analysis using the values in Column 7 of the manufacturer High
Volume Orifice Calibration Certificate for flow rate (Q ) as the "X" values and the calculated values as the YSTD

values.  From this relationship, determine the correlation (CC1), intercept (B1), and slope (M1) for the Orifice
Transfer Standard.

11.2.2.16  Record these values on the Field Calibration Data Sheet (see Figure 8).
11.2.2.17  Using the Field Calibration Data Sheet values (see Figure 8), calculate the Orifice Manometer

Calculated Values (Y3) for each orifice manometer reading using the following equation:

Y3 Calculation

Y3 = [Y1(P /760)(298/{T  + 273})]a a
½

11.2.2.18  Record the values obtained in Column Y3 on the Field Calibration Data Sheet (see Figure 8).
11.2.2.19  Calculate the Sampler Magnehelic Calculate Values (Y4) using the following equation:

Y4 Calculation

Y4 = [Y2(P /760)(298/{T  + 273})]a a
½

11.2.2.20  Record the value obtained in Column Y4 on the Field Calibration Data Sheet (see Figure 8). 

11.2.2.21  Calculate the Orifice Flow Rate (X1) in scm, using the following equation:

X1 Calculation
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11.2.2.22  Record the values obtained in Column X1, on the Field Calibration Data Sheet (see Figure 8).
11.2.2.23  Perform a linear regression of the values in Column X1 (as X) and the values in Column Y4 (as

Y).  Record the relationship for correlation (CC2), intercept (B2), and slope (M2) on the Field Calibration Data
Sheet.

11.2.2.24  Using the following equation, calculate a set point (SP) for the manometer to represent a desired
flow rate:

Set point (SP) = [(Expected P )/(Expected T )(T /P )][M2 (Desired flow rate) + B2]a a std std
2

where:

P  = Expected atmospheric pressure (P ), mm Hga a

T  = Expected atmospheric temperature (T ), ECa a

M2 = Slope of developed relationship
B2 = Intercept of developed relationship
T  = Temperature standard, 25ECstd

P  = Pressure standard, 760 mm Hgstd

11.2.2.25  During monitoring, calculate a flow rate from the observed Magnehelic reading using the
following equations:

Y5 = [Average Magnehelic Reading (ªH) (P /T )(T /P )]a a std std
½

where:

Y5 = Corrected Magnehelic reading
X2 = Instant calculated flow rate, scm

11.2.2.26  The relationship in calibration of a sampling system between Orifice Transfer Standard and
flow rate through the sampler is illustrated in Figure 9. 

11.2.3  Single-Point Audit of the High Volume Sampling System Utilizing Calibrated Orifice Transfer
Standard

Single point calibration checks are required as follows:

• Prior to the start of each 24-hour test period.
• After each 24-hour test period.  The post-test calibration check may serve as the pre-test calibration check

for the next sampling period if the sampler is not moved.
• Prior to sampling after a sample is moved.

For samplers, perform a calibration check for the operational flow rate before each 24-hour sampling event and
when required as outlined in the user quality assurance program.  The purpose of this check is to track the
sampler's calibration stability.  Maintain a control chart presenting the percentage difference between a sampler's
indicated and measured flow rates.  This chart provides a quick reference of sampler flow-rate drift problems and
is useful for tracking the performance of the sampler.  Either the sampler log book or a data sheet will be used
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to document flowcheck information.  This information includes, but is not limited to, sampler and orifice transfer
standard serial number, ambient temperature, pressure conditions, and collected flow-check data.

In this subsection, the following is assumed:

• The flow rate through a sampler is indicated by the orifice differential pressure;
• Samplers are designed to operate at an actual flow rate of 8 scfm, with a maximum acceptable flow-rate

fluctuation range of ±10 percent of this value;
• The transfer standard will be an orifice device equipped with a pressure tap.  The pressure is measured

using a manometer; and
• The orifice transfer standard's calibration relationship is in terms of standard volumetric flow rate (Q ).std

11.2.3.1  Perform a single point flow audit check before and after each sampling period utilizing the
Calibrated Orifice Transfer Standard (see Section 11.2.1).

11.2.3.2  Prior to single point audit, place a "dummy" glass cartridge in the sampling head and activate the
sampling motor.  Fully open the flow control valve and adjust the voltage variator so that a sample flow rate
corresponding to 110 percent of the desired flow rate (typically 0.19 to 0.28 m /min) is indicated on the3

Magnehelic gauge (based on the previously obtained multipoint calibration curve).  Allow the motor to warm up
for 10 minutes and then adjust the flow control valve to achieve the desired flow rate.  Turn off the sampler.
Record the ambient temperature and barometric pressure on a Field Test Data Sheet (see Figure 10).

11.2.3.3  Place the flow rate transfer standard on the sampling head.
11.2.3.4  Properly align the retaining rings with the filter holder and secure by tightening the 3 screw

clamps.  Connect the flow rate transfer standard to the manometer using a length of tubing.
11.2.3.5  Using tubing, attach 1 manometer connector to the pressure tap of the transfer standard.  Leave

the other connector open to the atmosphere.
11.2.3.6  Adjust the manometer midpoint by sliding the movable scale until the zero point corresponds with

the water meniscus.  Gently shake or tap to remove any air bubbles and/or liquid remaining on tubing connectors.
(If additional liquid is required, remove tubing connector and add clean water.)

11.2.3.7  Turn on high-volume motor and let run for 5 minutes.
11.2.3.8  Record the pressure differential indicated, ªH, in inches of water, on the Field Test Data Sheet.

Be sure stable ªH has been established.
11.2.3.9  Record the observed Magnahelic gauge reading, in inches of water, on the Field Test Data Sheet.

Be sure stable ªM has been established.
11.2.3.10  Using previous established Orifice Transfer Standard curve, calculate Q  (seexs

Section 11.2.2.23).
11.2.3.11  This flow should be within ±10 percent of the sampler set point, normally, 8 ft .  If not, perform3

a new multipoint calibration of the sampler.
11.2.3.12  Remove Flow Rate Transfer Standard and dummy adsorbent cartridge.  

11.3  Sample Collection

11.3.1  General Requirements
11.3.1.1  The sampler should be located in an unobstructed area, at least 2 meters from any obstacle to air

flow.  The exhaust hose should be stretched out in the downwind direction to prevent recycling of air into the
sample head.

11.3.1.2  All cleaning and sample module loading and unloading should be conducted in a controlled
environment, to minimize any chance of potential contamination.
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11.3.1.3  When new or when using the sampler at a different location, all sample contact areas need to be
cleared.  Use triple rinses of reagent grade hexane or methylene chloride contained in Teflon® rinse bottles.
Allow the solvents to evaporate before loading the PUF modules.

11.3.2  Preparing Cartridge for Sampling
11.3.2.1  Detach the lower chamber of the cleaned sample head.  While wearing disposable, clean, lint-free

nylon, or powder-free surgical gloves, remove a clean glass adsorbent module from its shipping container.
Remove the Teflon® end caps.  Replace the end caps in the sample container to be reused after the sample has
been collected.

11.3.2.2  Insert the glass module into the lower chamber and tightly reattach the lower chambers to the
module.

11.3.2.3  Using clean rinsed (with hexane) Teflon-tipped forceps, carefully place a clean conditioned fiber
filter atop the filter holder and secure in place by clamping the filter holder ring over the filter.  Place the
aluminum protective cover on top of the cartridge head.  Tighten the 3 screw clamps.  Ensure that all module
connections are tightly assembled.  Place a small piece of aluminum foil on the ball-joint of the sample cartridge
to protect from back-diffusion of semi-volatile into the cartridge during transporting to the site.

[Note:  Failure to do so could result in air flow leaks at poorly sealed locations which could affect sample
representativeness.]

11.3.2.4  Place in a carrying bag to take to the sampler.
11.3.3  Collection

11.3.3.1  After the sampling system has been assembled, perform a single point flow check as described
in Sections 11.2.3.  

11.3.3.2  With the empty sample module removed from the sampler, rinse all sample contact areas using
reagent grade hexane in a Teflon® squeeze bottle.  Allow the hexane to evaporate from the module before loading
the samples.

11.3.3.3  With the sample cartridge removed from the sampler and the flow control valve fully open, turn
the pump on and allow it to warm-up for approximately 5 minutes.

11.3.3.4  Attach a "dummy" sampling cartridge loaded with the exact same type of filter and PUF media
to be used for sample collection.

11.3.3.5  Turn the sampler on and adjust the flow control valve to the desired flow as indicated by the
Magnehelic gauge reading determined in Section 11.2.2.24.  Once the flow is properly adjusted, take extreme care
not to inadvertently alter its setting.

11.3.3.6  Turn the sampler off and remove both the "dummy" module.  The sampler is now ready for field
use.

11.3.3.7  Check the zero reading of the sampler Magnehelic.  Record the ambient temperature, barometric
pressure, elapsed time meter setting, sampler serial number, filter number, and PUF cartridge number on the Field
Test Data Sheet (see Figure 10).  Attach the loaded sampler cartridge to the sampler.

11.3.3.8  Place the voltage variator and flow control valve at the settings used in Section 11.3.2, and the
power switch.  Activate the elapsed time meter and record the start time.  Adjust the flow (Magnehelic setting),
if necessary, using the flow control valve.

11.3.3.9  Record the Magnehelic reading every 6 hours during the sampling period.  Use the calibration
factors (see Section 11.2.2.23) to calculate the desired flow rate.  Record the ambient temperature, barometric
pressure, and Magnehelic reading at the beginning and during sampling period. 
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11.3.4  Sample Recovery
11.3.4.1  At the end of the desired sampling period, turn the power off.  Carefully remove the sampling

head containing the filter and adsorbent cartridge to a clean area.
11.3.4.2  While wearing disposable lint free nylon or surgical gloves, remove the PUF cartridge from the

lower module chamber and lay it on the retained aluminum foil in which the sample was originally wrapped.
11.3.4.3  Carefully remove the glass fiber filter from the upper chamber using clean Teflon®-tipped

forceps.
11.3.4.4  Fold the filter in half twice (sample side inward) and place it in the glass cartridge atop the PUF.
11.3.4.5  Wrap the combined samples in the original hexane rinsed aluminum foil, attached Teflon® end

caps and place them in their original aluminum sample container.  Complete a sample label and affix it to the
aluminum shipping container.

11.3.4.6  Chain-of-custody should be maintained for all samples.  Store the containers at <4 C and protecto

from light to prevent possibly photo-decomposition of collected analytes.  If the time span between sample
collection and laboratory analysis is to exceed 24 hours, refrigerate sample. 

11.3.4.7  Perform a final calculated sample flow check using the calibration orifice, as described in
Section 11.3.2.  If calibration deviates by more than 10 percent from the initial reading, mark the flow data for
that sample as suspect and inspect and/or remove from service.

11.3.4.8  Return at least 1 field filter/PUF blank to the laboratory with each group of samples.  Treat a field
blank exactly as the sample except that no air is drawn through the filter/adsorbent cartridge assembly.

11.3.4.9  Ship and store samples under ice (<4 C) until receipt at the analytical laboratory, after which ito

should be refrigerated at less than or equal to 4 C.  Extraction must be performed within seven days of samplingo

and analysis within 40 days after extraction.  

12.  Sample Preparation

12.1  Extraction Procedure for Quartz Fiber Filters and PUF Plugs
12.1.1  Take the glass sample cartridge containing the PUF plug and quartz fiber filter out of the shipping

container and place it in a 43-mm x 123-mm Soxhlet extractor.  Add 10 FL of C -labeled sample fortification13
12

solution (see Table 4) to the sample.  Put the thimble into a 50 mm Soxhlet extractor fitted with a 500 mL boiling
flask containing 275 mL of benzene.

[Note:  While the procedure specifies benzene as the extraction solution, many laboratories have substituted
toluene for benzene because of the carcinogenic nature of benzene (28).  The EPA is presently studying the
replacement of benzene with toluene.]

12.1.2  Place a small funnel in the top of the Soxhlet extractor, making sure that the top of the funnel is inside
the thimble.  Rinse the inside of the corresponding glass cylinder into the thimble using approximately 25 mL
of benzene.  Place the extractor on a heating mantel.  Adjust the heat until the benzene drips at a rate of 2 drops
per second and allow to flow for 16 hours.  Allow the apparatus to cool. 

