An Overview of CO₂ Capture Technology for Fossil Fuel Power Plants

> Edward S. Rubin Department of Engineering and Public Policy Carnegie Mellon University Pittsburgh, Pennsylvania

> > Presentation to the

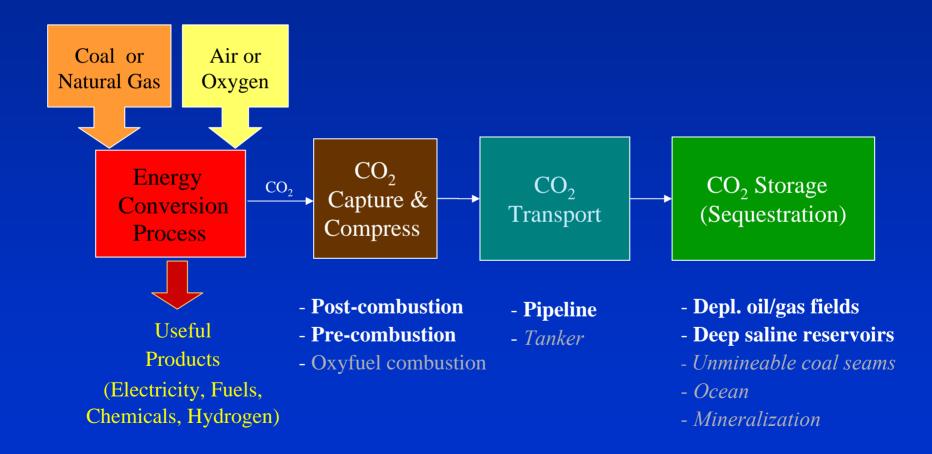
EPA Advanced Coal Technology Work Group Washington, DC February 8, 2007

Outline of Talk

- Why the interest in CO₂ capture and storage (CCS)?
- What is the current status of CO₂ capture technology?
- What options are available for power plants?
- How effective are current capture systems?
- How does it affect other emissions?
- How much does it cost?
- What is the outlook for improved technology?
- What are the key needs to develop these technologies?

Why the Interest ?

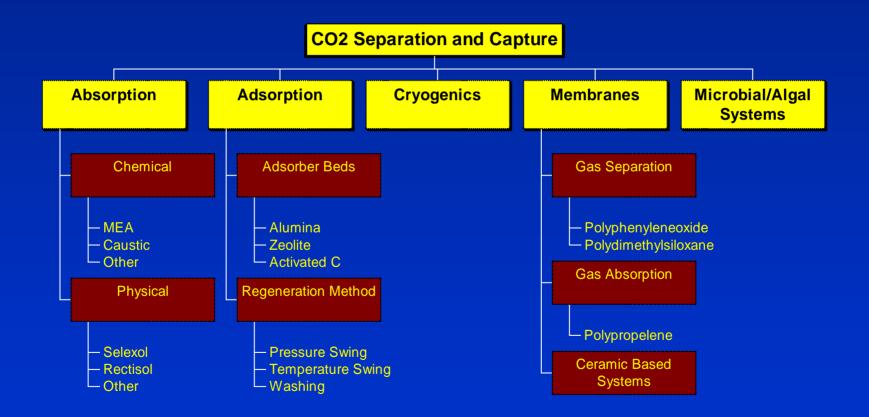
- Coal and other fossil fuels will continue to be used extensively for many decades to come—no easy or fast alternatives on a large scale
- CO₂ capture and storage (CCS) offers a way to use fossil fuels (especially coal) with little or no CO₂ emissions—a potential bridging strategy
- Energy models indicate that including CCS in a portfolio of options significantly lowers the cost of achieving the deep long-term reductions needed to mitigate climate change


Can We Have Our Cake and Eat it Too?

Can We Have Our Coal Without CO₂?


Schematic of a CCS System

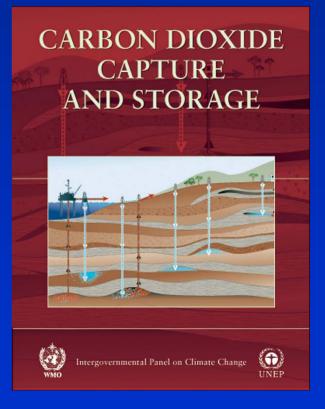
Status of Capture Technology


- CO₂ capture technologies are commercial and widely used in industrial processes, mainly in the petroleum and petrochemical industries (e.g., for ammonia production and processing of natural gas)
- CO₂ capture also has been applied to several gasfired and coal-fired boilers (to produce commodity CO₂ for sale), but at scales that are small compared to a large modern power plant
- Integration of CO₂ capture, transport and geologic sequestration has been demonstrated in several industrial applications, but not yet at an electric power plant

Current CO₂ Capture Projects

What options are available?

