Life-Cycle Impact Assessment & Environmental Life Cycle Declarations

Environmental Accountability Tools for the Energy Sector, Based on ISO-14044 and ASTM E06.71.10

Stan Rhodes, Ph.D.

Scientific Certification Systems

510 452 8004

srhodes@scscertified.com

UNEP Life-Cycle Impact Assessment Initiative

Goals:

- Convert the guidance standard of ISO 14044 into a finalized set of LCIA impact indicators.
- Use this indicator set to establish protocols for an international LCIA-based environmental accounting system.
- Present this environmental accounting system for adoption by the international community, starting with OECD.

Environmental Life Cycle Declaration (consistent with ISO-14025)

Environmental Life Cycle Declarations are prepared for each new supply option or upgrade to an existing system under consideration. This declaration contains the following information:

- Identifies the regional power grid which serves as the LCIA baseline for comparison
- Describes key design aspects of the new supply option or design upgrade
- Provides a graphic environmental impact profile of the new supply option or design upgrade
- Summarizes key advantages and trade-offs

Regional Grid LCIA Baselines

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

- extraction and processing of fuel resources (fossil, biomass, nuclear)
- transport of fuel resources
- construction of power plant
- operation of power plant
- distribution of electricity to users
- decommissioning of power plant and continued treatment of waste (nuclear, fly ash)

Identify the impact category and justify the category based upon biophysical event

Model the biophysical pathway of the impact using stressor-effects network modeling.

Characterize the spatial, temporal and intensity of the impact category

Select the impact indicator using a node along the stressor-effects network that has the strongest link to both the stressor and impact endpoint.

Established LCIA Impact Indicators Natural Resources

- Depletion of Non-Renewable Energy Resources
- Depletion of Water Resources
- Depletion of Wood Resources
- Depletion of Strategic Metals
- Depletion of Terrestrial Habitats
- Depletion of Riparian Habitats
- Depletion of Riverine Habitats
- Depletion of Lake Habitats
- Depletion of Key Species (e.g., T & E species)

Depletion of Habitats

Node 2 Indicator: Depletion of habitats (hectares)

LCIA Impact Indicators Emissions and Wastes

- Cumulative Greenhouse Gas Loading
- Oceanic Acidification Loading
- Regional Acidification Loading
- Neurotoxic Chemical Loading
- Eco-Toxic Chemical Loading
- Systemic Chemical Loading
- Pulmonary Chemical Exposures
- Ground Level Ozone Exposures
- PM 2.5 Exposures
- Hazardous and Radioactive Waste Risks

Regional Acidification

Node 3 Indicator: Acidification Loading = % Wet deposition of strong acid emissions in areas of exceedance of critical load

Node 2 Indicator: Cumulative Greenhouse Gas Loading (2040)

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

Node 4 Global Mean Temperature Increases and 2040 Tipping Point

These projections indicate that it is 10x more effective to reduce Cumulative Greenhouse Gas Loadings before 2040

Nodes 2,3,4 Cumulative GHG loading linkage to the 2040 GMT Tipping Point

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.	
QuickTime™ and a	
TIFF (12W) decompressor are needed to see this picture.	
QuickTime™ TIFF (LZW) decor are needed to see th	GMI Tipping and a mprestoint is picture.

Increases in the **Cumulative Greenhouse Gas Emissions** are leading to the 2040 GMT tipping point

... because increases in the **C-GHG Emissions** is thermal driver linked to increases in global radiative forcing

... which then leads to the increase in GMT.