12.1.3  Remove the extractor and place a 3-bulb Snyder column onto the flask containing the benzene extract.
Place on a heating mantel and concentrate the benzene to 25 mL (do not let go to dryness).  Add 100 ml of hexane
and again concentrate to 25 mL.  Add a second 100 mL portion of hexane and again concentrate to 25 mL.  

12.1.4  Let cool and add 25 mL hexane.  The extract is ready for acid/base cleanup at this point.
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12.2  Cleanup Procedures

12.2.1  Acid/Base Cleanup.  Transfer the hexane extract to a 250 mL separatory funnel with two 25-mL
portions of hexane.  Wash the combined hexane with 30 ml of 2 N potassium hydroxide.  Allow layers to separate
and discard the aqueous layer.  Repeat until no color is visible in the aqueous layer, up to a maximum of 4
washes.  Partition the extract against 50 ml of 5% sodium chloride solution.  Discard the aqueous layer.  Carefully
add 50 mL of concentrated sulfuric acid.  Shake vigorously for 1 minute, allow layers to separate, and discard
the acid layer.  Repeat the acid wash until no color is visible in the aqueous layer, up to a maximum of 4 washes.
Partition the extract against 50 ml of 5% sodium chloride solution.  Discard the aqueous layer.  Transfer the
hexane through a 42-mm x 160-mm filter funnel containing a plug of glass wool and 3-cm of sodium sulfate into
a 250-mL Kuderna-Danish (KD) concentrator fitter with a 15-mL catch tube.  Rinse the filter funnel with two
25 mL portions of hexane.  Place a 3-bulb Snyder column on the KD concentrator and concentrate on a steam
bath to 1-2 mL.  The extract is ready for the alumina column cleanup at this point, but it can be sealed and stored
in the dark, if necessary.  An extract that contains obvious contamination, such as yellow or brown color, is
subjected to the silica column cleanup prior to the alumina cleanup.

12.2.2  Silica Column Preparation.  Gently tamp a plug of glass wool into the bottom of a 5.75-inch (14.6
cm) disposable Pasteur pipette.  Pour prewashed 100-200 mesh Bio-Sil®A (silica gel) into the pipette until a
height of 3.0 cm of silica gel is packed into the column.  Top the silica gel with 0.5 cm of anhydrous granular
sodium sulfate.  Place columns in an oven set at 220EC.  Store columns in the oven until ready for use, at least
overnight.  Remove only the columns needed and place them in a desiccator until they have equilibrated to room
temperature.  Use immediately.

12.2.3  Silica Column Cleanup.  Position the silica column over the alumina column so the eluent will drip
onto the alumina column.  Transfer the 2 mL hexane extract from the Acid/Base Cleanup onto the silica column
with two separate 0.5-mL portions of hexane.  Elute the silica column with an additional 4.0 mL of hexane.
Discard the silica column and proceed with the alumina column cleanup at the point where the column is washed
with 6.0 mL of carbon tetrachloride.

12.2.4  Alumina Column Preparation.  Gently tamp a plug of glass wool into the bottom of a 5.75-inch
(14.6 cm) disposable Pasteur pipette.  Pour WOELM neutral alumina into the pipette while tapping the column
with a pencil or wooden dowel until a height of 4.5 cm of alumina is packed into the column.  Top the alumina
with a 0.5 cm of anhydrous granular sodium sulfate.  Prewash the column with 3 mL dichloromethane.  Allow
the dichloromethane to drain from the column; then force the remaining dichloromethane from the column with
a stream of dry nitrogen.  Place prepared columns in an oven set at 225EC.  Store columns in the oven until ready
for use, at least overnight.  Remove only columns needed and place them in a desiccator over anhydrous calcium
sulfate until they have equilibrated to room temperature.  Use immediately.

12.2.5  Alumina Column Cleanup.  Prewet the alumina column with 1 mL of hexane.  Transfer the 2 mL
hexane extract from acid/base cleanup into the column.  Elute the column with 6.0 mL of carbon tetrachloride
and archive.  Elute the column with 4.0 mL of dichloromethane and catch the eluate in a 12- mL distillation
receiver.  Add 3 FL tetradecane, place a micro-Snyder column on the receiver and evaporate the dichloromethane
just to dryness by means of a hot water bath.  Add 2 mL of hexane to the receiver and evaporate just to dryness.
Add another 2-mL portion of hexane and evaporate to 0.5 mL.  The extract is ready for the carbon column
cleanup at this point.

12.2.6  Carbon Column Preparation.  Weigh 9.5 g of Bio-Sil®A (100-200 mesh) silica gel, which has been
previously heated to 225EC for 24 hours, into a 50-mL screw cap container.  Weigh 0.50 g of Amoco PX-21
carbon onto the silica gel cap and shake vigorously for 1 hour.  Just before use, rotate the container by hand for
at least 1 minute.  Break a glass graduated 2.0-mL disposal pipette at the 1.8 mL mark and fire polish the end.
Place a small plug of glass wool in the pipette and pack it at the 0.0 mL mark using two small solid glass rods.
Add 0.1 mL of Bio-Sil®A 100-200 mesh silica gel.  If more than 1 column is to be made at a time, it is best to
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add the silica gel to all the columns and then add the carbon-silica gel mixture to all columns.  Add 0.40 mL of
the carbon silica gel mixture to the column; the top of the mixture will be at the 0.55-mL mark on the pipette.
Top the column with a small plug of glass wool.

12.2.7  Carbon Column Cleanup.  Place the column in a suitable clamp with the silica gel plug up.  Add
approximately 0.5 mL of 50 percent benzene-methylene chloride (v/v) to the top of the column.  Fit a 10 mL
disposable pipette on the top of the carbon column with a short piece of extruded teflon tubing.  Add an additional
9.5 mL of the 50 percent benzene-methylene chloride.  When approximately 0.5 mL of this solvent remains, add
10 mL of toluene.  After all the toluene has gone into the column, remove the 10-mL reservoir and add at least
2.0 mL of hexane to the column.  When approximately 0.1 mL of the hexane is left on the top of the column,
transfer the sample extract onto the column with a Pasteur pipette.  Rinse the distillation receiver column that
contained the extract with two separate 0.2 mL portions of hexane and transfer each rinse onto the column.  Allow
the top of each transfer layer to enter the glass wool before adding the next one.  When the last of the transfer
solvent enters the glass wool, add 0.5 mL of methylene chloride, replace the 10-mL reservoir, and add 4.5 mL
of methylene chloride to it.  When approximately 0.5 mL of this solvent remains, add 10 mL of 50 percent
benzene-methylene chloride.  When all this solvent has gone onto the column, remove the reservoir, take the
column out of the holder and rinse each end with toluene, turn the column over, and put it back in the holder.  All
previous elution solvents are archived.  Place a suitable receiver tube under the column and add 0.5 mL of toluene
to the top of the column.  Fit the 10 mL reservoir on the column and add 9.5 mL of toluene to it.  When all toluene
has eluted through the column and has been collected in the receiving tube, add 5 mL of tetradecane and
concentrate to 0.5 mL using a stream of nitrogen and water bath maintained at 60EC.  Transfer the toluene extract
to a 2.0 mL graduated Chromoflex® tube with two 0.5-mL portions of benzene.  Add 0.5 ng of C -1,2,3,4-13

12

TCDD and store the extracts in the dark at room temperature.  Concentrate the extract to 30 FL using a stream
of nitrogen at room temperature just prior to analysis or shipping.  Transfer the extracts that are to be shipped
to a 2 mm i.d. x 75 mm glass tube that has been fire sealed on one end with enough benzene to bring the total
volume of the extract to 100 FL.  Then fire seal other end of the tube.

12.3  Glassware Cleanup Procedures

In this procedure, take each piece of glassware through the cleaning separately except in the oven baking process.
Wash the 100-mL round bottom flasks, the 250 mL separatory funnels, the KD concentrators, etc., that were used
in the extraction procedures three times with hot tap water, two times with acetone and two times with hexane.
Then bake this glassware in a forced air oven that is vented to the outside for 16 hours at 450EC.  Clean the PFTE
stopcocks as above except for the oven baking step.  Rinse all glassware with acetone and hexane immediately
before use.

13.  HRGC-HRMS System Performance

13.1  Operation of HRGC-HRMS

Operate the HRMS in the electron impact (EI) ionization mode using the selected ion monitoring (SIM) detection
technique.  Achieve a static mass resolution of 10,000 (10% valley) before analysis of a set of samples is begun.
Check the mass resolution at the beginning and at the end of each day.  (Corrective actions should be implemented
whenever the resolving power does not meet the requirement.)  Chromatography time required for PCDDs and
PCDFs may exceed the long-term stability of the mass spectrometer because the instrument is operated in the
high-resolution mode and the mass drifts of a few ppm (e.g., 5 ppm in mass) can have adverse effects on the
analytical results.  Therefore, a mass-drift correction may be required.  Use a lock-mass ion for the reference
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compound perfluorokerosene (PFK) to tune the mass spectrometer.  The selection of the SIM lock-mass ions of
PFK shown in the descriptors (see Tables 10, 11 and 12) is dependent on the masses of the ions monitored within
each descriptor.  An acceptable lock-mass ion at any mass between the lightest and heaviest ion in each descriptor
can be used to monitor and correct mass drifts.  Adjust the level of the reference compound (PFK) metered inside
the ion chamber during HRGC-HRMS analyses so that the amplitude of the most intense selected lock-mass ion
signal is kept to a minimum.  Under those conditions, sensitivity changes can be more effectively monitored.
Excessive use of PFK or any reference substance will cause high background signals and contamination of the
ion source, which will result in an increase in "downtime" required for instrument maintenance.

Tune the instrument to a mass resolution of 10,000 (10% valley) at m/z 292.9825 (PFK).  By using the peak
matching unit (manual or computer simulated) and the PFK reference peak, verify that the exact m/z 392.9761
(PFK) is within 3 parts per million (ppm) of the required value.

Document the instrument resolving power by recording the peak profile of the high mass reference signal (m/z
392.9761) obtained during the above peak matching calibration experiment by using the low mass PFK ion at
m/z 292.9825 as a reference.  The minimum resolving power of 10,000 should be demonstrated on the high mass
ion while it is transmitted at a lower accelerating voltage than the low mass reference ion, which is transmitted
at full voltage and full sensitivity.  There will be little, if any, loss in sensitivity on the high mass ion if the source
parameters are properly tuned and optimized.  The format of the peak profile representation should allow for
computer calculated and manual determination of the resolution, i.e., the horizontal axis should be a calibrated
mass scale (amu or ppm per division).  Detailed descriptions for mass resolution adjustments are usually found
in the instrument operators manual or instructions. 

13.2  Column Performance

After the HRMS parameters are optimized, analyze an aliquot of a column performance solution containing the
first and last eluting compounds (see Table 9), or a solution containing all congeners, to determine and confirm
SIM parameters, retention time windows, and HRGC resolution of the compounds.  Adjustments can be made
at this point, if necessary.  Some PeCDFs elute in the TCDD retention time window when using the 60 m DB-5
column.  The PeCDF masses can be included with the TCDD/TCDF masses in Descriptor 1.  Include the
PeCDD/PeCDF masses with the TCDD/TCDF masses when using the 60 m SP-2331 polar column.  The HRGC-
HRMS SIM parameters and retention time windows can be rapidly and efficiently determined and optimized by
analysis of a window defining solution of PCDDs/PCDFs using one mass for each isomer for the complete
analysis of tetra- through octa- compounds, as illustrated in Figure 11.

13.3  SIM Cycle Time

The total time for each SIM cycle should be 1 second or less for data acquisition, which includes the sum of the
mass ion dwell times and ESA voltage reset times.  

13.4  Peak Separation

Chromatographic peak separation between 2,3,7,8-TCDD and the co-eluting isomers should be resolved with
a valley of 25% or more (see Figure 12).
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13.5  Initial Calibration

After the HRGC-HRMS SIM operating conditions are optimized, perform an initial calibration using the 5
calibration solutions shown in Table 3.  The quantification relationships of labeled and unlabeled standards are
illustrated in Tables 15, 16, 17, and 18.  Figures 13 through 22 represent the extracted ion current profiles (EICP)
for specific masses for 2,3,7,8-TCDF, 2,3,7,8-TCDD and other 2,3,7,8-substituted PCDF/PCDD (along with
their labeled standards) through OCDF and OCDD respectively.

