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20  DETECTION AND QUANTIFICATION
CAPABILITIES

20.1 Overview

This chapter discusses issues related to analyte detection and quantification capabilities. The
topics addressed include methods for deciding whether an analyte is present in a sample as well
as measures of the detection and quantification capabilities of a measurement process.

Environmental radioactivity measurements may involve material containing very small amounts
of the radionuclide of interest. Measurement uncertainty often makes it difficult to distinguish
such small amounts from zero. So, an important performance characteristic of an analytical
measurement process is its detection capability, which is usually expressed as the smallest
concentration of analyte that can be reliably distinguished from zero. Effective project planning
requires knowledge of the detection capabilities of the analytical procedures that will be or could
be used. This chapter explains the performance measure, called the minimum detectable con-
centration (MDC), or the minimum detectable amount (MDA), that is used to describe radio-
analytical detection capabilities, as well as some proper and improper uses for it. The chapter
also gives laboratory personnel methods for calculating the minimum detectable concentration.

Project planners may also need to know the quantification capability of an analytical procedure,
or its capability for precise measurement. The quantification capability is expressed as the small-
est concentration of analyte that can be measured with a specified relative standard deviation.
This chapter explains a performance measure called the minimum quantifiable concentration
(MQC), which may be used to describe quantification capabilities. (See Chapter 3 and Appendix
C for explanations of the role of the minimum detectable concentration and minimum quantifi-
able concentration in the development of measurement quality objectives.)

Section 20.2 presents the concepts and definitions used throughout the chapter. The major
recommendations of the chapter are listed in Section 20.3. Section 20.4 presents the mathe-
matical details of calculating critical values, minimum detectable values, and minimum quanti-
fiable values. Attachment 20A describes issues related to analyte detection decisions in low-
background radiation counting and how the issues may be dealt with mathematically.

20.2 Concepts and Definitions

20.2.1  Analyte Detection Decisions

An obvious question to be answered following
the analysis of a laboratory sample is: �Does the
sample contain a positive amount of the
analyte?� Uncertainty in the measured value
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1 Note that in any given situation, only one of the two types of decision error is possible. If the sample does not
contain the analyte, a Type I error is possible. If the sample does contain the analyte, a Type II error is possible.
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often makes the question difficult to answer. There are different methods for making a detection
decision, but the methods most often used in radiochemistry involve the principles of statistical
hypothesis testing.

To �detect� the analyte in a laboratory sample means to decide on the basis of the measurement
data that the analyte is present. The detection decision involves a choice between two hypotheses
about the sample. The first hypothesis is the �null hypothesis� H0: The sample is analyte-free.
The second hypothesis is the �alternative hypothesis� H1: The sample is not analyte-free. The
null hypothesis is presumed to be true unless there is sufficient statistical evidence to the con-
trary. If the evidence is strong enough, the null hypothesis is rejected in favor of the alternative
hypothesis. (See Attachment 3B of Chapter 3 for an introduction to these concepts.)

The methods of statistical hypothesis testing do not guarantee correct decisions. In any hypoth-
esis test there are two possible types of decision errors. An error of the first type, or Type I error,
occurs if one rejects the null hypothesis when it is true. An error of the second type, or Type II
error, occurs if one fails to reject the null hypothesis when it is false. The probability of a Type I
error is usually denoted by α, and the probability of a Type II error is usually denoted by β. In the
context of analyte detection decisions, to make a Type I error is to conclude that a sample
contains the analyte when it actually does not, and to make a Type II error is to fail to conclude
that a sample contains the analyte when it actually does.1

A Type I error is sometimes called a �false rejection� or �false positive,� and a Type II error is
sometimes called a �false acceptance� or �false negative.� Recently the terms �false positive�
and �false negative� have been losing favor, because they can be misleading in some contexts.