Many Ways to Capture CO₂

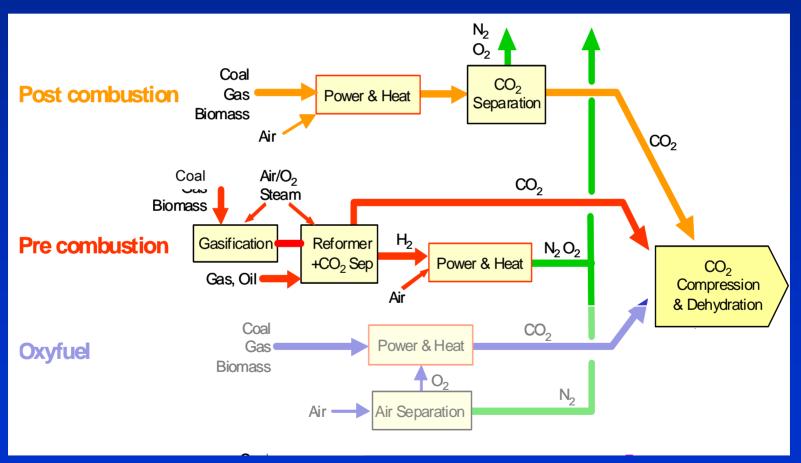

Choice of technology depends strongly on application

IPCC Special Report Examines CO₂ Capture Technology in Detail

The Intergovernmental Panel on Climate Change (IPCC) Web Site (www.ipcc.ch) has:

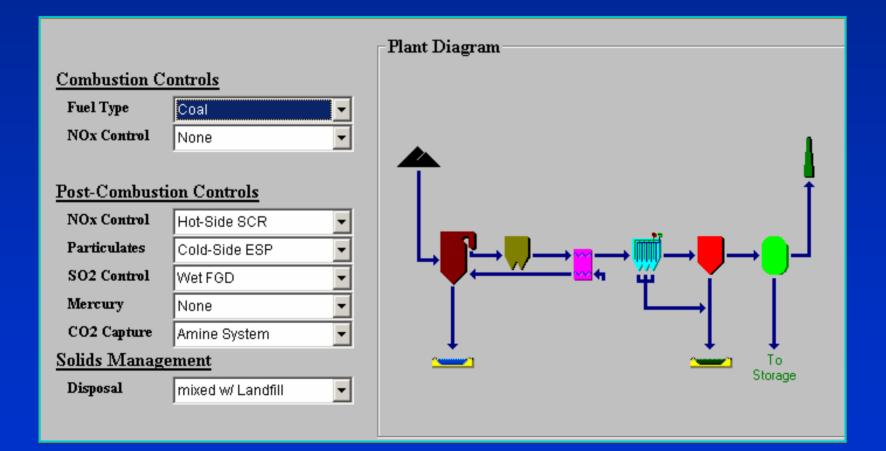
- Summary for Policymakers
- Technical Summary
- Full Technical Report

(also available from Cambridge University Press, 2005)

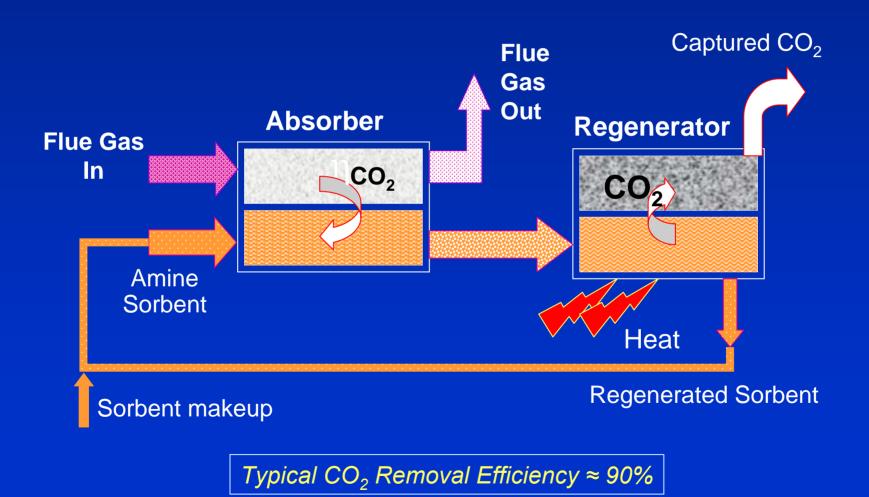

Leading Candidates for CCS

• Fossil fuel power plants

- Integrated coal gasification combined cycle (IGCC)
- Pulverized coal combustion (PC)
- Natural gas combined cycle (NGCC)
- Other large industrial sources of CO₂ such as:
 - Refineries, fuel processing, and petrochemical plants
 - Hydrogen and ammonia production plants
 - Pulp and paper plants
 - Cement plants


