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Outline of TalkOutline of Talk

• Why the interest in CO2 capture and storage (CCS)?

• What is the current status of CO2 capture technology?

• What options are available for power plants?

• How effective are current capture systems?

• How does it affect other emissions?

• How much does it cost?

• What is the outlook for improved technology?

• What are the key needs to develop these technologies?
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Why the Interest ?Why the Interest ?

• Coal and other fossil fuels will continue to be 
used extensively for many decades to come—no 
easy or fast alternatives on a large scale   

• CO2 capture and storage (CCS) offers a way to 
use fossil fuels (especially coal) with little or no 
CO2 emissions—a potential bridging strategy 

• Energy models indicate that including CCS in a 
portfolio of options significantly lowers the cost 
of achieving the deep long-term reductions 
needed to mitigate climate change
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Can We Can We HaveHave Our Cake and Eat it Too?Our Cake and Eat it Too?

Can We Have Our Coal Can We Have Our Coal 
Without COWithout CO22??

CO2CO2CO2
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Schematic of a CCS SystemSchematic of a CCS System
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Status of Capture Technology  Status of Capture Technology  

• CO2 capture technologies are commercial and 
widely used in industrial processes, mainly in the 
petroleum and petrochemical industries (e.g., for 
ammonia production and processing of natural gas)

• CO2 capture also has been applied to several gas-
fired and coal-fired boilers (to produce commodity 
CO2 for sale), but at scales that are small compared 
to a large modern power plant

• Integration of CO2 capture, transport and geologic 
sequestration has been demonstrated in several 
industrial applications, but not yet at an electric 
power plant 
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Current COCurrent CO22 Capture ProjectsCapture Projects

Source: IEA GHG, 2007



What options are available? What options are available? 
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Many Ways to Capture COMany Ways to Capture CO22
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IPCC Special Report Examines IPCC Special Report Examines 
COCO22 Capture Technology in DetailCapture Technology in Detail

The Intergovernmental Panel 
on Climate Change (IPCC) 
Web Site (www.ipcc.ch) has:

- Summary for Policymakers

- Technical Summary

- Full Technical Report     
(also available from Cambridge University 
Press, 2005)
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Leading Candidates for CCSLeading Candidates for CCS

• Fossil fuel power plants
Integrated coal gasification combined cycle (IGCC)
Pulverized coal combustion (PC)
Natural gas combined cycle (NGCC)

• Other large industrial sources of CO2 such as:
Refineries, fuel processing, and petrochemical plants
Hydrogen and ammonia production plants
Pulp and paper plants
Cement plants

– Focus of this talk is on power plants –
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COCO22 Capture Options for Power PlantsCapture Options for Power Plants

Source: IPCC SRCCS, 2005
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Pulverized CoalPulverized Coal--Fired Power Plant Fired Power Plant 
with Postwith Post--Combustion COCombustion CO22 CaptureCapture
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Schematic of Amine Capture SystemSchematic of Amine Capture System
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Examples of Post-Combustion
CO2 Capture at Coal-Fired Plants

Warrior Run Power Plant
(Cumberland, Maryland, USA)
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Schematic of PC Plant w/ CCS
(Post-combustion amine system)
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Natural Gas Combined Cycle Plant Natural Gas Combined Cycle Plant 
with Postwith Post--Combustion COCombustion CO22 CaptureCapture



Examples of Post-Combustion
CO2 Capture at Gas-Fired Plants

Petronas Urea Plant Flue Gas
(Keda, Malaysia)
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Bellingham Cogeneration Plant
(Bellingham, Massachusetts, USA)
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Integrated Coal Gasification Combined Integrated Coal Gasification Combined 
Cycle Plant w/ PreCycle Plant w/ Pre--Combustion CaptureCombustion Capture

GE-quench O2-blown
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WaterWater--Gas Shift Reactor Schematic Gas Shift Reactor Schematic 
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Selexol COSelexol CO22 Capture SchematicCapture Schematic
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Examples of Pre-Combustion
CO2 Capture Systems

Coal Gasification to Produce SNG
(Beulah, North Dakota, USA)
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Integrated Coal Gasification 
Combined Cycle (IGCC) Plant

Polk Power Station, Tampa, Florida
(250 MW, no CO2 capture)

Source: TECO, 2004
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Schematic of IGCC w/ CO2 Capture
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Pulverized CoalPulverized Coal--Fired Power Plant Fired Power Plant 
with Oxyfuel Combustion Capturewith Oxyfuel Combustion Capture
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The Vattenfall
30 MWth Oxy-Coal
Pilot Boiler with
CO2 capture at
Schwarze Pumpe
(Germany), 
starting mid-2008

Pilot here

The Vattenfall
30 MWth Oxy-Coal
Pilot Boiler with
CO2 capture at
Schwarze Pumpe
(Germany), 
starting mid-2008

Source: Vattenfall, 2006
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Summary of Capture StatusSummary of Capture Status

• Several existing applications of CO2 capture at 
scales small compared to a modern power plant, but

• Several new large-scale projects proposed in 
different countries to demonstrate pre-combustion, 
post-combustion and oxyfuel fuel combustion over 
the coming decade using a variety of fuels (coal, 
gas, liquids) in power plant and related industrial 
applications



How effective are current How effective are current 
COCO22 capture systems?capture systems?