[Note:  Other solutions containing fewer or different congeners and at different concentrations may also be
used for calibration purposes.]

Referring to Tables 10, 11, or 12, calculate (1) the relative response factors (RRFs) for each unlabeled
PCDD/PCDF and PBDD/PBDF [RRF (I)] relative to their corresponding C -labeled internal standard and (2)13

12

the RRFs for the C -labeled PCDD/PCDF and PBDD/PBDF internal standards [RRF (II)] relative to Cl -13 37
12 4

2,3,7,8-TCDD recovery standard using the following formulae:

where:
A  = the sum of the integrated ion abundances of the quantitation ions (see Tables 10,x

11 or 12) for unlabeled PCDDs/PCDFs, and PBDDs/PBDFs and BCDDs/BCDFs.

A  = the sum of the integrated ion abundances of the quantitation ions for theis

C -labeled internal standards (see Table 10, 11 or 12).13
12

[Note:  Other C -labeled analytes may also be used as the recovery standard(s)]13
12

A  = the integrated ion abundance for the quantitation ion of the Cl -2,3,7,8-TCDDrs 4
37

recovery standard.

Q  = the quantity of the C -labeled internal standard injected, pg.is 12
13

Q  = the quantity of the unlabeled PCDD/PCDF analyte injected, pg.x

Q  = the quantity of the Cl -2,3,7,8-TCDD injected, pg.rs 4
37

RRF(I) and RRF(II) = dimensionless quantities.  The units used to express Q  and Q  must be the same.is x

[Note:  C -1,2,3,7,8-PeBDF is used to determine the response factor for the unlabeled 2,3,7,8-substituted,13
12

PeBDD, HxBDF and HxBDD.]
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Calculate the average RRFs for the 5 concentration levels of unlabeled and C -labeled PCDDs/PCDFs and13
12

PBDDs/PBDFs for the initial calibration using the following equation:

13.6  Criteria Required for Initial Calibration

The analytical data must satisfy certain criteria for acceptable calibration.  The isotopic ratios must be within the
acceptable range (see Tables 19 and 20).  The percent relative standard deviation for the response factors should
be less than the values presented in Table 21.  The signal-to-noise ratio for the C -labeled standards must be13

12

10:1 or more and 5:1 or more for the unlabeled standards.

13.7  Continuing Calibration

Conduct an analysis at the beginning of each day to check and confirm the calibration using an aliquot of the
calibration solution.  This analysis should meet the isotopic ratios and signal to noise ratios of the criteria stated
in Section 13.6 (see Table 21 for daily calibration percent difference criteria).  It is good practice to confirm the
calibration at the end of the day also.  Calculate the daily calibration percent difference using the following
equation.

RRF  = the relative response factor for a specific analyte in the continuing calibration standard.cc

14.  HRGC-HRMS Analysis And Operating Parameters

14.1  Sample Analysis

Sample Analysis.  An aliquot of the sample extract is analyzed with the HRGC-HRMS system using the
instrument parameters illustrated in Tables 13 and 14 and the SIM descriptors and masses shown in Tables 10,
11, and 12.  A 30-m SE-54 fused silica capillary column is used to determine the concentrations of total tetra-,
penta-, hexa-, hepta- and octa-CDDs/CDFs and/or to determine the minimum limits of detections (MLDs) for
the compounds.  If the tetra-, penta-, and hexa-CDDs/CDFs were detected in a sample and isomer specific
analyses are required, then an aliquot of the sample extract is analyzed using the 60 m SP-2331 fused silica
capillary column to provide a concentration for each 2,3,7,8-substituted PCDD/PCDF and concentrations for total
PCDDs and PCDFs also.

[Note:  Other capillary columns such as the DB-5, SE-30, and DB-225 may be used if the performance
satisfies the specifications for resolution of PCDDs/PCDFs.  The SE-54 column resolves the four HpCDF
isomers, two HpCDD isomers, OCDF and OCDD for isomer specific analysis.  It does not resolve the tetra-,
penta-, and hexa-2,3,7,8-substituted isomers.  The SE-54 column is used for the analysis of PBDDs and
PBDFs.]
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Isomer specificity for all 2,3,7,8-substituted PCDDs/PCDFs cannot be achieved on a single HRGC capillary
column at this time.  However, many types of HRGC capillary columns are available and can be used for these
analyses after their resolution capabilities are confirmed to be adequate using appropriate standards.

Two HRGC columns shown in Table 13 have been used successfully since 1984 (27, 28).  The 60-m DB-5
provides an efficient analysis for total concentrations of PCDDs/PCDFs, specific isomers (total tetra-, penta-,
hexa-CDDs/CDFs, four HpCDF isomers, two HpCDD isomers, OCDD and OCDF), PBDDs/PBDFs, and/or
determination of MDLs.  The 60 m SP-2331 column provides demonstrated and confirmed resolution of 2,3,7,8-
substituted tetra-, penta-, and hexa-PCDDs/PCDFs (14).  The descriptors and masses shown in Tables 10, 11
and 12 must be modified to take into account the elution of some of the PeCDDs and PeCDFs in the tetra
retention time window using the SP-2331column.

14.2  Identication Criteria

Criteria used for identification of PCDDs and PCDFs in samples are as follows:

• The integrated ion abundance ratio M/(M+2) or (M+2)/(M+4) shall be within 15 percent of the theoretical
value.  The acceptable ion abundance ranges are shown in Tables 19 and 20.

• The ions monitored for a given analyte, shown in Tables 10, 11, and 12, shall reach their maximum within
2 seconds of each other.

• The retention time for the 2,3,7,8-substituted analytes must be within 3 seconds of the corresponding C -13
12

labeled internal standard, surrogate, or alternate standard.
• The identification of 2,3,7,8-substituted isomers that do not have corresponding C -labeled standards13

12

is done by comparison to the analysis of a standard that contains the specific congeners.  Comparison of
the relative retention time (RRT) of the analyte to the nearest internal standard with reference (i.e., within
0.005 RRT time units to the comparable RRTs found in the continuing calibration or literature).

• The signal-to-noise ratio for the monitored ions must be greater than 2.5.
• The analysis shall show the absence of polychlorinated diphenyl- ethers (PCDPEs).  Any PCDPEs that co-

elute (± 2 seconds) with peaks in the PCDF channels indicates a positive interference, especially if the
intensity of the PCDPE peak is 10 percent or more of the PCDF.

Use the identification criteria in Section 14.2 to identify and quantify the PCDDs and PCDFs in the sample.
Figure 23 illustrates a reconstructed EICP for an environmental sample, identifying the presence of
2,3,7,8-TCDF as referenced to the labeled standard.

14.3  Quantification

The peak areas of ions monitored for C -labeled PCDDs/PCDFs and Cl -2,3,7,8-TCDD, unlabeled13 37
12 4

PCDDs/PCDFs, and respective relative response factors are used for quantification.  The Cl -2,3,7,8-TCDD,37
4

spiked to extract prior to final concentration, and respective response factors are used to determine the sample
extraction efficiencies achieved for the nine C -labeled internal standards, which are spiked to the sample prior13

12

to extraction (% recovery).  The C -labeled PCDD/PCDF internal standards and response factors are used for13
12

quantification of unlabeled PCDDs/PCDFs and for determination of the minimum limits of detection with but
one exception:  C -OCDD is used for OCDF.  Each C -labeled internal standard is used to quantify all of13 13

12 12

the PCDDs/PCDFs in its isomeric group.  For example, C -2,3,7,8-TCDD and the 2,3,7,8-TCDD response13
12

factor are used to quantify all of the 22 tetra-chlorinated isomers.  The quantification relationships of these
standards are shown in Tables 15, 16, 17, and 18.  The Cl -2,3,7,8-TCDD spiked to the filter of the sampler37

4
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prior to sample collection is used to determine the sampler retention efficiency, which also indicates the collection
efficiency for the sampling period.

14.4  Calculations

14.4.1  Extraction Efficiency.  Calculate the extraction efficiencies (percent recovery) of the 9 C -labeled13
12

PCDD/PCDF or the 3 C -labeled PBDD/PBDF internal standards measured in the extract using the formula:13
12

where:

%R  = percent recovery (extraction efficiency).is

A  = the sum of the integrated ion abundances of the quantitation ions (see Tables 10, 11 or 12) foris

the C -labeled internal standard.13
12

A  = the sum of the integrated ion abundances of the quantitation ions (see Table 10, 11 or 12) forrs

the Cl - or C -labeled recovery standard; the selection of the recovery standard(s) depends37 13
4 12

on the type of homologues.

Q  = quantity of the C -labeled internal standard added to the sample before extraction, pg.is 12
13

Q  = quantity of the Cl - or C -labeled recovery standard added to the sample extract beforers 4 12
37 13

HRGC-HRMS analysis, pg.

RRF(II) = calculated mean relative response factor for the labeled internal standard relative to the

appropriate labeled recovery standard.

14.4.2  Calculation of Concentration.  Calculate the concentration of each 2,3,7,8-substituted PCDD/PCDF,
other isomers or PBDD/PBDF that have met the criteria described in Sections 14.2 using the following formula:

where:

C  = concentration of unlabeled PCDD/PCDF, PBDD/PBDF or BCDD/BCDF congener(s), pg/m .x
3

A  = the sum of the integrated ion abundances of the quantitation ions (see Table 11, 12 or 13) for thex

unlabeled PCDDs/PCDFs, or PBDDs/PBDFs or BCDFs.

A  = the sum of the integrated ion abundances of the quantitation ions (see Table 11, 12 or 13) for theis

respective C -labeled internal standard.13
12

Q  = quantity of the C -labeled internal standard added to the sample before extraction, pg.is 12
13

V  = standard volume of air, std m .std
3

RRF(I) = calculated mean relative response factor for an unlabeled 2,3,7,8-substituted PCDD/PCDF

obtained in Section 13.4.
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14.5  Method Detection Limits (MDLs)

The ambient background levels of total PCDDs/PCDFs are usually found in the range of 0.3 to 2.9 pg/m .3

Therefore, the MDLs required to generate meaningful data for ambient air should be in the range of 0.02 to 0.15
pg/m  for tetra-, penta-, and hexa-CDDs/CDFs.  Trace levels, 0.05 to 0.25 pg/m , of HpCDDs and OCDD are3 3

usually detected in the method blank (background contamination).

An MDL is defined as the amount of an analyte required to produce a signal with a peak area at least 2.5 x the
area of the background signal level measured at the retention time of interest.  MDLs are calculated for total
PHDDs/PHDFs and for each 2,3,7,8-substituted congener.  The calculation method used is dependent upon the
type of signal responses present in the analysis.  For example:

• Absence of response signals of one or both quantitation ion signals at the retention time of the 2,3,7,8-
substituted isomer or at the retention time of non 2,3,7,8-substituted isomers.  The instrument noise level
is measured at the analyte's expected retention time and multiplied by 2.5, inserted into the formula below
and calculated and reported as not detected (ND) at the specific MDL.

• Response signals at the same retention time as the 2,3,7,8-substituted isomers or the other isomers that
have a S/N ratio in excess of 2.5:1 but that do not satisfy the identification criteria described in 14.2 are
calculated and reported as ND at the elevated MDL and discussed in the narrative that accompanies the
analytical results.  Calculate the MDLs using the following formula:

where:
MDL = concentration of unlabeled PHDD/PHDF, pg/m .3

A  = sum of integrated ion abundances of the quantitation ions (see Table 10, 11 or 12) for thex

unlabeled PHDDs/PHDFs which do not meet the identification criteria or 2.5 x area of noise

level at the analyte's retention time.

A  = sum of the integrated ion abundances of the quantitation ions (see Table 10, 11, or 12) for theis

C -labeled internal standards.13
12

Q  = quantity of the C -labeled internal standard spiked to the sample prior to extraction, pg.is 12
13

V  = standard volume of ambient air sampled, std m .std
3

 = mean relative response factor for the unlabeled PHDD/PHDF.