C-GHG loading (2007-2040) = \sum (% Annual Retained GHG Emissions)

Environmental Life-Cycle Declarations of Western Power

Regional Grid Baseline: WECC

Coal	247,013 GWh	32.5%
Hydro	188,382 GWh	28.3%
Gas	155,672 GWh	23.3%
Nuclear	74,164 GWh	11.1%
Oil	1,917 GWh	0.3%
Renewable	30,490 GWh	4.6%

847,640 GWh

Total

SCS

100.0%

Nutrition Face Serving Size 1 cup (236ml) Servings Per Container 1	cts
Amount PerServing Calories 80 Calories from F	Fat O
% Dail	y Value*
Total Fat Og	0%
Saturated Fat Og	0%
Trans Fat Og	
Cholesterol Less than 5mg	0%
Sodium 120mg	5%
Total Carbohydrate 11g	4 %
Dietary Fiber Og	0 %
Sugars 11g	
Protein 9a	17%
Vitamin A <u>1</u> 0% • Vitamin	C 4%
Calciun 🕄 🌮 Iron 0% Vitamin	D 25%
*Percent Daily Values are based on a calorie diet. Your daily values may be or lower depending on your calorie ne	2,000 higher eds:

Environmental Impact Profile* Mt. Shasta Biomass Power Station

Impact Levels Per 1000 Gwh

Depletion of Natural Resources	s Impac	t Levels
Non-Renewable Energy	12,000	barrels of oil
Water		
Strategic Metals		
Terrestrial Habitats	14,000	hectares
Wetland Habitats	1,200	hectares
Lake Habitats		
River Habitats		
Key Species	50 %	o loss
Impacts from Emission Loading	IS	
Cumulative Greenhouse Gases	12,000,000	tons CO2
Oceanic Acidification	149,000	tons CO2
Acid Rain	96	tons SO2
Smog	33,000	exposures
Soot (PM 2.5)	87,000	exposures
Neurotoxicity		
Systemic Chemical Toxicity		
Eco-Toxicity	106	kg TCDD
Risks from Hazardous Wastes		
Radioactive Wastes		
* Based Upon Life-Cycle Impact Assessment		

Environmental Impact Profile* Mt. Shasta Woody Biomass Plant

Impact Levels per 1000 Gwh

Depletion of Natural Resources	Impact Levels	Compared to Regio	nal Grid
Non-Renewable Energy	12,000 barrels oil		
Water			
Strategic Metals			
Terrestrial Habitats	14,000 hectares		
Wetland Habitats	1,200 hectares		-
Lake Habitats			
River Habitats			
Key Species	50 % loss		
Impacts from Emission Loadings			
Cumulative Greenhouse Gases	12,000,000 tons CO2		
Oceanic Acidification	149,000 tons CO2		
Acid Rain	96 tons SO2		
Smog	33,000I exposures		
Soot (PM 2.5)	87,000 exposures		-
Neurotoxicity			
Systemic Chemical Toxicity			_
Eco-Toxicity	106 kg TCDD		-
Risks from Hazardous Wastes			
Radioactive Wastes		Lower Impact Level	Higher Impact Level
* Based Upon Life-Cycle Impact As	sessment	Average Im	pact level

Key LCIA Findings and Environmental Trade-offs

- Habitat disruption from forestry operations at least 2 orders of magnitude greater than other power technologies on an equivalent power production basis (100,000 ha per 50 MW capacity for woody biomass systems).
- Regional emissions related to human health are exposing surrounding populations above threshold levels.
- Acidifying gas emissions deposit in areas of known exceedance of critical loading with the dispersion area of the plant.
- Reduced carbon storage/ha due to removal of fuel loading to control fire danger led to reduction in net sequestration rate.
- Wood chip piles at biomass operations were found to biodigest during storage, resulting in significant methane releases. These results were found to cancel 40% of the total GHG sequestration potential alone.