E.S. Rubin, Carnegie Mellon
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Illustrative COIllustrative CO22 Emission Rates for Emission Rates for 
New Power Plants New Power Plants (kg CO(kg CO22/MWh)/MWh)
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Is There an Optimal Capture Efficiency?Is There an Optimal Capture Efficiency?

• Our studies show that the most cost-effective level of 
CO2 capture (minimum cost per ton of CO2 avoided) 
occurs at removal efficiencies of about 85%–90% for 
both PC and IGCC plants using current technology

• Optimal level varies slightly with plant size and  
other factors that affect the number of absorber and 
compressor trains required for CO2 capture and 
compression 



What is the impact on What is the impact on 
other plant emissions ? other plant emissions ? 

E.S. Rubin, Carnegie Mellon
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Importance of the CCSImportance of the CCS
“Energy Penalty”“Energy Penalty”

• CCS energy requirements are defined here as the 
increase in fuel energy input per unit of net electrical 
output (relative to a similar plant without capture) 

• This directly affects the plant-level resource 
requirements and emissions per MWh of:

Fuel and reagent use
Air pollutant emissions  
Solid and liquid wastes
Upstream (life cycle) impacts

• Additional energy/MWh for representative plants:  
PC = 31%;    IGCC = 16%;     NGCC = 17%
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Case Study Increases in Case Study Increases in 
Fuel and Reagent ConsumptionFuel and Reagent Consumption
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Case Study Increases inCase Study Increases in
Solid Wastes & Plant ByproductsSolid Wastes & Plant Byproducts

Increases in Ash or Slag Residues
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Case Study Increases inCase Study Increases in
Air Emission RatesAir Emission Rates
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Case Study Impacts of CCS on Plant Case Study Impacts of CCS on Plant 
Resource Use and Emission RatesResource Use and Emission Rates

PC  IGCC  NGCC  Capture Plant Parameter 
Rate  Increase  Rate Increase  Rate  Increase  

Resource Consumption  (All values in kg/MWh)  
Fuel 390  93  364 50  156  23  

Limestone 27.5  6.8  -  -  -  -  
Ammonia 0.80  0.19  -  -  -  -  

CCS Reagents 2.76  2.76  0.005  0.005  0.80  0.80  
Solid Wastes/ Byproduct  

Ash/slag 28.1  6.7  34.2  4.7  -  -  
FGD residues 49.6  12.2  -  -  -  -  

Sulfur -  -  7.7  1.2  -  -  
Spent CCS sorbent 4.05  4.05  0.005  0.005  0.94  0.94  

Atmospheric Emissions  
CO2 107 –704 97 –720 43 –342 
SOx 

0.001  – 0.29  0.011  –0.13 -  -  
NOx 0.77  0.18  0.10  0.01  0.11  0.02  
NH3 0.23  0.22  -  -  0.002  0.002  

(Capture plant rate and increase over reference plant rate, kg/M(Capture plant rate and increase over reference plant rate, kg/MWh)Wh)
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Reducing Environmental ImpactsReducing Environmental Impacts

• New or improved power generation and CO2
capture technologies promise to reduce CCS 
impacts by:

Improving overall plant efficiency
Reducing CCS energy requirements
Increasing CO2 capture efficiency
Maximizing pollutant co-capture & disposal  

More on this a little later



How much does CCS cost? How much does CCS cost? 
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Many Factors Affect Reported Many Factors Affect Reported 
Costs of COCosts of CO22 Capture & StorageCapture & Storage

• Choice of CCS Technology
• Process Design and Operating Variables
• Economic and Financial Parameters
• Choice of System Boundaries; e.g.,

One facility vs. multi-plant system (regional, national, global)
GHG gases considered (CO2 only vs. all GHGs)
Power plant only vs. partial or complete life cycle

• Time Frame of Interest
Current technology vs. future (improved) systems
Consideration of technological “learning”
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Different Measures of CostDifferent Measures of Cost

($/MWh)ccs – ($/MWh)reference

(CO2/MWh)ref – (CO2/MWh)ccs

• Cost of CO2 Avoided ($/ton CO2 avoided)

=

• Cost of CO2 Abated ($/ton CO2 reduced)
($ NPV)ccs – ($ NPV)reference

(CO2)ref – (CO2)ccs
=

• Cost of Electricity ($/MWh)
(TCC)(FCF)  + FOM

(CF)(8760)(MW) + VOM + (HR)(FC)=
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Ten Ways to Reduce the Estimated Cost Ten Ways to Reduce the Estimated Cost 
of COof CO22 AbatementAbatement

10.   Assume high power plant efficiency 
9.   Assume high-quality fuel properties
8.   Assume low fuel costs
7.   Assume EOR credits for CO2 storage
6.   Omit certain capital costs
5.   Report $/ton CO2 based on short tons
4.   Assume long plant lifetime
3.   Assume low interest rate (discount rate)
2.   Assume high plant utilization (capacity factor)
1.   Assume all of the above !