14.6  2,3,7,8-TCDD Toxic Equivalents

Calculate the 2,3,7,8-TCDD toxic equivalents of PCDDs and PCDFs present in a sample according to the method
recommended by EPA and the Center for Disease Control (18).  This method assigns a 2,3,7,8-TCDD toxicity
equivalency factor (TEF) for each of the seventeen 2,3,7,8-substituted PCDDs/PCDFs (see Table 22).  The
2,3,7,8-TCDD equivalent of the PCDDs and PCDFs present in the sample is calculated by the respective TEF
factors times their concentration for each of the compounds listed in Table 22. The exclusion of the other isomeric
groupings (mono-, di-, and tri-chlorinated dibenzodioxins and dibenzofurans) does not mean that they are non-
toxic.  Their toxicity, as known at this time, is much less than the toxicity of the compounds listed in Table 22.
The above procedure for calculating the 2,3,7,8-TCDD toxic equivalents is not claimed to be based on a
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thoroughly established scientific foundation.  The procedure, rather, represents a "consensus recommendation
on science policy."  Similar methods are used throughout the world.

15.  Quality Assurance/Quality Control (QA/QC)

15.1  Certified analytical standards were obtained from Cambridge Isotope Laboratories, 50 Frontage Road,
Andover, MA 01810, 508-749-8000.

15.2  Criteria used for HRGC-HRMS initial and continuing calibration are defined in Sections 13.5 and 13.6.

15.3  Analytical criteria used for identification purposes are defined in Section 14.2.

15.4  All test samples, method blanks, field blanks, and laboratory control samples are spiked with 13C -labeled12

internal standards prior to extraction.

15.5  Sample preparation and analysis and evaluation of data are performed on a set of 12 samples, which may
consist of 9 test samples, field blank, method blank, fortified method blank, or a laboratory control sample.  

15.6  Method evaluation studies were performed to determine and evaluate the overall method capabilities (1,
2). 

15.7  The C -1,2,3,4-TCDD solution is spiked to filters of all samplers, including field blanks, immediately13
12

prior to operation or is spiked to all PUF plugs prior to shipping them to the field for sampling to determine and
document the sampling efficiency.

15.8  Minimum equipment calibration and accuracy requirements achieved are illustrated in Table 23.

15.9  QA/QC requirements for data:

Criteria Requirements

The data shall satisfy all indicated identification criteria Discussed in Section 14.2

Method efficiency achieved for C -labeled tetra-, penta-, hexa- 50 to 120%13
12

CDDs/CDFs and PBDDs/PBDFs

Method efficiency achieved for C -labeled HpCDD and OCDD 40 to 120%13
12

Accuracy achieved for PHDDs and PHDFs 70 to 130%
in method spike at 0.25 to 2.0 pg/m3

concentration range

Precision achieved for duplicate method spikes or QA samples ± 30%

Sampler efficiency achieved for C -1,2,3,4-TCDD 50 to 120%13
12

Method blank contamination Free of contamination that would
interfere with test sample results.

Method detection limit range 0.02 to 0.25 pg/m
for method blank and field blank (individual isomers)

3
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16.  Report Format

The analytical results achieved for a set of 12 samples should be presented in a table such as the one shown in
Table 24.  The analytical results, analysis, QA/QC criteria, and requirements used to evaluate data are discussed
in an accompanying analytical report.  The validity of the data in regard to the data quality requirements and any
qualification that may apply is explained in a clear and concise manner for the user's information.
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TABLE 1.  NUMBER OF POLYCHLORINATED DIBENZO-P-DIOXIN AND
DIBENZOFURAN (PCDD/PCDF) CONGENERS

No. of Chlorine Atoms No. of PCDD Isomers No. of PCDF Isomers

1 2 4

2 10 16

3 14 28

4 22 38

5 14 28

6 10 16

7 2 4

8 1 1

Total 75 135

[Note: This also applies for the polybrominated dibenzo-p-dioxins and dibenzofurans
(PBDDs/PBDFs).]

TABLE 2.  LIST OF 2,3,7,8-CHLORINE 
SUBSTITUTED PCDD/PCDF CONGENERS

PCDDs PCDFs

2,3,7,8-TCDD 2,3,7,8-TCDF

     1,2,3,7,8-PeCDD      1,2,3,7,8-PeCDF

     2,3,4,7,8-PeCDF

   1,2,3,4,7,8-HxCDD    1,2,3,4,7,8-HxCDF

   1,2,3,6,7,8-HxCDD    1,2,3,6,7,8-HxCDF

   1,2,3,7,8,9-HxCDD    1,2,3,7,8,9-HxCDF

   2,3,4,6,7,8-HxCDF

 1,2,3,4,6,7,8-HpCDD  1,2,3,4,6,7,8-HpCDF

 1,2,3,4,7,8,9-HpCDF

1,2,3,4,6,7,8,9-OCDD 1,2,3,4,6,7,8,9-OCDF
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TABLE 3.  COMPOSITIONS OF THE INITIAL CALIBRATION SOLUTIONS OF 
LABELED AND UNLABELED PCDDS AND PCDFS

Compound Solution No. 1 2 3 4 5

Concentrations (pg/FL)

Unlabeled Analytes

2,3,7,8-TCDD 0.5 1 5 50 100

2,3,7,8-TCDF 0.5 1 5 50 100

1,2,3,7,8-PeCDD 2.5 5 25 250 500

1,2,3,7,8-PeCDF 2.5 5 25 250 500

2,3,4,7,8-PeCDF 2.5 5 25 250 500

1,2,3,4,7,8-HxCDD 2.5 5 25 250 500

1,2,3,6,7,8-HxCDD 2.5 5 25 250 500

1,2,3,7,8,9-HxCDD 2.5 5 25 250 500

1,2,3,4,7,8-HxCDF 2.5 5 25 250 500

1,2,3,6,7,8-HxCDF 2.5 5 25 250 500

1,2,3,7,8,9-HxCDF 2.5 5 25 250 500

2,3,4,6,7,8-HxCDD 2.5 5 25 250 500

1,2,3,4,6,7,8-HpCDD 2.5 5 25 250 500

1,2,3,4,6,7,8-HpCDF 2.5 5 25 250 500

1,2,3,4,7,8,9-HpCDF 2.5 5 25 250 500

OCDD 5.0 10 50 500 1000

OCDF 5.0 10 50 500 1000

Internal Standards

C -2,3,7,8-TCDD 100 100 100 100 10013
12

C -1,2,3,7,8-PeCDD 100 100 100 100 10013
12

C -1,2,3,6,7,8-HxCDD 100 100 100 100 10013
12

C -1,2,3,4,6,7,8-HpCDD 100 100 100 100 10013
12

C -OCDD 200 200 200 200 20013
12

C -2,3,7,8-TCDF 100 100 100 100 10013
12
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TABLE 3.  (continued)

Compound Solution No. 1 2 3 4 5

Concentrations (pg/FL)

C -1,2,3,7,8-PeCDF 100 100 100 100 10013
12

C -1,2,3,4,7,8-HxCDF 100 100 100 100 10013
12

C -1,2,3,4,6,7,8-HpCDF 100 100 100 100 10013
12

Surrogate Standards

C -2,3,4,7,8-PeCDF 60 80 100 120 14013
12

C -1,2,3,4,7,8-HxCD 60 80 100 120 14013
12

C -1,2,3,6,7,8-HxCDF 60 80 100 120 14013
12

C -1,2,3,6,7,8,9-HpCD 60 80 100 120 14013
12

Field Standards

Cl -2,3,7,8-TCDD          100 100 100 100 10037
4

C -1,2,3,7,8,9-HxCDD 100 100 100 100 10013
12

Recovery Standard

C -1,2,3,4-TCDD 50 50 50 50 5013
12

[Note:  Standards specified in EPA Method 1613 can also be used in this method.]
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TABLE 4.  COMPOSITION OF THE SAMPLE 
FORTIFICATION SOLUTIONS

Analyte Concentration (pg/FL)

Chlorinated Internal Standards

C -2,3,7,8-TCDD 10013
12

C -1,2,3,7,8-PeCDD 10013
12

C -1,2,3,6,7,8-HxCDD 10013
12

C -1,2,3,4,6,7,8-HpCDD 10013
12

C -OCDD 10013
12

C -2,3,7,8-TCDF 10013
12

C -1,2,3,7,8-PeCDF 10013
12

C -1,2,3,4,7,8-HxCDF 10013
12

C -1,2,3,4,6,7,8-HpCDF 10013
12

Brominated Internal Standards

Cl -2,3,7,8-TBDD 0.8613
12

C -2,3,7,8-TBDF 0.8613
12

C -1,2,3,7,8-PeBDF 0.8613
12
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TABLE 5.   COMPOSITION OF RECOVERY 
STANDARD SOLUTION

Analyte Concentration (pg/FL)

Recovery Standard

C -1,2,3,4-TCDD 1013
12

TABLE 6.   COMPOSITION OF AIR SAMPLER FIELD 
FORTIFICATION STANDARD SOLUTION

Analyte Concentration (pg/FL)

Field Fortification Standard

Cl -2,3,7,8-TCDD 1037
4

TABLE 7.   COMPOSITION OF SURROGATE STANDARD SOLUTION

Analyte Concentration (pg/FL)

Surrogate Standards

C -1,2,3,4,7,8-HxCDD 10013
12

C -2,3,4,7,8-PeCDF 10013
12

C -1,2,3,6,7,8-HxCDF 10013
12

C -1,2,3,4,7,8,9-HpCDF 10013
12
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TABLE 8.  COMPOSITION OF MATRIX AND METHOD SPIKE AND METHOD 
SPIKE SOLUTIONS OF PCDDS/PCDFS AND PBDDS/PBDFSa

Analyte
Concentration Concentration

(pg/FL) Analyte (pg/FL) 

Native PCDDs and PCDFs Native PBDDs and PBDFs

2,3,7,8-TCDD 1 2,3,7,8-TBDD 1

2,3,7,8-TCDF 1 2,3,7,8-TBDF 1

1,2,3,7,8-PeCDD 5 1,2,3,7,8-PeBDD 5

1,2,3,7,8-PeCDF 5 1,2,3,7,8-PeBDF 5

2,3,4,7,8-PeCDF 5 1,2,3,4,7,8-HxBDD 5

1,2,3,4,7,8-HxCDD 5 1,2,3,4,7,8-HxBDF 5

1,2,3,6,7,8-HxCDD 5

1,2,3,7,8,9-HxCDD 5

1,2,3,4,7,8-HxCDF 5

1,2,3,6,7,8-HxCDF 5

1,2,3,7,8,9-HxCDF 5

2,3,4,6,7,8-HxCDF 5

1,2,3,4,6,7,8-HpCDD 5

1,2,3,4,6,7,8-HpCDF 5

1,2,3,4,7,8,9-HpCDF 5

OCDD 10

OCDF 10

Solutions at different concentrations and those containing different congeners may also be used.a
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TABLE 9.  HRGC-HRMS COLUMN PERFORMANCE EVALUATION SOLUTIONS

Congener First Eluted Last Eluted

SE-54 Column GC Retention Time Window Defining Standarda

TCDF 1,3,6,8- 1,2,8,9-

TCDD 1,3,6,8- 1,2,8,9-

PeCDF 1,3,4,6,8- 1,2,3,8,9-

PeCDD 1,2,4,7,9- 1,2,3,8,9-

HxCDF 1,2,3,4,6,8- 1,2,3,4,8,9-

HxCDD 1,2,4,6,7,9- 1,2,3,4,6,7-

HpCDF 1,2,3,4,6,7,8- 1,2,3,4,7,8,9-

HpCDD 1,2,3,4,6,7,9- 1,2,3,4,6,7,8-

OCDF OCDF

OCDD OCDD

SE-54 TCDD Isomer Specificity Test Standardb

1,2,3,4-TCDD

1,4,7,8-TCDD 2,3,7,8-TCDD

SP-2331 Column TCDF Isomer Specificity Test Standardc

2,3,4,7-TCDF

2,3,7,8-TCDF

1,2,3,9-TCDF

A solution containing these congeners and the seventeen 2,3,7,8-substituted congeners may also be used for thesea

purposes.
A solution containing the 1,2,3,4,-TCDD and 2,3,7,8-TCDD may also be used for this purpose.b

Solution containing all tetra- through octa-congeners may also be used for these purposes.c
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TABLE 10.  DESCRIPTORS, MASSES, M/Z TYPES, AND ELEMENTAL COMPOSITIONS 
OF THE PCDDS AND PCDFS

Descriptor Accurate Primary
Number Mass  m/z Type Elemental Composition  Compound m/z2