Environmental Impact Profile* Altamont Wind Power Station/Natural Gas LVRT

Impact Levels Per 1000 Gwh

Depletion of Natural Resources	Impact Levels	Compared to Regio	onal Grid
Non-Renewable Energy 6	,800,000 eq. GJ oil		
Water			
Strategic Metals			
Terrestrial Habitats	200 hectares		
Wetland Habitats			
Lake Habitats			
River Habitats			
Key Species	60%		
Impacts from Emission Loadings			
Cumulative Greenhouse Gases 1	7,960,000 tons CO2		
Oceanic Acidification	29,000 tons CO2		
Acid Rain	29 tons SO _x		
Smog	5,000 annual exposure		
Soot (PM 2.5)	3,000 annual exposures		
Neurotoxicity			
Systemic Chemical Toxicity			
Eco-Toxicity			
Risks from Hazardous Wastes			
Radioactive Wastes			Higher Import Lough
* Based Upon Life-Cycle Impact Asse	essment	of Regio	nal Grid

Potential LCIA Concerns from Expansion of Western Wind Power

- Major wind developments are being linked to SCGT natural gas/hydro as backup power to compensate for intermittency. The additional wind deployment will have the tendency to lower the efficiency of the natural gas fleet back to SCGT (35-40%) from deployment of NGCC (58-60%).
- The visual and direct disruption of habitats from both towers as well as ROW are estimated to be from 600,000 to 1,900,000 hectares (both visual and direct) within the WECC for planned projects up through 2025.
- Even with extensive EIAs in place continuing loss of key species (birds, bats) have been reported from new wind projects.

Key LCIA Findings

This NGCC plant has negligible impact levels for 11 out of the 19 impact categories.

This NGCC plant has three environmental trade-offs Non renewable energy resource depletion Cumulative greenhouse gas loading C-GHG loading Oceanic Acidification

LNG sourcing increases both the C-GHG loading and Oceanic Acidification trade-offs due to methane emissions at the natural gas well heads in Iran, Russia and other major LNG countries.

It has been estimated by NASA (2007) that 400 million tons of GHG emissions are escaping annually.

Environmental Impact Profile*

NGCC Power Station (40% LNG) Impact Levels Per 1000 Gwh

Depletion of Natural Resources	Impact Levels	Compared to Regional	Grid
Non-Renewable Energy Water Strategic Metals	9,000,000 eq. GJ oil 		
Terrestrial Habitats Wetland Habitats Lake Habitats River Habitats Key Species	14 hectares 		
Impacts from Emission Loadings			
 Cumulative Greenhouse Gases Oceanic Acidification Acid Rain Smog Soot (PM 2.5) Neurotoxicity Systemic Chemical Toxicity Eco-Toxicity Risks from Hazardous Wastes Radioactive Wastes 	700,000 eq. tons CO2 350,000 tons CO2 25 eq. tons SO2 3,000 annual exposures 6,000 annual exposures 	Lower Impact Level	Higher Impact Level
* Based Upon Life-Cycle Impact Ass	sessment	Average Impa (Regional)	ct level Grid)

- Developed comprehensive Provincial Power Baseline
- Environmental Life Cycle Declarations for all new supply options for the 2013 and 2017 investment periods.
- Developed environmental designs for new power technologies
- Conducted peer review LCIA study to support all Declarations

Net power generation: 20,386 GWh

New Supply Options Under Consideration

1.) High Efficiency SCGT	2040 GWh (annual)
2.) Repower Older Natural Gas Unit	2380 GWh
3.) Advance Coal (CC, Oxyfuel)	2230 GWh
4.) Compliant Coal	2230 GWh
5.) Petcoke Gasification(CC, Poly)	2,540 GWh
6.) Hybrid Wind/SCGT Natural Gas	1,590 GWh
7.) Hybrid Wind/Oxyfuel Coal (CC, Poly)	5,000 GWh 270,000 tons H ₂