- Focus of this talk is on power plants -

CO₂ Capture Options for Power Plants

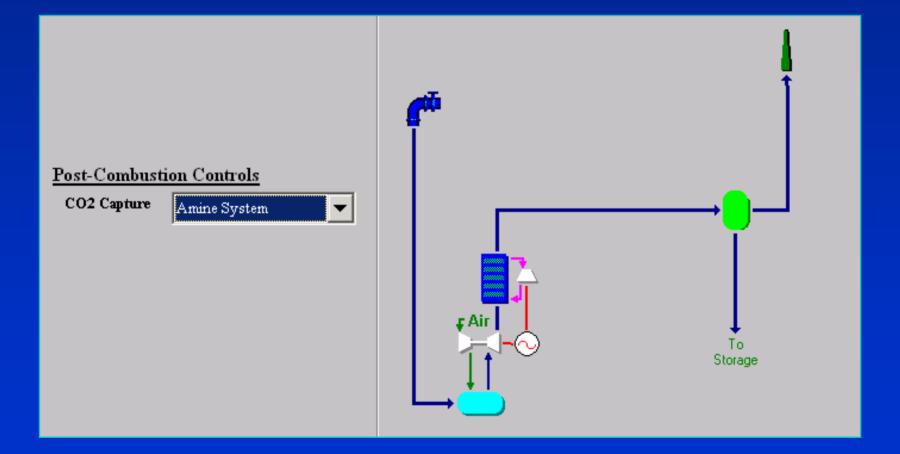


Source: IPCC SRCCS, 2005

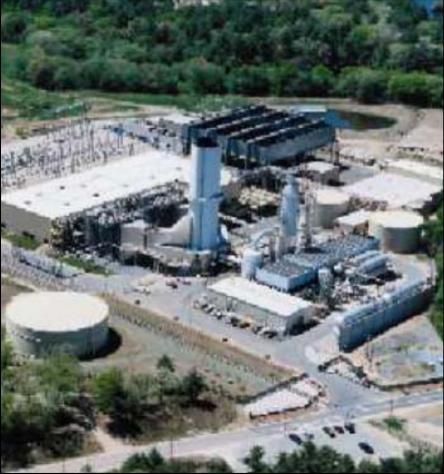
Pulverized Coal-Fired Power Plant with Post-Combustion CO₂ Capture

Schematic of Amine Capture System

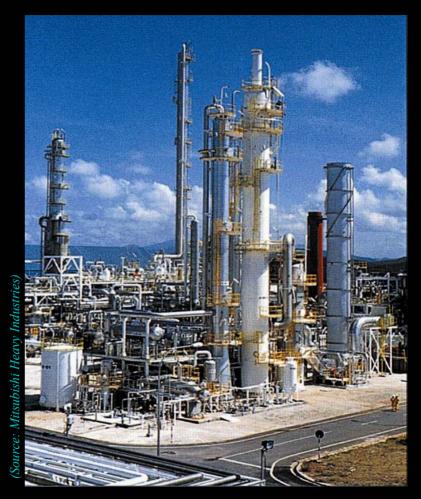
Examples of Post-Combustion CO₂ Capture at Coal-Fired Plants



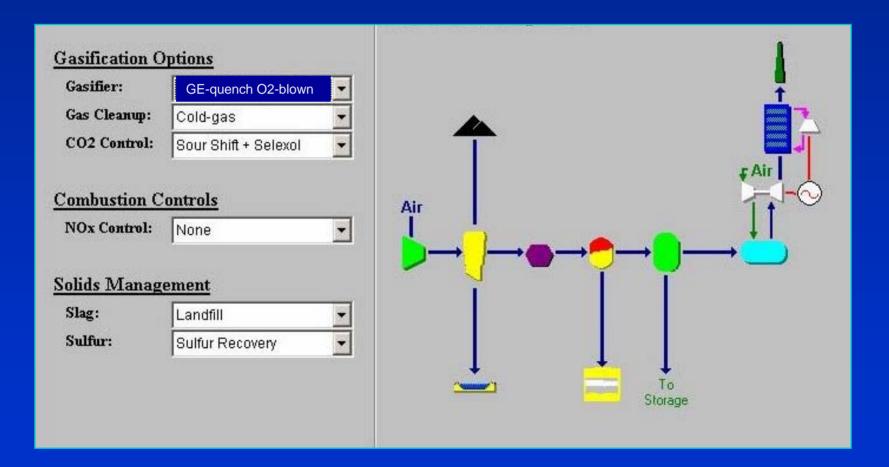
Shady Point Power Plant (Panama, Oklahoma, USA) E.S. Rubin, Carnegie Mellon


Warrior Run Power Plant (Cumberland, Maryland, USA)

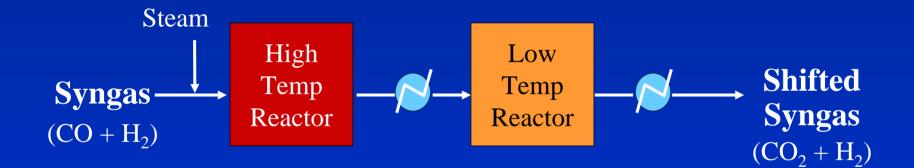
Schematic of PC Plant w/ CCS (Post-combustion amine system)


Natural Gas Combined Cycle Plant with Post-Combustion CO₂ Capture

Examples of Post-Combustion CO₂ Capture at Gas-Fired Plants

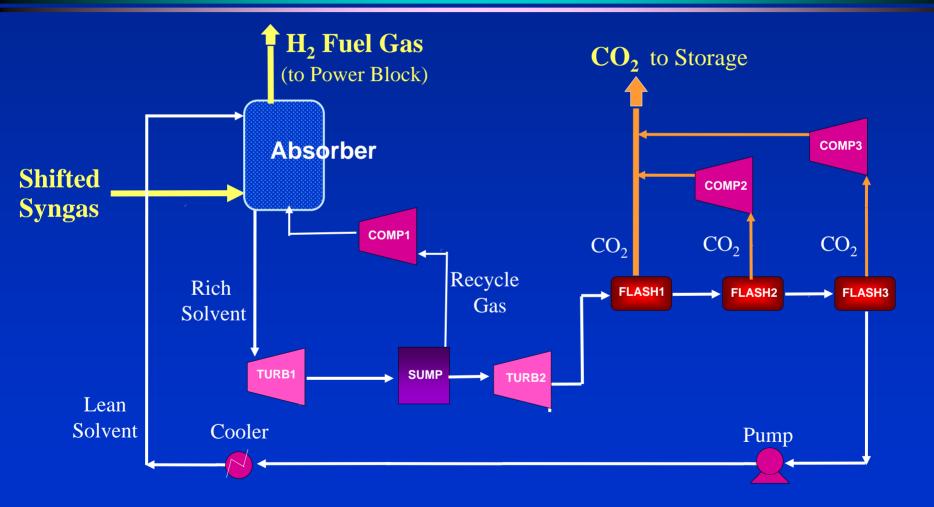


Bellingham Cogeneration Plant (Bellingham, Massachusetts, USA) E.S. Rubin, Carnegie Mellon