1 292.9825 Lock C  F PFK7 11

303.9016 M C  H  Cl  O TCDF Yes12 4 4
35

305.8987 M+2 C  H  Cl  Cl O TCDF12 4 3
35 37

315.9419 M C  H  Cl  O TCDF Yes13 35
12 4 4

3

317.9389 M+2 C  H  Cl  Cl O TCDF13 35 37
12 4 3

3

319.8965 M C  H  Cl  O TCDD Yes12 4 4 2
35

321.8936 M+2 C  H  Cl  Cl O TCDD12 4 3 2
35 37

327.8847 M C  H  Cl  O TCDD12 4 4 2
37 4

330.9792 QC C  F PFK7 13

331.9368 M C  H  Cl  O TCDD Yes13 35
12 4 4 2

3

333.9339 M+2 C  H  Cl  Cl O TCDD13 35 37
12 4 3 2

3

375.8364 M+2 C  H  Cl  Cl O HxCDPE12 4 5
35 37

2 339.8597 M+2 C  H  Cl  Cl O PeCDF Yes12 3 4
35 37

341.8567 M+4 C  H  Cl  Cl  O PeCDF12 3 3 2
35 37

351.9000 M+2 C  H  Cl  Cl O PeCDF Yes13 35 37
12 3 4

3

353.8970 M+4 C  H  Cl  Cl  O PeCDF13 35 37
12 3 3 2

3

354.9792 Lock C  F PFK9 13

355.8546 M+2 C  H  Cl  Cl O PeCDD Yes12 3 4 2
35 37

357.8516 M+4 C  H  Cl  Cl  O PeCDD12 3 3 2 2
35 37

367.8949 M+2 C  H  Cl  Cl O PeCDD Yes13 35 37
12 3 4 2

4

369.8919 M+4 C  H  Cl  Cl  O PeCDD13 35 37
12 3 3 2 2

4

409.7974 M+2 C  H  Cl  Cl O HpCDPE12 3 6
35 37
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TABLE 10.  (continued)

Descriptor Accurate Primary
Number Mass  m/z Type Elemental Composition  Compound m/z2

3 373.8208 M+2 C  H  Cl  Cl O HxCDF Yes12 2 5
35 37

375.8178 M+4 C  H  Cl  Cl  O HxCDF12 2 4 2
35 37

383.8639 M C  H  Cl  O HxCDF Yes13 35
12 2 6

3

385.8610 M+2 C  H  Cl  Cl O HxCDF13 35 37
12 2 5

3

389.8157 M+2 C  H  Cl  Cl O HxCDD Yes12 2 5 2
35 37

391.8127 M+4 C  H  Cl  Cl  O HxCDD12 2 4 2 2
35 37

392.9760 Lock C  F PFK9 15

401.8559 M+2 C  H  Cl  Cl O HxCDD Yes13 35 37
12 2 5 2

3

403.8529 M+4 C  H  Cl  Cl  O HxCDD13 35 37
12 2 4 2 2

3

430.9729 QC C  F PFK9 13

445.7555 M+4 C  H  Cl  Cl  O OCDPE12 2 6 2
35 37

4 407.7818 M+2 C H Cl Cl O H CDF Yes12 6 37
35

p

409.7789 M+4 C  H Cl  Cl  O HpCDF12 5 2
35 37

417.8253 M C  H Cl  O HpCDF Yes13 35
12 7

3

419.8220 M+2 C  H Cl  Cl O HpCDF13 35 37
12 6

3

423.7766 M+2 C  H Cl  Cl O HpCDD Yes12 6 2
35 37

425.7737 M+4 C  H Cl  Cl  O HpCDD12 5 2 2
35 37

430.9729 Lock C  F PFK9 17

435.8169 M+2 C  H Cl  Cl O HpCDD Yes13 35 37
12 6 2

3

437.8140 M+4 C  H Cl  Cl  O HpCDD13 35 37
12 5 2 2

3

479.7165 M+4 C  H Cl  Cl  O NCDPE12 7 2
35 37
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TABLE 10.  (continued)

Descriptor Accurate Primary
Number Mass  m/z Type Elemental Composition  Compound m/z2

5 441.7428 M+2 C  Cl  Cl O OCDF Yes12 7
35 37

442.9728 Lock C  F PFK10 17

443.7399 M+4 C  Cl  Cl  O OCDF12 6 2
35 37

457.7377 M+2 C  Cl  Cl O OCDD Yes12 7 2
35 37

459.7348 M+4 C  Cl  Cl  O OCDD12 6 2 2
35 37

469.7779 M+2 C  Cl  Cl O OCDD Yes13 35 37
12 7 2

3

471.7750 M+4 C  Cl  Cl  O OCDD13 35 37
12 6 2 2

3

513.6775 M+4 C  Cl  Cl  O DCDPE12 8 2
35 37

Nuclidic masses used:1

   H =  1.007825 C     = 12.00000 C  = 13.003355 F = 18.998413

   O = 15.994915 Cl = 34.968853 Cl = 36.96590335 37

Compound abbreviations:2

     Polychlorinated dibenzo-p-dioxins        Polychlorinated diphenyl ethers    
   TCDD  =  Tetrachlorodibenzo-p-dioxin HxCDPE  =  Hexachlorodiphenyl ether
   PeCDD =  Pentachlorodibenzo-p-dioxin HpCDPE  =  Heptachlorodiphenyl ether
   HxCDD =  Hexachlorodibenzo-p-dioxin OCDPE   =  Octachlorodiphenyl ether
   HpCDD =  Heptachlorodibenzo-p-dioxin NCDPE   =  Nonachlorodiphenyl ether
   OCDD  =  Octachlorodibenzo-p-dioxin DCDPE   =  Decachlorodiphenyl ether

       Polychlorinated dibenzofurans           Lock mass and QC compound     
   TCDF  =  Tetrachlorodibenzofuran PFK     =  Perfluorokerosene
   PeCDF =  Pentachlorodibenzofuran
   HxCDF =  Hexachlorodibenzofuran
   HpCDF =  Heptachlorodibenzofuran

Labeled compound3

There is only one m/z for Cl -2,3,7,8-TCDD (recovery standard).4 37
4
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TABLE 11.  DESCRIPTORS, M/Z TYPES, EXACT MASSES AND ELEMENTAL
COMPOSITIONS OF THE PBDDS AND PBDFS

Descriptor Accurate Elemental
Number Mass Ion Type Composition Compound1 2

1 327.8847 M C  H  Cl  O TCDD12 4 4 2
37 4

330.9792 QC C  F PFK7 13

331.9368 M C  H  Cl  O TCDD12 4 4 2
35 3

333.9339 M+2 C  H  Cl  Cl O TCDD12 4 3 2
35 37 3

2 417.825 M C  H Cl  O HpCDF13 35
12 7

3

419.822 M+2 C  H Cl  Cl O HpCDF13 35 37
12 6

3

466.973 QC PFK

481.698 M+2 C  H  Br  BrO TBDF12 4 3
79 81

483.696 M+4 C  H  Br  Br  O TBDF12 4 2 2
79 81

485.694 M+6 C  H  Br Br  O TBDF12 4 3
79 81

492.970 LOCK MASS PFK

493.738 M+2 C  H  Br  Br O TBDF13 79 81
12 4 3

3

495.736 M+4 C  H  Br  Br  O TBDD13 79 81
12 4 2 2

3

497.692 M+2 C  H  Br  Br O TBDD12 4 3 2
79 81

499.690 M+4 C  H  Br  Br  O TBDD12 4 2 2 2
79 81

501.689 M+6 C  H  Br Br  O TBDD12 4 3
79 81

509.733 M+2 C  H  Br  BrO TBDD13 79 81
12 4 3 2

3

511.731 M+4 C  H  Br  Br  O TBDD13 79 81
12 4 2 2 2

3

565.620 M+6 C  H  Br  Br  O PeBDPO12 5 2 3
79 81

643.530 M+6 C  H  Br  Br  O HxBDPO12 4 3 3
79 81
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TABLE 11.  (continued)

Descriptor Accurate Elemental
Number Mass Ion Type Composition Compound1 2

3 469.778 M+2 C  Cl  Cl O OCDD13 35 37
12 7 2

3

471.775 M+4 C  Cl  Cl O OCDD13 35 37
12 6 2

3

559.608 M+2 C  H  Br  Br O PeBDF12 3 4
79 81

561.606 M+4 C  H  Br  Br  O PeBDF12 3 3 2
79 81

563.604 M+6 C  H  Br  Br  O PeBDF12 3 2 3
79 81

566.966 LOCK MASS PFK

573.646 M+4 C  H  Br  Br  O PeBDF13 79 81
12 3 3 2

3

575.644 M+6 C  H  Br  Br  O PeBDF13 79 81
12 3 2 3

3

575.603 M+2 C  H  Br  Br O PeBDD12 3 4 2
79 81

577.601 M+4 C  H  Br  Br  O PeBDD12 3 3 2 2
79 37

579.599 M+6 C  H  Br  Br  O PeBDD12 3 2 3 2
79 81

589.641 M+4 C  H  Br  Br  O PeBDD13 79 37
12 3 3 2 2

3

591.639 M+6 C  H  Br  Br  O PeBDD13 79 81
12 3 3 2 2

3

616.963 QC PFK
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TABLE 11.  (continued)

Descriptor Accurate Elemental
Number Mass Ion Type Composition Compound1 2

4 643.530 M+6 C  H  Br  Br  O HxBDPO12 4 3 3
79 81

721.441 M+6 C  H  Br  Br  O HpBDPO12 3 4 3
79 81

616.963 QC PFK

639.517 M+4 C  H  Br  Br  O HxBDF12 2 4 2
79 81

641.514 M+6 C  H  Br  Br  O HxBDF12 2 3 3
79 81

643.512 M+8 C  H  Br  Br  O HxBDF12 2 2 4
79 81

655.511 M+4 C  H  Br  Br  O HxBDD12 2 4 2 2
79 81

657.509 M+6 C  H  Br  Br  O HxBDD12 2 3 3 2
79 81

659.507 M+8 C  H  Br  Br  O HxBDD12 2 2 4 2
79 81

666.960 LOCK PFK
MASS

721.441 M+6 C  H  Br  Br  O HpBDPO12 3 4 3
79 81

801.349 M+8 C  H  Br  Br  O OBDPO12 2 4 4
79 81
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TABLE 11.  (continued)

Descriptor Accurate Elemental
Number Mass Ion Type Composition Compound1 2

5 717.427 M+4 C  H Br  Br  O HpBDF12 5 2
79 81

719.425 M+6 C  H Br  Br  O HpBDF12 4 3
79 81

721.423 M+8 C  H Br  Br  O HpBDF12 3 4
79 81

733.422 M+4 C  H Br  Br  O HpBDD12 5 2 2
79 81

735.420 M+6 C  H Br  Br  O HpBDD12 4 3 2
79 81

737.418 M+4 C  H Br  Br  O HpBDD12 3 4 2
79 81

754.954 QC PFK

770.960 LOCK MASS ALTERNATE HpTriazine

801.349 M+8 C  H  Br  Br  O OBDPO12 2 4 4
79 81

816.951 LOCK MASS PFK

879.260 M+8 C  H Br  Br  O NBDPO12 5 4
79 81

865.958 QC ALTERNATE HpTriazine

Nuclidic masses used:   H =  1.007825    C = 12.000000 C = 13.0033551 13

  O = 15.994915 Br = 78.91834 Br = 80.9162979 81

F = 18.998419

Compound abbreviations:2

     Polybromoinated dibenzo-p-dioxins       Polybromoinated diphenyl ethers    
   TBDD  =  Tetrabromodibenzo-p-dioxin HxBDPE  =  Hexabromodiphenyl ether
   PeBDD =  Pentabromodibenzo-p-dioxin HpBDPE  =  Heptabromodiphenyl ether
   HxBDD =  Hexabromodibenzo-p-dioxin OBDPE   =  Octabromodiphenyl ether
   HpBDD =  Heptabromodibenzo-p-dioxin NBDPE   =  Nonabromodiphenyl ether
   OBDD  =  Octabromodibenzo-p-dioxin DBDPE   =  Decabromodiphenyl ether