Environmental Impact Profile New Supply Option 2017 CC-OxyFuel Coal

Resources Depletion	Oxy-Fuel Coal Impacts*	Compared to	Regional Grid
Non-Renewable Energy			
Water			
Strategic Metals			
Terrestrial Habitats			
Wetland Habitats			
Lake Habitats			
River Habitats			
Key Species			
Impacts from Emissions			
Cumulative Greenhouse Gases	;		
Oceanic Acidification			
Acid Rain			
Smog			
Soot (PM 2.5)			
Neurotoxicity			
Systemic Chemical Toxicity			
Eco-Toxicity			
Risks from Wastes			
Radioactive Wastes		Lower Impact Lovel	Higher Impact Level
			Impact level
* Per 1,000 GWh electricity production	on	(Regional Grid)	

Environmental Impact Profile New Supply Option 2018

CC- Pet-Coke /Gasification Plant (Polygeneration)

Resources Depletion	PC Gasification Impacts	PC Gasification Co	ompared Grid Average
Non-Renewable Energy			
Water			
Strategic Metals			
Terrestrial Habitats			
Wetland Habitats			
Lake Habitats			
River Habitats			
Key Species			
Impacts from Emissions			
Cumulative Greenhouse Gase	es		
Oceanic Acidification			
Acid Rain			
Smog			
Soot (PM 2.5)			
Neurotoxicity			
Systemic Chemical Toxicity			
Eco-Toxicity			
Risks from Wastes			
Radioactive Wastes		Lower Impact Level	Higher Impact Level
* Per 1,000 GWh electricity produc	ction	Average (Regi	Impact level onal Grid)

New Poly Hybrid Design Integrating Wind with Coal Power Generation Technologies

Key Design Elements

2000 MW Wind Development

500 MW high capacity factor wind electricity (> 5000 hrs/yr) 1500 MW higher variable wind for hydrogen/oxygen production

300 MW OxyFuel Coal

Carbon Capture

Oxygen from wind electrolysis eliminates the need for the air separation and increasing total electricity production by 20%

99%+ pure oxygen eliminates any issues concerning NOx

Low Capacity Factor Wind Hydrogen/Oxygen Production

High Capacity Factor Wind Electricity

Key Environmental Advantages

The only power system to date to achieve virtually impact free status

It would allow Saskatchewan province from being the highest per capita C-GHG loading in Canada to become the lowest per capita province within 20 years.

The deployment is sufficient scale to allow the retirement of all of older coal units as well as the inefficient SCGT peaker units.

LCIA Provides Strategic Information

Cumulative GHG Loading (C-GHG)

Projected C-GHG Loadings (2040) 11 Western States

WECC Electricity (BAU) Western 11 States (BAU)

Global Increase (Most Likely)

19 billion tonnes 85 billion tonnes

1,800 billion tonnes*

Current Global

6,600 billion tonnes

85 billion tonnes will add enough radiative forcing to increase GMT by as much as 0.09 °C by 2040.

C-GHG Load Reduction (LR): **AB-32 2020 Goals for Electric Power**

Figure ES-2

California Climate Change Emissions and Targets After Implementing Emission Reduction

Projected C-GHG Load Reduction = 780 million tons

Potential Increase in C-GHG Loading from Loss of Colorado River Hydropower

Net Increase C-GHG Loading from Make up Thermal Units (70%NGCC/30% Advanced Coal)= 316,000,000 tonnes

C-GHG Load Reduction Potential from Conversion to Toyota Prius Fleet

Modeling the conversion to Prius hybrid fleet (55 mpg)

- 5,000,000 units deployed by 2020
- 15,000 miles/year
- Replacing 22 mpg standard vehicle

C-GHG Load Reduction Potential 550 million tons

Potential Deployment by 2020-25 C-GHG Load Reductions

Reducing projected increase global airline fleet by 20%	20 billion tons
Maximizing Carbon Storage of US farming soils	8 billion tons
Incremental Upgrading the Existing US Coal Fleet	33 billion tons
AB 32 2020 Mandates	<3 billion tons
WGA 2025 Goals (includes AB 32 2020)	7 billion tons
Western Deployment of Solar, Wind, Geothermal (2025)	< 1 billion tons
Deployment of Nuclear	TBD

Still looking for the other heavy hitters.....