Petronas Urea Plant Flue Gas (Keda, Malaysia)

Integrated Coal Gasification Combined Cycle Plant w/ Pre-Combustion Capture



Water-Gas Shift Reactor Schematic

$$CO + H_2O \rightarrow CO_2 + H_2$$

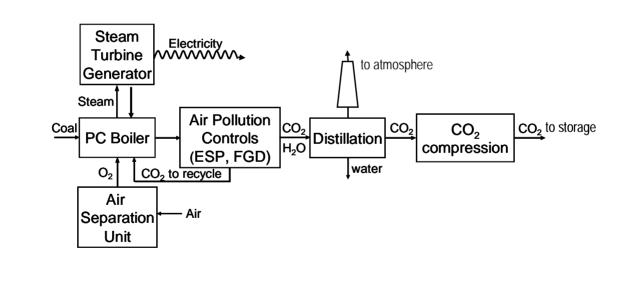
Selexol CO₂ Capture Schematic

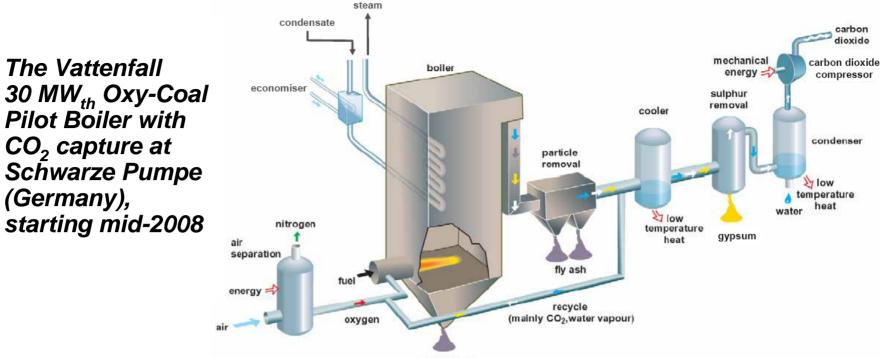
Examples of Pre-Combustion CO₂ Capture Systems

Coal Gasification to Produce SNG (Beulah, North Dakota, USA)

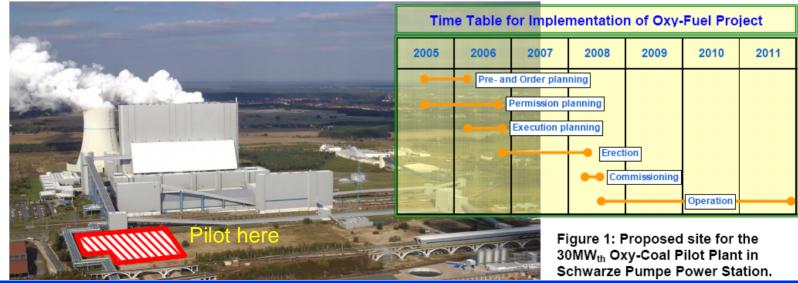
Integrated Coal Gasification Combined Cycle (IGCC) Plant

Polk Power Station, Tampa, Florida (250 MW, no CO₂ capture)