PFK     =  Perfluorokerosene
       Polybromoinated dibenzofurans    HpTriazine = Tris-(perfluoroheptyl)-s-Triazine
   TBDF  =  Tetrabromodibenzofuran
   PeBDF =  Pentabromodibenzofuran
   HxBDF =  Hexabromodibenzofuran
   HpBDF =  Heptabromodibenzofuran
   OBDF  =  Octabromodibenzofuran
Labeled Compound3

There is only one m/z for Cl -2378-TCDD (recovery standard).4 37
4
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TABLE 12.  DESCRIPTORS, MASSES, M/Z TYPES, AND ELEMENTAL COMPOSITIONS 
OF THE BCDDS AND BCDFS

Descriptor Accurate Primary
Number mass  m/z Type Elemental Composition Compound m/z1 2

1 315.942 M C  H  Cl  O TCDF13 35
12 4 4

4

317.939 M+2 C  H  Cl  Cl O TCDF Yes12 4 3
35 37 4

327.885 M C  H  Cl  O TCDD Yes12 4 4 2
35 3

330.979 Lock C  F PFK7 13

331.937 M C  H  Cl  O TCDD13 35
12 4 4 2

4

333.934 M+2 C  H  Cl  Cl O TCDD Yes13 35 37
12 4 3 2

4

347.851 M C  H  Cl  Br 0 Br Cl  DF12 4 3
35 79

3

349.849 M+2 C  H  Cl  Cl Br O Br Cl  DF Yes12 4 2
35 37 79

3

363.846 M C  H  Cl  Br O Br Cl  DD12 4 3 2
35 79

3

365.844 M+2 C  H  Cl  Cl Br O Br Cl  DD Yes12 4 2 2
35 37 79

3
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TABLE 12.  (continued)

Descriptor Accurate Primary
Number mass m/z Type Elemental Composition Compound m/z1 2

2 351.900 M+2 C  H  Cl  O PeCDF13 35
12 3 5 4

353.897 M+4 C  H  Cl  Cl 0 PeCDF13 35 37
12 3 4

4

354.979 Lock C  F PFK9 3

367.895 M+2 C  H  Cl  O PeCDD Yes13 35
12 3 5 2

4

369.892 M+4 C  H  Cl  Cl O PeCDD13 35 37
12 3 4 2

4

381.812 M C  H  Cl  Br O Br Cl  DF12 3 4
35 79

4

383.809 M+2 C  H  Cl  Cl Br O Br Cl  DF Yes12 3 3
35 37 79

4

397.807 M C  H  Cl  Br O Br Cl  DD12 3 4 2
35 79

4

399.804 M+2 C  H  Cl  Cl Br O Br Cl  DD Yes12 3 3 2
35 37 79

4

Nuclidic masses used:1

   H =  1.007825   C  = 12.00000 C  = 13.00335513

   O = 15.994915 Cl = 34.968853 Cl = 36.96590335 37

   F = 18.9984 Br = 78.91834 Br = 80.9162979 81

Compound abbreviations:2

       Polychlorinated dibenzo-p-dioxins               Brominated/Chlorinated    
   TCDD  =  Tetrachlorodibenzo-p-dioxin       dibenzo-p-dioxins and dibenzofurans     
   PeCDD =  Pentachlorodibenzo-p-dioxin BrCl DD =  Bromotrichloro dibenzo-p-dioxin3

   HxCDD =  Hexachlorodibenzo-p-dioxin BrCl DD =  Bromotetrachloro dibenzo-p-dioxin4

   HpCDD =  Heptachlorodibenzo-p-dioxin BrCl DF =  Bromotrichloro dibenzofuran3

   OCDD  =  Octachlorodibenzo-p-dioxin BrCl DF =  Bromotetrachloro dibenzofuran4

         Polychlorinated dibenzofurans                Lock mass and QC compound          
   TCDF  =  Tetrachlorodibenzofuran PFK     =  Perfluorokerosene
   PeCDF =  Pentachlorodibenzofuran
   HxCDF =  Hexachlorodibenzofuran
   HpCDF =  Heptachlorodibenzofuran
There is only one m/z for Cl -2,3,7,8-TCDD (recovery standard).3 37

4

Labeled compound4
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TABLE 13.  HRGC OPERATING CONDITIONS

Column Type DB-5 SE-54 SP-2331

Length (m) 60 30 60

i.d. (mm) 0.25 0.25 0.25

Film Thickness (Fm) 0.25 0.25 0.20

Carrier Gas Helium Helium Helium

Carrier Gas Flow (mL/min) 1-2 1-2 1-2

Injector temperature (EC) 290 308 308

Injection Mode Splitless <---     Moving needle      ---> 

Initial Temperature (EC) 200 170.0 150.0

Initial Time (min) 2 7.0 7.0

Rate 1 (EC/min) 5 8.0 10.0

Temperature (EC) 220

Hold Time (min) 16

Rate 2 (deg. C/min) 5

Temperature (EC) 235

Hold Time (min) 7

Rate 2 (deg. C/min) 5

Final Temperature (EC) 330 300.0 250.0

Hold Time (min) 5

TABLE 14.  HRMS OPERATING CONDITIONS

Electron impact ionization 25-70 eV

Mass resolution >10,000 (10% Valley Definition)

Analysis Selected ion monitoring (SIM)

Exact masses monitored Masses shown in Tables 10, 11, 12
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TABLE 15.  UNLABELED AND LABELED 
ANALYTE QUANTIFICATION RELATIONSHIPS

Internal Standard
Analyte Used During Quantification

2,3,7,8-TCDD C -2,3,7,8-TCDD13
12

Other TCDDs C -2,3,7,8-TCDD13
12

Cl -2,3,7,8-TCDD C -2,3,7,8-TCDD37
4

13
12

1,2,3,7,8-PeCDD C -1,2,3,7,8-PeCDD13
12

Other PeCDDs C -1,2,3,7,8-PeCDD13
12

1,2,3,4,7,8-HxCDD C -1,2,3,6,7,8-HxCDD13
12

1,2,3,6,7,8-HxCDD C -1,2,3,6,7,8-HxCDD13
12

1,2,3,7,8,9-HxCDD C -1,2,3,6,7,8-HxCDD13
12

Other HxCDDs C -1,2,3,6,7,8-HxCDD13
12

1,2,3,4,6,7,8-HpCDD C -1,2,3,4,6,7,8-HpCDD13
12

Other HpCDDs C -1,2,3,4,6,7,8-HpCDD13
12

OCDD C -OCDD13
12

2,3,7,8-TCDF C -2,3,7,8-TCDF13
12

Other TCDFs C -2,3,7,8-TCDF13
12

1,2,3,7,8-PeCDF C -1,2,3,7,8-PeCDF13
12

2,3,4,7,8-PeCDF C -1,2,3,7,8-PeCDF13
12

Other PeCDFs C -1,2,3,7,8-PeCDF13
12

1,2,3,4,7,8-HxCDF C -1,2,3,4,7,8-HxCDF13
12

1,2,3,6,7,8-HxCDF C -1,2,3,4,7,8-HxCDF13
12

1,2,3,7,8,9-HxCDF C -1,2,3,4,7,8-HxCDF13
12

2,3,4,6,7,8-HxCDF C -1,2,3,4,7,8-HxCDF13
12

Other HxCDFs C -1,2,3,4,7,8-HxCDF13
12

1,2,3,4,6,7,8-HpCDF C -1,2,3,4,6,7,8-HpCDF13
12

1,2,3,4,7,8,9-HpCDF C -1,2,3,4,6,7,8-HpCDF13
12

Other HpCDFs C -1,2,3,4,6,7,8-HpCDF13
12

OCDF C -OCDD13
12
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TABLE 16.  INTERNAL STANDARDS QUANTIFICATION 
RELATIONSHIPS 

Standard Used During Percent
Internal Standard Recovery Determinationa

C -2,3,7,8-TCDD C -1,2,3,4-TCDD13
12

13
12

C -1,2,3,7,8-PeCDD C -1,2,3,4-TCDD13
12

13
12

C -1,2,3,6,7,8-HxCDD C -1,2,3,7,8,9-HxCDD13
12

13
12

C -1,2,3,4,6,7,8-HpCDD C -1,2,3,7,8,9-HxCDD13
12

13
12

C -OCDD C -1,2,3,7,8,9-HxCDD13
12

13
12

C -2,3,7,8-TCDF C -1,2,3,4-TCDD13
12

13
12

C -1,2,3,7,8-PeCDF C -1,2,3,4-TCDD13
12

13
12

C -1,2,3,4,7,8-HxCDF C -1,2,3,7,8,9-HxCDD13
12

13
12

C -1,2,3,4,6,7,8-HpCDF C -1,2,3,7,8,9-HxCDD13
12

13
12

Surrogate standards shown in Table 7 may also be used.a

TABLE 17.  SURROGATE/ALTERNATE STANDARDS 
QUANTIFICATION RELATIONSHIPS

Standard Used During Percent
Surrogate Standard Recovery Determination

C -2,3,4,7,8-PeCDF C -1,2,3,7,8-PeCDF13
12

13
12

C -1,2,3,4,7,8-HxCDD C -1,2,3,6,7,8-HxCDD13
12

13
12

C -1,2,3,6,7,8-HxCDF C -1,2,3,4,7,8-HxCDF13
12

13
12

C -1,2,3,4,7,8,9-HpCDF C -1,2,3,4,6,7,8-HpCDF13
12

13
12

[Note: Other surrogate standards may be used instead]
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TABLE 18.  QUANTIFICATION RELATIONSHIPS OF THE 
CARBON-LABELED STANDARDS AND THE ANALYTES

Analytes Quantification Standard

2,3,7,8-TBDD C -2,3,7,8-TBDD13
12

2,3,7,8-TBDF C -2,3,7,8-TBDF13
12

1,2,3,7,8-PeBDD C -1,2,3,7,8-PeBDD13
12

1,2,3,7,8-PeBDF C -1,2,3,7,8-PeBDF13
12

2,3,4,7,8-PeBDF C -1,2,3,7,8-PeBDF13
12

1,2,3,4,7,8-HxBDD C -1,2,3,7,8-PeBDD13
12

[Note: O.5 ng Cl -2,3,7,8-TCDD spiked to the extract prior to final concentration37
4

to 60 FL was used to determine the method efficiency (% recovery of the
C -labeled PBDDs/PBDFs).13

12

• Additional 2,3,7,8-substituted PBDDs/PBDFs are now commercially
available.

• Retention Index for the PBDDs/PBDFs were published by Sovocool,
etal., Chemosphere 16, 221-114, 1987; and Donnelly, et al.,
Biomedical Environmental Mass Spectrometry, 14, pp. 465-472,
1987.]