The use of statistical hypothesis testing to decide whether an analyte is present in a laboratory
sample is conceptually straightforward, yet the subject still generates confusion and disagreement
among radiochemists and project managers. Hypothesis testing has been used for analyte detec-
tion in radiochemistry at least since 1962. Two influential early publications on the subject were
Altshuler and Pasternack (1963) and Currie (1968). Other important but perhaps less well-known
documents were Nicholson (1963 and 1966). Most approaches to the detection problem have
been similar in principle, but there has been inadequate standardization of terminology and meth-
odology. However, there has been recent progress. In 1995, the International Union of Pure and
Applied Chemistry (IUPAC) published �Nomenclature in Evaluation of Analytical Methods
Including Detection and Quantification Capabilities� (IUPAC, 1995), which recommends a uni-
form approach to defining various performance characteristics of any chemical measurement
process, including detection and quantification limits; and in 1997 the International Organization
for Standardization (ISO) issued the first part of ISO 11843 �Capability of Detection,� a multi-
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part standard which deals with issues of detection in an even more general context of measure-
ment. Part 1 of ISO 11843 includes terms and definitions, while Parts 2�4 deal with meth-
odology. Although members of the IUPAC and ISO working groups collaborated during the
development of their guidelines, substantial differences between the final documents remain.
MARLAP follows both the ISO and IUPAC guidelines where they agree but prefers the
definitions of ISO 11843-1 for the critical value and minimum detectable value, relating them to
the terminology and methodology already familiar to most radiochemists.

In July 2000, ISO also published the first three parts of ISO 11929 �Determination of the Detec-
tion Limit and Decision Threshold for Ionizing Radiation Measurements.� Unfortunately, ISO
11929 is not completely consistent with either the earlier ISO standard or the IUPAC recommen-
dations.

In the terminology of ISO 11843-1, the analyte concentration of a laboratory sample is the state
variable, denoted by Z, which represents the state of the material being analyzed. Analyte-free
material is said to be in the basic state. The state variable cannot be observed directly, but it is
related to an observable response variable, denoted by Y, through a calibration function F, the
mathematical relationship being written as Y = F(Z). In radiochemistry, the response variable Y is
most often an instrument signal, such as the number of counts observed. The inverse, F−1, of the
calibration function is sometimes called the evaluation function (IUPAC, 1995). The evaluation
function, which gives the value of the net concentration in terms of the response variable, is
closely related to the mathematical model described in Section 19.4.2 of Chapter 19.

The difference between the state variable, Z, and its value in the basic state is called the net state
variable, which is denoted by X. In radiochemistry there generally is no difference between the
state variable and the net state variable, because the basic state is represented by material whose
analyte concentration is zero. In principle the basic state might correspond to a positive concen-
tration, but MARLAP does not address this scenario.

20.2.2  The Critical Value

In an analyte detection decision, one chooses between the null and alternative hypotheses on the
basis of the observed value of the response variable, Y. The value of Y must exceed a certain
threshold value to justify rejection of the null hypothesis and acceptance of the alternative: that
the sample is not analyte-free. This threshold is called the critical value of the response variable
and is denoted by yC. 

The calculation of yC requires the choice of a significance level for the test. The significance level
is a specified upper bound for the probability, α, of a Type I error (false rejection). The signifi-
cance level is usually chosen to be 0.05. This means that when an analyte-free sample is
analyzed, there should be at most a 5 % probability of incorrectly deciding that the analyte is
present. In principle other values of α are possible, but in the field of radiochemistry, α is often
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implicitly assumed to be 0.05. So, if another value is used, it should be explicitly stated. A
smaller value of α makes type I errors less likely, but also makes Type II errors more likely when
the analyte concentration in the laboratory sample is positive but near  zero.

The critical value of the analyte concentration, xC , as defined by MARLAP, is the value obtained
by applying the evaluation function, F−1, to the critical value of the response variable, yC. Thus,
xC = F−1(yC). In radiochemistry, when yC is the gross instrument signal, this formula typically
involves subtraction of the blank signal and division by the counting efficiency, test portion size,
chemical yield, decay factor, and possibly other factors. In ANSI N42.23, �Measurement and
Associated Instrument Quality Assurance for Radioassay Laboratories,� the same value, xC, is
called the decision level concentration, or DLC.

A detection decision can be made by comparing the observed gross instrument signal to its
critical value, yC, as indicated above. However, it has become standard practice in radiochemistry
to make the decision by comparing the net instrument signal to its critical value, SC. The net
signal is calculated from the gross signal by subtracting the estimated blank value and any inter-
ferences. The critical net signal, SC, is calculated from the critical gross signal, yC, by subtracting
the same correction terms; so, in principle, either approach should lead to the same detection
decision.