E.S. Rubin, Carnegie Mellon

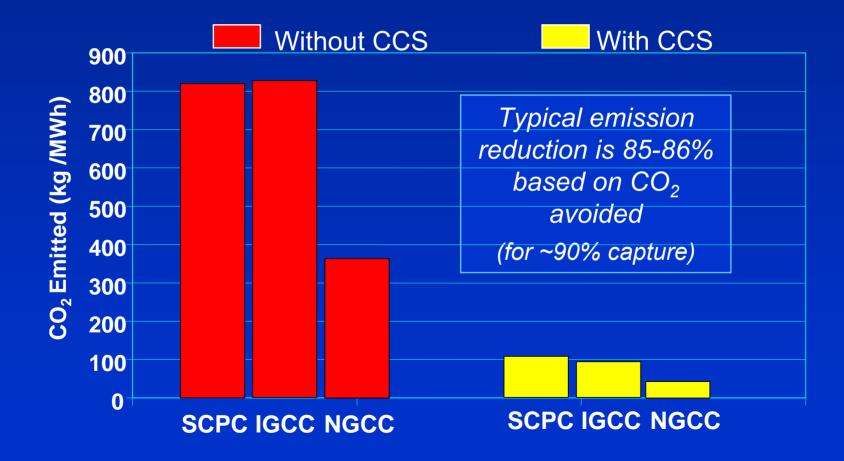

Source: TECO, 2004

Schematic of IGCC w/ CO₂ Capture


Pulverized Coal-Fired Power Plant with Oxyfuel Combustion Capture

bottom ash

Source: Vattenfall, 2006



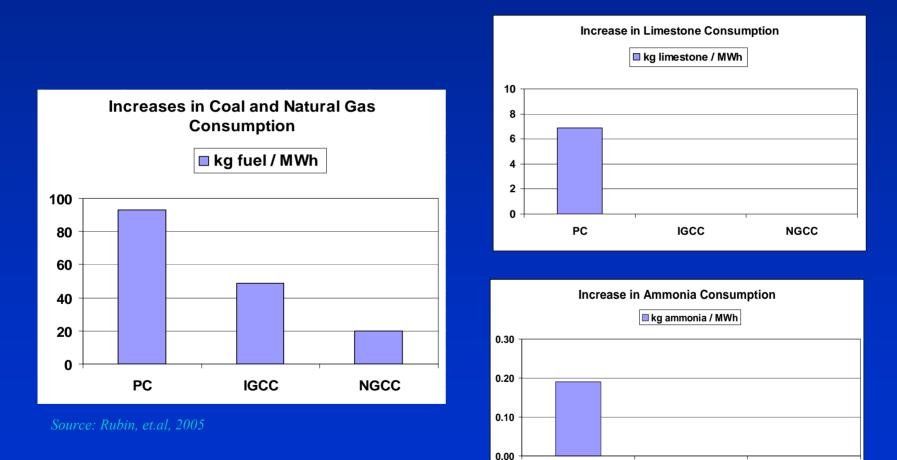
Summary of Capture Status

- Several existing applications of CO₂ capture at scales small compared to a modern power plant, but
- Several new large-scale projects proposed in different countries to demonstrate pre-combustion, post-combustion and oxyfuel fuel combustion over the coming decade using a variety of fuels (coal, gas, liquids) in power plant and related industrial applications

How effective are current CO₂ capture systems?

Illustrative CO₂ Emission Rates for New Power Plants (kg CO₂/MWh)

Is There an Optimal Capture Efficiency?

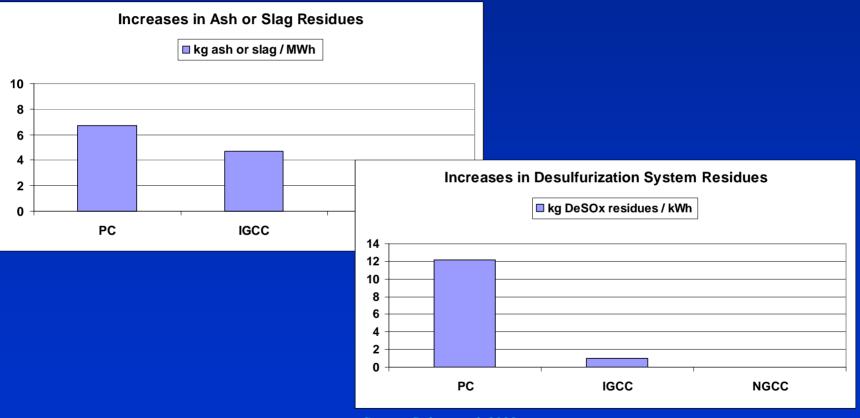

- Our studies show that the most cost-effective level of CO₂ capture (minimum cost per ton of CO₂ avoided) occurs at removal efficiencies of about 85%–90% for both PC and IGCC plants using current technology
- Optimal level varies slightly with plant size and other factors that affect the number of absorber and compressor trains required for CO₂ capture and compression

What is the impact on other plant emissions ?

Importance of the CCS "Energy Penalty"

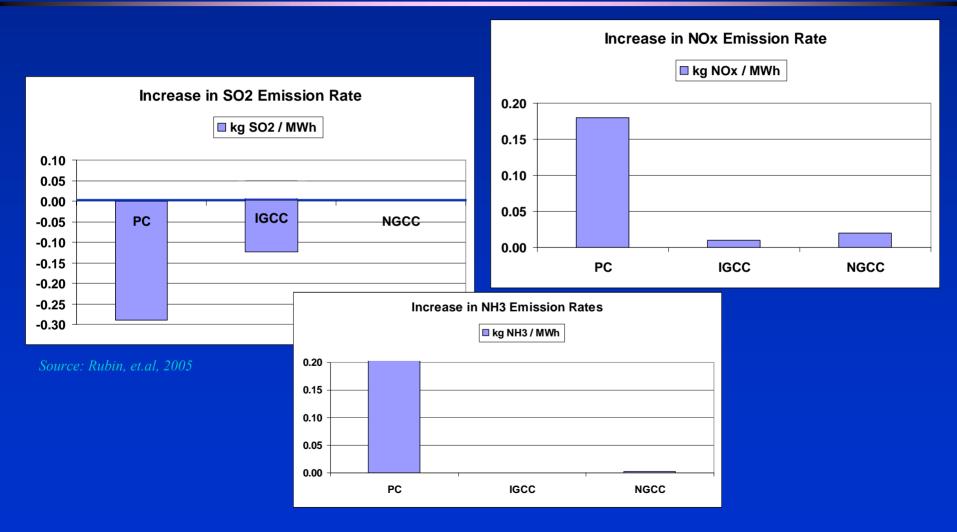
- CCS energy requirements are defined here as the increase in fuel energy input per unit of net electrical output (relative to a similar plant without capture)
- This directly affects the plant-level resource requirements and emissions <u>per MWh</u> of:
 - Fuel and reagent use
 - Air pollutant emissions
 - Solid and liquid wastes
 - Upstream (life cycle) impacts
- Additional energy/MWh for representative plants:
 - PC = 31%; IGCC = 16%; NGCC = 17%