TABLE 19.   THEORETICAL ION ABUNDANCE RATIOS AND CONTROL 
LIMITS FOR PCDDS AND PCDFS

No. of Chlorine m/z's Forming Theoretical               Control Limits                  
Atoms Ratio Ratio            Lower                         Upper

1

4 M/M+2 0.77 0.65 0.892

5 M+2/M+4 1.55 1.32 1.78

6 M+2/M+4 1.24 1.05 1.43

6 M/M+2 0.51 0.43 0.593

7 M+2/M+4 1.04 0.88 1.20

7 M/M+2 0.44 0.37 0.514

8 M+2/M+4 0.89 0.76 1.02

Represent ± 15% windows around the theoretical ion abundance ratios.1

Does not apply to Cl -2,3,7,8-TCDD (cleanup standard).2 37
4

Used for C -HxCDF only.3 13
12

Used for C -HpCDF only.4 13
12
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TABLE 20.  THEORETICAL ION ABUNDANCE RATIOS AND CONTROL 
LIMITS FOR PBDDS AND PBDFS

Number of Theoretical
Bromine Atoms Ion Type Ratio Lower Upper

Control Limits

4 M+2/M+4 0.68 0.54 0.82

4 M+4/M+6 1.52 1.22 1.82

5 M+2/M+4 0.51 0.41 0.61

5 M+4/M+6 1.02 0.82 1.22

6 M+4/M+6 0.77 0.62 0.92

6 M+6/M+8 1.36 1.09 1.63

7 M+4/M+6 0.61 0.49 0.73

7 M+6/M+8 1.02 0.82 1.22
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TABLE 21.  MINIMUM REQUIREMENTS FOR INITIAL AND DAILY CALIBRATION
RESPONSE FACTORS

Compound Initial Calibration RSD Daily Calibration % Difference

Relative Response Factors

Unlabeled Analytes

2,3,7,8-TCDD 25 25

2,3,7,8-TCDF 25 25

1,2,3,7,8-PeCDD 25 25

1,2,3,7,8-PeCDF 25 25

2,3,4,7,8-PeCDF 25 25

1,2,4,5,7,8-HxCDD 25 25

1,2,3,6,7,8-HxCDD 25 25

1,2,3,7,8,9-HxCDD 25 25

1,2,3,4,7,8-HxCDF 25 25

1,2,3,6,7,8-HxCDF 25 25

1,2,3,7,8,9-HxCDF 25 25

2,3,4,6,7,8-HxCDF 25 25

1,2,3,4,6,7,8-HpCDD 25 25

1,2,3,4,6,7,8-HpCDF 25 25

OCDD 25 25

OCDF 30 30

Internal Standards

C -2,3,7,8-TCDD 25 2513 12

C -1,2,3,7,8-PeCDD 30 3013
12

C -1,2,3,6,7,8-HxCDD 25 2513
12

C -1,2,3,4,6,7,8-HpCDD 30 3013
12
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TABLE 21.  (continued)

Compound Initial Calibration RSD Daily Calibration % Difference

Relative Response Factors

C -OCDD 30 3013
12

C -2,3,7,8-TCDF 30 3013
12

C -1,2,3,7,8-PeCDF 30 3013
12

C -1,2,3,4,7,8-HxCDF 30 3013
12

C -1,2,3,4,6,7,8-HpCDF 30 3013
12

Surrogate Standards

Cl -2,3,7,8-TCDD 25 2537
4

C -2,3,4,7,8-PeCDF 25 2513
12

C -1,2,3,4,7,8-HxCDD 25 2513
12

C -1,2,3,4,7,8-HxCDF 25 2513
12

C -1,2,3,4,7,8,9-HpCDF 25 2513
12
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TABLE 22.  2,3,7,8-TCDD EQUIVALENT FACTORS (TEFS)  1

FOR THE POLYCHLORINATED DIBENZODIOXINS
AND POLYCHLORINATED DIBENZOFURANS

Number Compound TEF

 1 2,3,7,8-TCDD 1.00

 2 1,2,3,7,8-PeCDD 0.50

 3 1,2,3,4,7,8-HxCDD 0.1

 4 1,2,3,6,7,8-HxCDD 0.1

 5 1,2,3,7,8,9-HxCDD 0.1

 6 1,2,3,4,6,7,8-HpCDD 0.01

 7 OCDD 0.001

 8 2,3,4,7,8-TCDF 0.10

 9 1,2,3,7,8-PeCDF 0.05

10 2,3,4,7,8-PeCDF 0.5

11 1,2,3,4,7,8-HxCDF 0.1

12 1,2,3,6,7,8-HxCDF 0.1

13 1,2,3,7,8,9-HxCDF 0.1

14 2,3,4,6,7,8-HxCDF 0.1

15 1,2,3,4,6,7,8-HpCDF 0.01

16 1,2,3,4,7,8,9-HpCDF 0.01

17 OCDF 0.001

Interim procedures for Estimating Risks associated with Exposures1

to mixtures of Chlorinated Dibenzo-p-Dioxins and Dibenzofurans
(CDDs/CDFs), WPA-625/3-89-016, March 1989.

[Note: The same TEFs are assigned to the PBDDs/PBDFs and
BCDDs/BCDFs.]
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TABLE 23.  MINIMUM SAMPLING EQUIPMENT CALIBRATION AND 
ACCURACY REQUIREMENTS

Equipment Acceptance limits measurement ments are not met
Frequency and method of Action if require-

Sampler Indicated flow rate = true Calibrate with certified Recalibrate
flow rate ±10%. transfer standard on

receipt, after maintenance
on sampler, and any time
audits or flow checks
deviate more than ±10%
from the indicated flow
rate or +10% from the
design flow rate.

Associated equipment

Sampler on/off timer ±30 min/24 hour Check at purchase and Adjust or replace
routinely on sample-
recovery days

Elapsed-time meter ±30 min/24 hour Compare with a standard Adjust or replace
time-piece of known
accuracy at receipt and at
6-month intervals

Flowrate transfer Check at receipt for Recalibrate annually Adopt new calibration
standard (orifice device) visual damage against positive curve

displacement standard
volume meter
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TABLE 24.  FORMAT FOR TABLE OF ANALYTICAL RESULTS

IDENTIFICATION

AIR SAMPLER EFFICIENCY (% RECOVERY)

C -1,2,3,4,-TCDD13
12

METHOD EFFICIENCY (% RECOVERY)

C -2,3,7,8-TCDF13
12

C -2,3,7,8-TCDD   13
12

C -1,2,3,7,8-PeCDF  13
12

C -1,2,3,7,8-PeCDD    13
12

C -1,2,3,4,7,8-HxCDF     13
12

C -1,2,3,6,7,8-HxCDD    13
12

C -1,2,3,4,6,7,8-HpCDD       13
12

C -OCDD      13
12

CONCENTRATIONS DETECTED or MDL (pg/m )3

TCDDs                       (TOTAL)1

2,3,7,8-TCDD  

PeCDDs                      (TOTAL)

1,2,3,7,8-PeCDD

HxCDDs                      (TOTAL)   

1,2,3,4,7,8-HxCDD   

1,2,3,6,7,8-HxCDD   

1,2,3,7,8,9-HxCDD   

HpCDDs                      (TOTAL)  

1,2,3,4,6,7,8-HpCDD    
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TABLE 24.  (continued)

IDENTIFICATION

OCDD  

TCDFs                       (TOTAL)   

2,3,7,8-TCDF

PeCDFs                      (TOTAL)

1,2,3,7,8-PeCDF

2,3,4,7,8-PeCDF

HxCDFs                      (TOTAL)   

1,2,3,4,7,8-HxCDF

1,2,3,6,7,8-HxCDF

1,2,3,7,8,9-HxCDF

2,3,4,6,7,8-HxCDF

HpCDFs                      (TOTAL)      

1,2,3,4,6,7,8-HpCDF      

1,2,3,4,7,8,9-HpCDF

OCDF     

(TOTAL) = All congeners, including the 2,3,7,8-substituted congeners.1

ND = Not detected at specified minimum detection limit (MDL).

[Note:    Please refer to text for discussion and qualification that must accompany the results.]
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Figure 1.  Dibenzo-p-dioxin and dibenzofuran structures.
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Figure 2.  Typical dioxins/furan high volume air sampler.
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Figure 3a.  Typical absorbent cartridge assembly for sampling dioxin/furans.
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Figure 3b.  Typical glass PUF cartridge (1) and shipping container 
(2) for use with hi-vol sampling systems.
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Figure 4.  Portable high volume air sampler developed by EPA.
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Figure 5.  Positive displacement rootsmeter used to calibrate orifice transfer standard.
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Figure 7.  Field calibration configuration of the dioxin/furan sampler.
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COMPENDIUM METHOD TO-9A
FIELD CALIBRATION DATA SHEET DIOXIN/FURAN SAMPLER CALIBRATION

Sampler ID: Calibration Orifice ID:  

Sampler Location: Job No.:  
High Volume Transfer Orifice Data:

Correlation Coefficient (CC1): Slope (M1): 
(CC2): (M2): 

Intercept (B1): 
(B2): 

Calibration Date:         Time: 
Calibration Ambient Temperature:         EF          EC CALIBRATOR'S SIGNATURE
Calibration Ambient Barometric Pressure:         "Hg          mm Hg
Calibration set point (SP):                            

SAMPLER CALIBRATION

Actual values from calibration Calibrated values

Orifice Monitor
manometer, magnehelic, Orifice Monitor Calculated value

inches inches manometer magnehelic orifice flow, scm
(Y1) (Y2) (Y3) (Y4) (X1)

70

60

50

40

30

20

10

Definitions

Y1 = Calibration orifice reading, in. H O Y4 = Calculated value for magnehelic2

Y2 = Monitor magnehelic reading, in. H O = [Y2(Pa/760)(298/{Ta + 273})]2

P = Barometric pressure actual, mm Hg X1 = Calculated value orifice flow, scma

B1 = Manfacturer's Calibration orifice Intercept   Y3 - B1

M1 = Manufacturer's Calibration orifice manometer

slope 

Y3 = Calculated value for orifice manometer

= [Y1(Pa/760)(298/{Ta + 273})]½

½

= ___________

   M1
P = Barometric pressure standard, 760 mm Hgstd

T = Temperature actual, ECa

T = Temperature standard, 25ECstd

Figure 8.  Orifice transfer field calibration data sheet.
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Figure 9.  Relationship between orifice transfer standard and flow rate through sampler.
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COMPENDIUM METHOD TO-9A
FIELD TEST DATA SHEET
GENERAL INFORMATION

CC Sampler I.D. No.:
CC Lab PUF Sample No.: 
CC Sample location:

CC Operator:
CC Other:

CC PUF Cartridge Certification Date:
CC Date/Time PUF Cartridge Installed:
CC Elapsed Timer:

Start 
Stop  
Diff. 

CC Sampling

M1  B1  
M2  B2  

Start Stop
CC Barometric pressure ("Hg) ________ _______
CC Ambient Temperature (EEF) ________ _______
CC Rain Yes _____ Yes _____ 

No _____  No _____ 
CC Sampling time

Start  
Stop  
Diff. 

CC Audit flow check within ±10 of set point
_____ Yes
_____ No

TIME TEMP
BAROMETRIC

PRESSURE
MAGNEHELIC

READING

CALCULATED
FLOW RATE

(scmm) READ BY

Avg.

C Comments

Figure 10.  Field test data sheet.
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Figure 23.  Extracted ion current profiles (EICP) for 2,3,7,8-TCDF and labeled standard in a
complex environmental sample showing presence of other TCDF isomers.
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1.0 SCOPE AND APPLICATION

The purpose of this standard operating procedure (SOP) is to describe the procedures for the collection of
representative soil samples.  Sampling depths are assumed to be those that can be reached without the use
of a drill rig, direct-push, or other mechanized equipment (except for a back-hoe).  Analysis of soil samples
may determine whether concentrations of specific pollutants exceed established action levels, or if the
concentrations of pollutants present a risk to public health, welfare, or the environment.

These are standard (i.e., typically applicable) operating procedures which may be varied or changed as
required, dependent upon site conditions, equipment limitations or limitations imposed by the procedure.
In all instances, the actual  procedures used should be documented and described in an appropriate site
report.

Mention of trade names or commercial products does not constitute U.S. Environmental Protection Agency
(EPA) endorsement or recommendation for use.

2.0 METHOD SUMMARY

Soil samples may be collected using a variety of methods and equipment depending on the depth of the
desired sample, the type of sample required (disturbed vs. undisturbed), and the soil type.  Near-surface
soils may be easily sampled using a spade, trowel, and scoop.  Sampling at greater depths may be
performed using a hand auger, continuous flight auger, a trier, a split-spoon, or, if required, a backhoe.

3.0 SAMPLE PRESERVATION, CONTAINERS, HANDLING, AND STORAGE

Chemical preservation of solids is not generally recommended.  Samples should, however, be cooled and
protected from sunlight to minimize any potential reaction.  The amount of sample to be collected and
proper sample container type are discussed in ERT/REAC SOP #2003 Rev. 0.0 08/11/94, Sample Storage,
Preservation and Handling.

4.0 INTERFERENCES AND POTENTIAL PROBLEMS

There are two primary potential problems associated with soil sampling - cross contamination of samples
and improper sample collection.  Cross contamination problems can be eliminated or minimized through
the use of dedicated sampling equipment. If this is not possible or practical, then decontamination of
sampling equipment is necessary. Improper sample collection can involve using contaminated equipment,
disturbance of the matrix resulting in compaction of the sample, or inadequate homogenization of the
samples where required, resulting in variable, non-representative results.