Since the term �critical value� alone is ambiguous, one should specify the variable to which the
term refers. For example, one may discuss the critical (value of the) analyte concentration, the
critical (value of the) net signal, or the critical (value of the) gross signal.

It is important to understand that there is no single equation for the critical value that is appro-
priate in all circumstances. Which equation is best depends on the structure of the measurement
process and the statistics of the measurements. Many of the commonly used expressions are
based on the assumption of Poisson counting statistics and are invalid if that assumption is not a
good approximation of reality. For example, if the instrument background varies between meas-
urements or if it is necessary to correct the result for sample-specific interferences, then expres-
sions for the critical value based on the Poisson model require modification or replacement. If the
analyte is a naturally occurring radionuclide that is present at varying levels in reagents, then a
correction for the reagent contamination is necessary and expressions based on the Poisson
model may be completely inappropriate. In this case the critical value usually must be determined
by repeated measurements of blanks under conditions similar to those of the sample measure-
ment.

Generally, the clients of a laboratory do not have the detailed knowledge of the measurement
process that is necessary to choose a specific equation for the critical value; however, clients may
specify the desired Type I error rate (5 % by default).
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Section 20.4.1 and Section 20A.2 of Attachment 20A provide more information on the calcula-
tion of critical values.

20.2.3  The Blank

In radiochemistry, the response variable is typically an instrument signal, whose mean value
generally is positive even when analyte-free material is analyzed. The gross signal must be cor-
rected by subtracting an estimate of the signal produced by analyte-free material. This estimate
may be obtained by means of any of several types of radiochemical blanks, including blank
sources and reagent blanks (Chapter 18). The radiochemical blank is chosen to provide an
estimate of the mean signal produced by an analyte-free sample, whether the signal is produced
by the instrument background, contaminated reagents, or other causes. The most appropriate type
of blank depends on the analyte and on the method and conditions of measurement. Some
analytes. including many anthropogenic radionuclides, are unlikely to occur as contaminants in
laboratory reagents. For these analytes the radiochemical blank may be only a blank source that
mimics the container, geometry, and physical form of a source prepared from a real sample. On
the other hand, many naturally occurring radionuclides may be present in laboratory water,
reagents, and glassware, and these analytes often require the laboratory to analyze reagent blanks
or matrix blanks to determine the distribution of the instrument signal that can be expected when
analyte-free samples are analyzed.

20.2.4  The Minimum Detectable Concentration

The power of any hypothesis test is defined as the probability that the test will reject the null
hypothesis when it is false.2 So, if the probability of a Type II error is denoted by β, the power is
1 ! β. In the context of analyte detection, the power of the test is the probability of correctly
detecting the analyte (concluding that the analyte is present), which happens whenever the
response variable exceeds its critical value. The power depends on the analyte concentration of
the sample and other conditions of measurement; so, one often speaks of the �power function� or
�power curve.� Note that the power of a test for analyte detection generally is an increasing
function of the analyte concentration � i.e., the greater the analyte concentration the higher the
probability of detecting it.

The minimum detectable concentration (MDC) is the minimum concentration of analyte that
must be present in a sample to give a specified power, 1 ! β. It may also be defined as:

  � The minimum analyte concentration that must be present in a sample to give a specified
probability, 1 ! β, of detecting the analyte; or
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FIGURE 20.1 � The critical net signal, SC, and minimum detectable net signal, SD

  � The minimum analyte concentration that must be present in a sample to give a specified
probability, 1 ! β, of measuring a response greater than the critical value, leading one to
conclude correctly that there is analyte in the sample.

The value of β that appears in the definition, like α, is usually chosen to be 0.05 or is assumed to
be 0.05 by default if no value is specified. The minimum detectable concentration is denoted in
mathematical expressions by xD. In radiochemistry the MDC is usually obtained from the
minimum detectable value of the net instrument signal, SD, which is the smallest mean value of
the net signal at which the probability that the response variable will exceed its critical value is
1 − β. The relationship between the critical net signal, SC, and the minimum detectable net signal,
SD, is shown in Figure 20.1.

Sections 20.4.2 and 20A.3 provide more information about the calculation of the minimum
detectable concentration.

The minimum detectable value of the activity or mass of analyte in a sample is sometimes called
the minimum detectable amount, which may be abbreviated as MDA (ANSI N13.30 and
N42.23). This chapter focuses on the MDC, but with few changes the guidance is also applicable
to any type of MDA.