Case Study Increases in Fuel and Reagent Consumption



PC

IGCC


NGCC

Case Study Increases in Solid Wastes & Plant Byproducts

Source: Rubin, et.al, 2005

Case Study Increases in Air Emission Rates

Case Study Impacts of CCS on Plant Resource Use and Emission Rates

(Capture plant rate and increase over reference plant rate, kg/MWh)

Capture Plant Parameter	PC		IGCC		NGCC	
	Rate	Increase	Rate	Increase	Rate	Increase
Resource Consumption	(All values in kg/MWh)					
Fuel	390	93	364	50	156	23
Limestone	27.5	6.8	-	-	-	-
Ammonia	0.80	0.19	-	-	-	-
CCS Reagents	2.76	2.76	0.005	0.005	0.80	0.80
Solid Wastes/ Byproduct						
Ash/slag	28.1	6.7	34.2	4.7	-	-
FGD residues	49.6	12.2	-	-	-	-
Sulfur	-	-	7.7	1.2	-	-
Spent CCS sorbent	4.05	4.05	0.005	0.005	0.94	0.94
Atmospheric Emissions						
CO_2	107	-704	97	-720	43	-342
SO _x	0.001	- 0.29	0.011	-0.13	-	-
NO _x	0.77	0.18	0.10	0.01	0.11	0.02
NH ₃	0.23	0.22	-	-	0.002	0.002

Reducing Environmental Impacts

- New or improved power generation and CO₂ capture technologies promise to reduce CCS impacts by:
 - Improving overall plant efficiency
 - Reducing CCS energy requirements
 - Increasing CO₂ capture efficiency
 - Maximizing pollutant co-capture & disposal

More on this a little later

How much does CCS cost?

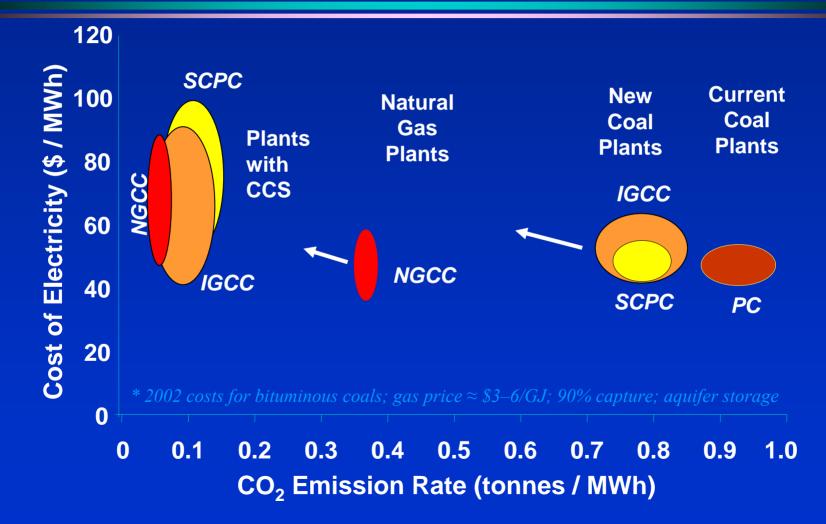
Many Factors Affect Reported Costs of CO₂ Capture & Storage

- Choice of CCS Technology
- Process Design and Operating Variables
- Economic and Financial Parameters
- Choice of System Boundaries; e.g.,
 - One facility vs. multi-plant system (regional, national, global)
 - GHG gases considered (CO₂ only vs. all GHGs)
 - Power plant only vs. partial or complete life cycle
- Time Frame of Interest
 - Current technology vs. future (improved) systems
 - Consideration of technological "learning"

Different Measures of Cost

- Cost of Electricity (\$/MWh) = $\frac{(TCC)(FCF) + FOM}{(CF)(8760)(MW)}$ + VOM + (HR)(FC)
- Cost of CO₂ Avoided (\$/ton CO₂ avoided) = $\frac{(\$/MWh)_{ccs} - (\$/MWh)_{reference}}{(CO_2/MWh)_{ref} - (CO_2/MWh)_{ccs}}$
- Cost of CO₂ Abated (\$/ton CO₂ reduced) = $\frac{(\$ \text{NPV})_{\text{ccs}} - (\$ \text{NPV})_{\text{reference}}}{(\text{CO}_2)_{\text{ref}} - (\text{CO}_2)_{\text{ccs}}}$

Ten Ways to Reduce the Estimated Cost of CO_2 Abatement


- 10. Assume high power plant efficiency
 - 9. Assume high-quality fuel properties
 - 8. Assume low fuel costs
 - 7. Assume EOR credits for CO_2 storage
 - 6. Omit certain capital costs
 - 5. Report $\frac{1}{2}$ based on short tons
 - 4. Assume long plant lifetime
 - 3. Assume low interest rate (discount rate)
 - 2. Assume high plant utilization (capacity factor)
 - 1. Assume all of the above !

... and we have not yet considered the CCS technology!