5.0 EQUIPMENT
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Soil sampling equipment includes the following:

C Maps/plot plan
C Safety equipment, as specified in the site-specific Health and Safety Plan
C Survey equipment or global positioning system (GPS) to locate sampling points
C Tape measure
C Survey stakes or flags
C Camera and film
C Stainless steel, plastic, or other appropriate homogenization bucket, bowl or pan
C Appropriate size sample containers
C Ziplock plastic bags
C Logbook
C Labels
C Chain of Custody records and custody seals
C Field data sheets and sample labels
C Cooler(s)
C Ice
C Vermiculite
C Decontamination supplies/equipment
C Canvas or plastic sheet
C Spade or shovel
C Spatula
C Scoop
C Plastic or stainless steel spoons
C Trowel(s)
C Continuous flight (screw) auger
C Bucket auger
C Post hole auger
C Extension rods
C T-handle
C Sampling trier
C Thin wall tube sampler
C Split spoons
C Vehimeyer soil sampler outfit

-  Tubes
-  Points
-  Drive head
-  Drop hammer
-  Puller jack and grip

C Backhoe

6.0 REAGENTS
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Reagents are not used for the preservation of soil samples.  Decontamination solutions are specified in
ERT/REAC SOP #2006 Rev. 0.0 08/11/94,   Sampling Equipment Decontamination, and the site specific
work plan.

7.0 PROCEDURES

7.1 Preparation

1. Determine the extent of the sampling effort, the sampling methods to be employed, and the
types and amounts of equipment and supplies required.

2. Obtain necessary sampling and monitoring equipment.

3. Decontaminate or pre-clean equipment, and ensure that it is in working order.

4. Prepare schedules and coordinate with staff, client, and regulatory agencies, if appropriate.

5. Perform a general site survey prior to site entry in accordance with the site specific Health
and Safety Plan.

6. Use stakes, flagging, or buoys to identify and mark all sampling locations.  Specific site
factors, including extent and nature of contaminant, should be considered when selecting
sample location.  If required, the proposed locations may be adjusted based on site access,
property boundaries, and surface obstructions.  All staked locations should be utility-cleared
by the property owner or the On-Scene-Coordinator (OSC) prior to soil sampling; and
utility clearance should always be confirmed before beginning work.

7.2 Sample Collection

7.2.1 Surface Soil Samples

Collection of samples from near-surface soil can be accomplished with tools such as
spades, shovels, trowels, and scoops.  Surface material is removed to the required
depth  and  a stainless steel or plastic scoop is then used to collect the sample.

This method can be used in most soil types but is limited to sampling at or near the
ground surface.  Accurate, representative samples can be collected with this procedure
depending on the care and precision demonstrated by the sample team member. A flat,
pointed mason trowel to cut a block of the desired soil is helpful when undisturbed
profiles are required.  Tools plated with chrome or other materials should not be used.
Plating is particularly common with garden implements such as potting trowels.

The following procedure is used to collect surface soil samples:
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1. Carefully remove the top layer of soil or debris to the desired sample depth
with a pre-cleaned spade.

2. Using a pre-cleaned, stainless steel scoop, plastic spoon, or trowel, remove and
discard a thin layer of soil from the area which came in contact with the spade.

3. If volatile organic analysis is to be performed, transfer the sample directly into
an appropriate, labeled sample container with a stainless steel lab spoon, or
equivalent and secure the cap tightly.  Place the remainder of the sample into
a stainless steel, plastic, or other appropriate homogenization container, and
mix thoroughly to obtain a homogenous sample representative of the entire
sampling interval.  Then, either place the sample into appropriate, labeled
containers and secure the caps tightly; or, if composite samples are to be
collected, place a sample from another sampling interval or location into the
homogenization container and mix thoroughly.  When compositing is complete,
place the sample into appropriate, labeled containers and secure the caps
tightly.

7.2.2 Sampling at Depth with Augers and Thin Wall Tube Samplers

This system consists of an auger, or a thin-wall tube sampler, a series of extensions,
and a "T" handle (Figure 1, Appendix A).  The auger is used to bore a hole to a
desired sampling depth, and is then withdrawn.  The sample may be collected directly
from the auger.  If a core sample is to be collected, the auger tip is then replaced with
a thin wall tube sampler.  The system is then lowered down the borehole, and driven
into the soil to the completion depth.  The system is withdrawn and the core is
collected from the thin wall tube sampler.

Several types of augers are available; these include:  bucket type, continuous flight
(screw), and post-hole augers.  Bucket type augers are better for direct sample
recovery because they provide a large volume of sample in a short time.  When
continuous flight augers are used, the sample can be collected directly from the
flights.  The continuous flight augers are satisfactory  when a composite of the
complete soil column is desired.  Post-hole augers have limited utility for sample
collection as they are designed to cut through fibrous, rooted, swampy soil and cannot
be used below a depth of approximately three feet.

The following procedure is used for collecting soil samples with the auger:

1. Attach the auger bit to a drill rod extension, and attach the "T" handle to the
drill rod.
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2. Clear the area to be sampled of any surface debris (e.g., twigs, rocks, litter).
It may be advisable to remove the first three to six inches of surface soil for an
area approximately six inches in radius around the drilling location.

3. Begin augering, periodically removing and depositing accumulated soils onto
a plastic sheet spread near the hole.  This prevents accidental brushing of loose
material back down the borehole when removing the auger or adding drill rods.
It also facilitates refilling the hole, and avoids possible contamination of the
surrounding area.

4. After reaching the desired depth, slowly and carefully remove the auger from
the hole.  When sampling directly from the auger, collect the sample after the
auger is removed from the hole and proceed to Step 10.

5. Remove auger tip from the extension rods and replace with a pre-cleaned thin
wall tube sampler.  Install the proper cutting tip.

6. Carefully lower the tube sampler down the borehole.  Gradually force the tube
sampler into the soil.  Do not scrape the borehole sides.  Avoid hammering the
rods as the vibrations may cause the boring walls to collapse.

7. Remove the tube sampler, and unscrew the drill rods.

8. Remove the cutting tip and the core from the device.

9. Discard the top of the core (approximately 1 inch), as this possibly represents
material collected before penetration of the layer of concern.  Place the
remaining core into the appropriate labeled sample container.  Sample
homogenization is not required.

10. If volatile organic analysis is to be performed, transfer the sample into an
appropriate, labeled sample container with a stainless steel lab spoon, or
equivalent and secure the cap tightly.  Place the remainder of the sample into
a stainless steel, plastic, or other appropriate homogenization container, and
mix thoroughly to obtain a homogenous sample representative of the entire
sampling interval.  Then, either place the sample into appropriate, labeled
containers and secure the caps tightly; or, if composite samples are to be
collected, place a sample from another sampling interval into the
homogenization container and mix thoroughly.

When compositing is complete, place the sample into appropriate, labeled
containers and secure the caps tightly.
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11. If another sample is to be collected in the same hole, but at a greater depth,
reattach the auger bit to the drill and assembly, and follow steps 3 through 11,
making sure to decontaminate the auger and tube sampler between samples.

12. Abandon the hole according to applicable state regulations.  Generally, shallow
holes can simply be backfilled with the removed soil material.

7.2.3 Sampling  with a Trier

The system consists of a trier, and a "T" handle.  The auger is driven into the soil to
be sampled and used to extract a core sample from the appropriate depth.

The following procedure is used to collect soil samples with a sampling trier:

1. Insert the trier (Figure 2, Appendix A) into the material to be sampled at a 0o

to 45o angle from horizontal.  This orientation minimizes the spillage of
sample.

2. Rotate the trier once or twice to cut a core of material.

3. Slowly withdraw the trier, making sure that the slot is facing upward.

4. If volatile organic analyses are required, transfer the sample into an
appropriate, labeled sample container with a stainless steel lab spoon, or
equivalent and secure the cap tightly.  Place the remainder of the sample into
a stainless steel, plastic, or other appropriate homogenization container, and
mix thoroughly to obtain a homogenous sample representative of the entire
sampling interval.  Then, either place the sample into appropriate, labeled
containers and secure the caps tightly; or, if composite samples are to be
collected, place a sample from another sampling interval into the
homogenization container and mix thoroughly.  When compositing is complete,
place the sample into appropriate, labeled containers and secure the caps
tightly.

7.2.4 Sampling at Depth with a Split Spoon (Barrel) Sampler

Split spoon sampling is generally used to collect undisturbed soil cores of 18 or 24
inches in length. A series of consecutive cores may be extracted with a split spoon
sampler to give a complete soil column profile, or an auger may be used to drill down
to the desired depth for sampling.  The split spoon is then driven to its sampling depth
through the bottom of the augured hole and the core extracted.

When split spoon sampling is performed to gain geologic information, all work should



U. S. EPA ENVIRONMENTAL RESPONSE TEAM

STANDARD OPERATING PROCEDURES
SOP: 2012

PAGE: 8 of 13
REV: 0.0

DATE: 02/18/00
SOIL SAMPLING

be performed in accordance with ASTM D1586-98, “Standard Test Method for
Penetration Test and Split-Barrel Sampling of Soils”.

The following procedures are used for collecting soil samples with a split spoon:

1. Assemble the sampler by aligning both sides of barrel and then screwing the
drive shoe on the bottom and the head piece on top.

2. Place the sampler in a perpendicular position on the sample material.

3. Using a well ring, drive the tube.  Do not drive past the bottom of the head
piece or compression of the sample will result.

4. Record in the site logbook or on field data sheets the length of the tube used to
penetrate the material being sampled, and the number of blows required to
obtain this depth.

5. Withdraw the sampler, and open by unscrewing the bit and head and splitting
the barrel.  The amount of recovery and soil type should be recorded on the
boring log.  If a split sample is desired, a cleaned, stainless steel knife should
be used to divide the tube contents in half, longitudinally.  This sampler is
typically available in 2 and 3 1/2 inch diameters.  A larger barrel may be
necessary to obtain the required sample volume.

6. Without disturbing the core, transfer it to appropriate labeled sample
container(s) and seal tightly.

7.2.5 Test Pit/Trench Excavation

A backhoe can be used to remove sections of soil, when detailed examination of soil
characteristics are required.  This  is probably the most expensive sampling method
because of the relatively high cost of backhoe operation.

The following procedures are used for collecting soil samples from test pits or
trenches: 

1. Prior to any excavation with a backhoe, it is important to ensure that all
sampling locations are clear of overhead and buried utilities.

2. Review the site specific Health & Safety plan and ensure that all safety
precautions including appropriate monitoring equipment are installed as
required.
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3. Using the backhoe, excavate a trench approximately three feet wide and
approximately one foot deep below the cleared sampling location.  Place
excavated soils on plastic sheets.  Trenches greater than five feet deep must be
sloped or protected by a shoring system, as required by OSHA regulations.

4. A shovel is used to remove a one to two inch layer of soil from the vertical face
of the pit where sampling is to be done.

5. Samples are taken using a trowel, scoop, or coring device at the desired
intervals.  Be sure to scrape the vertical face at the point of sampling to remove
any soil that may have fallen from above, and to expose fresh soil for sampling.
In many instances, samples can be collected directly from the backhoe bucket.

6. If volatile organic analyses are required, transfer the sample into an
appropriate, labeled sample container with a stainless steel lab spoon, or
equivalent and secure the cap tightly.  Place the remainder of the sample into
a stainless steel, plastic, or other appropriate homogenization container, and
mix thoroughly to obtain a homogenous sample representative of the entire
sampling interval.  Then, either place the sample into appropriate, labeled
containers and secure the caps tightly; or, if composite samples are to be
collected, place a sample from another sampling interval into the
homogenization container and mix thoroughly.  When compositing is complete,
place the sample into appropriate, labeled containers and secure the caps
tightly.

7. Abandon the pit or excavation according to applicable state regulations.
Generally, shallow excavations can simply be backfilled with the removed soil
material.

8.0 CALCULATIONS

This section is not applicable to this SOP.

9.0 QUALITY ASSURANCE/QUALITY CONTROL

There are no specific quality assurance (QA) activities which apply to the implementation of these
procedures.  However, the following QA procedures apply:

1. All data must be documented on field data sheets or within site logbooks.

2. All instrumentation must be operated in accordance with operating instructions as supplied by the
manufacturer, unless otherwise specified in the work plan.  Equipment checkout and calibration
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activities must occur prior to sampling/operation, and they must be documented.

10.0 DATA VALIDATION

This section is not applicable to this SOP.

11.0 HEALTH AND SAFETY

When working with potentially hazardous materials, follow U.S. EPA, OHSA and corporate health and
safety procedures, in addition to the procedures specified in the site specific Health & Safety Plan..
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FIGURE 1.  Sampling Augers
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FIGURE 2.  Sampling Trier