. . . and we have not yet considered the CCS technology!
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Important RemindersImportant Reminders

• No one has yet built and operated a CO2
capture and sequestration system at a large-
scale (e.g., 500 MW) power plant

• Hence, all the costs we’re about to see are 
projections based on other applications; the 
“true” costs are not yet known

• In the last few years plant construction costs 
have escalated considerably (~30% from 
2002 to 2006); current (2007) costs are thus 
higher than those reported in recent studies 
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Estimated Cost and Emissions of Estimated Cost and Emissions of 
Power Plants with and without CCSPower Plants with and without CCS**
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Representative CCS Costs for New Representative CCS Costs for New 
Power Plants Using Current TechnologyPower Plants Using Current Technology

Incremental Cost of CCS 
Relative to Similar Plant 

without CCS

Natural Gas 
Combined 
Cycle Plant 

Supercritical 
Pulverized 
Coal Plant  

Integrated 
Gasification 
Combined 
Cycle Plant 

Increase in plant capital cost 
for capture & compression ~76% ~63% ~37%

Increase in levelized COE 
(capture & compression only) ~46% ~57% ~33%

Added cost of CCS with                   
aquifer storage  ($/MWh) 10–30 20–50 10–30

Added cost of CCS with  
EOR storage ($/MWh)             10–20 10–30 0–10

Source: IPCC, 2005

Variability is due mainly to differences in site-specific factors. 
Added cost to consumers will depend on extent of CCS plants 

in the overall power generation mix over time 
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Cost of COCost of CO22 Avoided ($/tCOAvoided ($/tCO22) ) 
(Based on Current Technology)(Based on Current Technology)

Cost of CO2 Avoided 
Relative to Similar Plant 

without CCS

Natural Gas 
Combined 
Cycle Plant

Supercritical
Pulverized 
Coal Plant

Integrated 
Gasification 
Combined 
Cycle Plant 

Capture & compress only 35–75 30–50 15–35

+ Saline aquifer storage 40–90 30–70 15–55

+ EOR storage (credits) 20–70 10–45 (-5)–30

Levelized cost in 2002 US$ per tonne CO2 avoided

Source: IPCC, 2005

Different mixes of plants with and without CCS will have other 
avoidance costs; site-specific context is very important
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Effects of Coal Quality on Cost of Effects of Coal Quality on Cost of 
Electricity for PC and IGCC w/CCS Electricity for PC and IGCC w/CCS 

(2005 $/MWh; dashed lines based on constant $/GJ for all coals)(2005 $/MWh; dashed lines based on constant $/GJ for all coals)

0

20

40

60

80

100

120

140

Pittsburgh #8 Illinois #6 Wyoming PRB ND Lignite

Coal Type

C
os

t o
f E

le
ct

ri
ci

ty
 ($

/M
W

h)

IGCC-CCS PC-CCS

0

20

40

60

80

100

120

140

Pittsburgh #8 Illinois #6 Wyoming PRB ND Lignite

Coal Type

C
os

t o
f E

le
ct

ri
ci

ty
 ($

/M
W

h)

IGCC-CCS PC-CCS

0

20

40

60

80

100

120

140

Pittsburgh #8 Illinois #6 Wyoming PRB ND Lignite

Coal Type

C
os

t o
f E

le
ct

ri
ci

ty
 ($

/M
W

h)

IGCC-CCS PC-CCS

All plants ~500 MW(net); 75% CF; Aquifer storage;
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Detailed Detailed 
results and results and 
breakdown breakdown 
of costs for of costs for 

different different 
systems are systems are 
available in available in 
published published 
papers and papers and 

reports reports 

$/kW $/MWh $/MWh
NGCC Plant1 916 100 38.5 100 59.1 100
  GTCC (power block) 660 72 2.2 6 17.1 29
  CO2 capture (amine system) 218 24 2.4 6 7.3 12
  CO2 compression 38 4 0.2 0 1.0 2
  Fuel cost 0 0 33.6 87 33.6 57