Important Reminders

- No one has yet built and operated a CO₂ capture and sequestration system at a large-scale (e.g., 500 MW) power plant
- Hence, all the costs we're about to see are projections based on other applications; the "true" costs are not yet known
- In the last few years plant construction costs have escalated considerably (~30% from 2002 to 2006); current (2007) costs are thus higher than those reported in recent studies

Estimated Cost and Emissions of Power Plants with and without CCS*

Representative CCS Costs for New Power Plants Using Current Technology

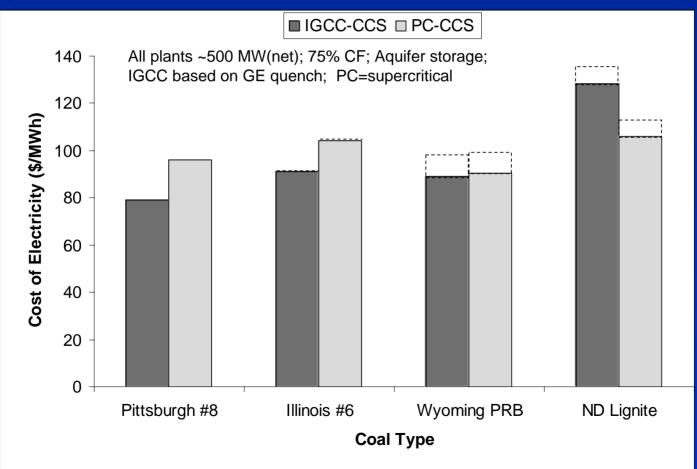
Incremental Cost of CCS Relative to Similar Plant without CCS	Natural Gas Combined Cycle Plant	Supercritical Pulverized Coal Plant	Integrated Gasification Combined Cycle Plant	
Increase in plant capital cost for capture & compression	~76%	~63%	~37%	
Increase in levelized COE (capture & compression only)	~46%	~57%	~33%	
Added cost of CCS with aquifer storage (\$/MWh)	10–30	20–50	10–30	
Added cost of CCS with EOR storage (\$/MWh)	10–20	10–30	0–10	

Source: IPCC, 2005

Variability is due mainly to differences in site-specific factors. Added cost to consumers will depend on extent of CCS plants in the overall power generation mix over time

Cost of CO₂ Avoided (\$/tCO₂) (Based on Current Technology)

Levelized cost in 2002 US\$ per tonne CO₂ avoided


Cost of CO ₂ Avoided Relative to Similar Plant without CCS	Natural Gas Combined Cycle Plant	Supercritical Pulverized Coal Plant	Integrated Gasification Combined Cycle Plant	
Capture & compress only	35–75	30–50	15–35	
+ Saline aquifer storage	40–90	30–70	15–55	
+ EOR storage (credits)	20–70	10–45	(-5)–30	

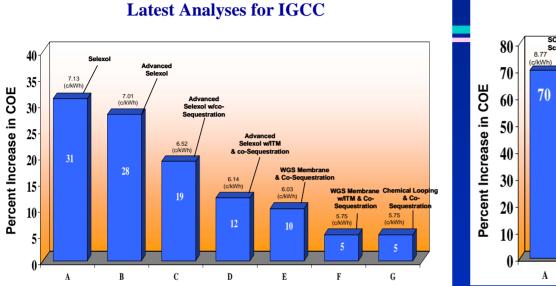
Source: IPCC, 2005

Different mixes of plants with and without CCS will have other avoidance costs; site-specific context is very important

Effects of Coal Quality on Cost of Electricity for PC and IGCC w/CCS

(2005 \$/MWh; dashed lines based on constant \$/GJ for all coals)

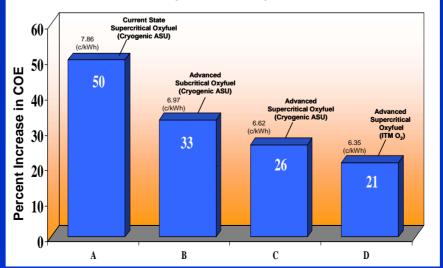
Detailed results and breakdown of costs for different systems are available in published papers and reports


Plant Type & Technology	Total Plant Costs (\$2002)					
	<u>Capita</u> \$/kW	l l Cost % Total	Total O8 \$∕MWh	<mark>&M Cost⁵</mark> % Total	<mark>Total</mark> \$∕MWh	COE ^{6,7} % Total
NGCC Plant ¹	916	100	38.5	100	59.1	100
GTCC (power block)	660	72	2.2	6	17.1	29
CO ₂ capture (amine system)	218	24	2.4	6	7.3	12
CO ₂ compression	38	4	0.2	0	1.0	2
Fuel cost	0	0	33.6	87	33.6	57
PC Plant ²	1,962	100	29.3	100	73.4	100
PC Boiler/turbine-generator area	1,282	65	5.7	19	34.5	47
AP controls (SCR, ESP, FGD)	241	12	4.1	14	9.5	13
CO ₂ capture (amine system)	353	18	7.2	25	15.2	21
CO ₂ compression	86	4	0.4	1	2.3	3
Fuel cost	0	0	11.9	41	11.9	16
IGCC Plant ³	1,831	100	21.3	100	62.6	100
Air separation unit	323	18	1.7	8	8.9	14
Gasifier area	494	27	3.7	17	14.8	24
Sulfur removal/recovery	110	6	0.6	3	3.1	5
CO ₂ capture (WGS/Selexol)	246	13	1.6	7	7.1	11
CO ₂ compression	42	2	0.3	1	1.2	2
GTCC (power block)	616	34	2.0	9	15.8	25
Fuel cost	0	0	11.6	54	11.6	19
Oxyfuel Plant ⁴	2,417	100	24.4	100	78.9	100
Air separation unit	779	32	3.1	13	20.6	26
PC boiler/turbine generator area	1,280	53	5.6	23	34.4	44
AP controls (ESP, FGD)	132	5	2.7	11	5.7	7
CO ₂ distillation	160	7	1.4	6	5.0	6
CO ₂ compression	66	3	0.5	2	1.9	2
Fuel cost	0	0	11.2	46	11.2	14

Notes: 1. NGCC plant = 432 MW (net); 517 MW (gross); two 7FA gas turbines; gas price = 4.0 \$/GJ; 2. PC plant = 500 MW (net); 719 MW (gross); supercritical boiler; Pittsburgh #8 coal; price = 1.0 \$/GJ; 3. IGCC plant = 490 MW (net); 594 MW (gross); 3 GE gasifiers + two 7FA gas turbines; Pgh #8 coal; price = 1.0 \$/GJ; 4. Oxyfuel plant = 500 MW (net); 709 MW (gross); supercritical boiler; Pittsburgh #8 coal; price = 1.0 \$/GJ; 5. Based on levelized capacity factor of 75% for all plants.; 6. COE is the levelized cost of electricity; 7. Based on fixed charge factor of 0.148 for all plants; 8. The cost of reference plants with similar net output and no CO2 capture are: NGCC = \$563/kW, \$43.3/MWh; PC= \$1229/kW, \$44.9/MWh; IGCC = \$1327/kW, \$46.8/MWh.

What is the outlook for improved capture technology? Two Approaches to Estimating Future Technology Costs

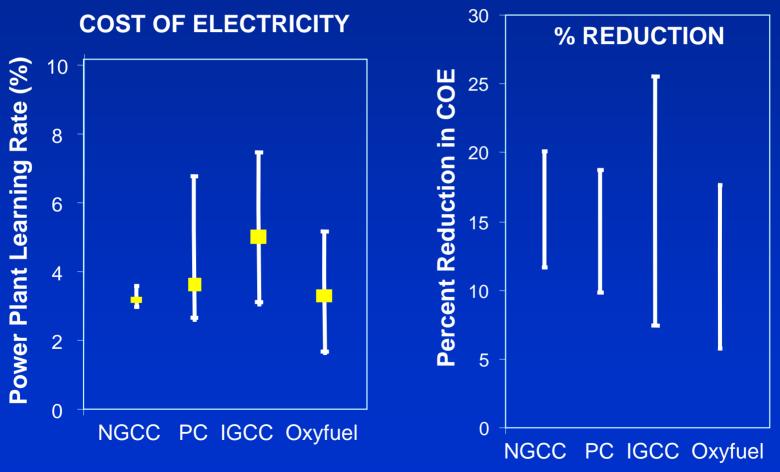
- <u>Method 1</u>: Engineering-Economic Analysis
 - A "bottom up" approach based on engineering process models, informed by judgments regarding potential improvements in key process parameters


Latest Projections by DOE/NETL

SC w/Amine SC w/Ammonia Scrubbing CO. Scrubbing 8.72 (c/kWh) SC w/Econamine SC w/Multipollutant Scrubbing Ammonia Scrubbing USC w/Amine 69 (Byproduct Credit) 8.00 Scrubbing USC w/Advanced (c/kWh)7.84 7.74 Amine Scrubbing (c/kWh) (c/kWh) 7.48 55 (c/kWh) 52 50 45 **RTI Regenerable** Sorbent 6.30 (c/kWh) 22 B С D Е F G

Latest Analyses for PC Plants

Latest Analyses for Oxy-Combustion



<u>Source</u>: DOE Office of Fossil Energy, 2006

Two Approaches to Estimating Future Technology Costs

- <u>Method 2</u>: Use of Historical Experience Curves
 - A "top down" approach based on applications of mathematical "learning curves" or "experience curves" that reflect historical trends for analogous technologies or systems

Estimated Learning Rate for CCS Plants (Based on 100 GW of cumulative CCS capacity for each system)

Source: IEA GHG, 2006

What are the key needs to develop improved technology?

- Deployment, deployment, deployment !
- Sustained (and increased) R&D support
- Resolution of current legal and institutional uncertainties surrounding geological sequestration
 - Regulatory requirements (esp.for deep injection)
 - Liabilities (near-term and long-term)
 - Financing and insurance requirements
 - Emissions allowance & trading rules for CCS projects

Concluding Comments

- Absent a climate policy with sufficiently stringent limits on CO₂ emissions, there is little or no incentive to develop and deploy CO₂ capture and storage technologies
- Market-based policies aimed broadly at reducing CO₂ emissions (e.g., cap-and-trade) are not likely to stimulate CCS until carbon price exceeds roughly \$100/tC (\$27/tCO₂)
- Policies aimed specifically at fossil fueled plants (e.g., performance and/or portfolio standards) can accelerate CCS deployment and innovation, especially in conjunction with incentives for early actors
- Analysis of options is underway by a number of parties; the ACT Work Group can contribute significantly to this effort

Thank You

rubin@cmu.edu

E.S. Rubin, Carnegie Mellon