PC Plant2 1,962 100 29.3 100 73.4 100
  PC Boiler/turbine-generator area 1,282 65 5.7 19 34.5 47
  AP controls (SCR, ESP, FGD) 241 12 4.1 14 9.5 13
  CO2 capture (amine system) 353 18 7.2 25 15.2 21
  CO2 compression 86 4 0.4 1 2.3 3
  Fuel cost 0 0 11.9 41 11.9 16

IGCC Plant3 1,831 100 21.3 100 62.6 100
  Air separation unit 323 18 1.7 8 8.9 14
  Gasifier area 494 27 3.7 17 14.8 24
  Sulfur removal/recovery 110 6 0.6 3 3.1 5
  CO2 capture (WGS/Selexol) 246 13 1.6 7 7.1 11
  CO2 compression 42 2 0.3 1 1.2 2
  GTCC (power block) 616 34 2.0 9 15.8 25
  Fuel cost 0 0 11.6 54 11.6 19

Oxyfuel Plant4 2,417 100 24.4 100 78.9 100
  Air separation unit 779 32 3.1 13 20.6 26
  PC boiler/turbine generator area 1,280 53 5.6 23 34.4 44
  AP controls (ESP, FGD) 132 5 2.7 11 5.7 7
  CO2 distillation 160 7 1.4 6 5.0 6
  CO2 compression 66 3 0.5 2 1.9 2
  Fuel cost 0 0 11.2 46 11.2 14

Plant Type & Technology
Total COE6,7

Total Plant Costs ($2002)

% Total % Total
Total O&M Cost5

% Total
Capital Cost

Notes: 1. NGCC plant = 432 MW (net); 517 MW (gross); two 7FA gas turbines; gas price = 4.0 $/GJ;  2. PC plant = 500 MW (net); 719 MW (gross); supercritical boiler; Pittsburgh 
#8 coal; price = 1.0 $/GJ;  3. IGCC plant = 490 MW (net); 594 MW (gross); 3 GE gasifiers + two 7FA gas turbines; Pgh #8 coal; price = 1.0 $/GJ;  4. Oxyfuel plant = 500 MW 
(net); 709 MW (gross); supercritical boiler; Pittsburgh #8 coal; price = 1.0 $/GJ;  5. Based on levelized capacity factor of 75% for all plants.;  6. COE is the levelized cost of 
electricity ;  7. Based on fixed charge factor of 0.148 for all plants;  8. The cost of reference plants with similar net output and no CO2 capture are: NGCC = $563/kW, $43.3/MWh;  
PC= $1229/kW, $44.9/MWh;  IGCC = $1327/kW, $46.8/MWh.



What is the outlook for improved What is the outlook for improved 
capture technology? capture technology? 

E.S. Rubin, Carnegie Mellon
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Two Approaches to Estimating Two Approaches to Estimating 
Future Technology CostsFuture Technology Costs

• Method 1:  Engineering-Economic Analysis

A “bottom up” approach based on engineering 
process models, informed by judgments regarding 
potential improvements in key process parameters



E.S. Rubin, Carnegie Mellon

Latest Projections by DOE/NETLLatest Projections by DOE/NETL
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Two Approaches to Estimating Two Approaches to Estimating 
Future Technology CostsFuture Technology Costs

• Method 2:  Use of Historical Experience Curves

A “top down” approach based on applications of 
mathematical “learning curves” or “experience 
curves” that reflect historical trends for analogous 
technologies or systems  
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Estimated Learning Rate for CCS PlantsEstimated Learning Rate for CCS Plants
(Based on 100 GW of cumulative CCS capacity for each system)(Based on 100 GW of cumulative CCS capacity for each system)
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What are the key needs to What are the key needs to 
develop improved technology? develop improved technology? 

E.S. Rubin, Carnegie Mellon
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Key NeedsKey Needs

• Deployment, deployment, deployment !

• Sustained (and increased) R&D support

• Resolution of current legal and institutional 
uncertainties surrounding geological sequestration

Regulatory requirements (esp.for deep injection)
Liabilities (near-term and long-term)
Financing and insurance requirements
Emissions allowance & trading rules for CCS projects
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Concluding CommentsConcluding Comments

• Absent a climate policy with sufficiently stringent limits on 
CO2 emissions, there is little or no incentive to develop and 
deploy CO2 capture and storage technologies

• Market-based policies aimed broadly at reducing CO2
emissions (e.g., cap-and-trade) are not likely to stimulate 
CCS until carbon price exceeds roughly $100/tC ($27/tCO2) 

• Policies aimed specifically at fossil fueled plants  (e.g., 
performance and/or portfolio standards) can accelerate CCS 
deployment and innovation, especially in conjunction with 
incentives for early actors

• Analysis of options is underway by a number of parties; the 
ACT Work Group can contribute significantly to this effort



Thank YouThank You

rubin@cmu.edurubin@cmu.edu

E.S. Rubin, Carnegie Mellon
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