While project planners and laboratories have some flexibility in choosing the significance level,
α, used for detection decisions, the MDC is usually calculated with α = β = 0.05. The use of
standard values for α and β allows meaningful comparison of analytical procedures.

The MDC concept has generated controversy among radiochemists for years and has frequently
been misinterpreted and misapplied. The term must be carefully and precisely defined to prevent
confusion. The MDC is by definition an estimate of the true concentration of analyte required to
give a specified high probability that the measured response will be greater than the critical
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value. Thus, the common practice of comparing a measured concentration to the MDC to make a
detection decision is incorrect.

There are still disagreements about the proper uses of the MDC concept. Some define the MDC
strictly as an estimate of the nominal detection capability of a measurement process. Those in
this camp consider it invalid to compute an MDC for each measurement using sample-specific
information such as test portion size, chemical yield, and decay factors (e.g., ANSI N42.23). The
opposing view is that the �sample-specific� MDC is a useful measure of the detection capability
of the measurement process, not just in theory, but as it actually performs. The sample-specific
MDC may be used, for example, to determine whether an analysis that has failed to detect the
analyte of interest should be repeated because it did not have the required or promised detection
capability.

Neither version of the MDC can legitimately be used as a threshold value for a detection deci-
sion. The definition of the MDC presupposes that an appropriate detection threshold (i.e., the
critical value) has already been defined.

Many experts strongly discourage the reporting of a sample-specific MDC because of its limited
usefulness and the likelihood of its misuse. Nevertheless, this practice has become firmly estab-
lished at many laboratories and is expected by many users of radioanalytical data. Furthermore,
NUREG/CR-4007 states plainly that �the critical (decision) level and detection limit [MDC]
really do vary with the nature of the sample� and that �proper assessment of these quantities
demands relevant information on each sample, unless the variations among samples (e.g., inter-
ference levels) are quite trivial� (NRC, 1984).

Since a sample-specific MDC is calculated from measured values of input quantities such as the
chemical yield, counting efficiency, test portion size, and background level, the MDC estimate
has a combined standard uncertainty, which in principle can be obtained by uncertainty propa-
gation (see Chapter 19).

In the calculation of a sample-specific MDC, the treatment of any randomly varying but precisely
measured quantities, such as the chemical yield, is important and may not be identical at all lab-
oratories. The most common approach to this calculation uses the measured value and ignores
the variability of the quantity. For example, if the chemical yield routinely varies between 0.85
and 0.95, but for a particular analysis the yield happens to be 0.928, the MDC for that analysis
would be calculated using the value 0.928 with no consideration of the typical range of yields. A
consequence of this approach is that the MDC varies randomly when the measurement is
repeated under similar conditions; or, in other words, the sample-specific MDC with this
approach is a random variable. An MDC calculated in this manner may or may not be useful as a
predictor of the future performance of the measurement process.
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If sample-specific MDCs are reported, it must be clear that no measured value should ever be
compared to an MDC to make a detection decision. In certain cases it may be valid to compare
the sample-specific MDC to a required detection limit to determine whether the laboratory has
met contractual or regulatory requirements (remembering to consider the uncertainty of the MDC
estimate), and in general it may be informative to both laboratory personnel and data users to
compare sample-specific MDCs to nominal estimates, but other valid uses for the sample-
specific MDC are rare.

20.2.5  The MARLAP Approach to Critical Values and Detection Limits

Historically, detection in radiochemistry has often been based on the distribution of the instru-
ment signal obtained by counting analyte-free sources; however, in principle it should be based
on the distribution obtained when analyte-free samples are analyzed, which is often affected by
the processing of samples before instrumental analysis. There is more than one valid approach
for dealing with the effects of sample processing. One approach, which is recommended by
IUPAC (1995), makes the detection decision for a sample using the critical concentration, xC,
which is calculated on the basis of the distribution of the measured analyte concentration, ,�x
under the null hypothesis of zero true concentration in the sample. Similarly, the IUPAC
approach determines the MDC on the basis of the distribution of  as a function of the true�x
concentration.

The approach of this chapter makes detection decisions using the critical net signal, SC, which is
calculated on the basis of the distribution of the net signal, , under the same null hypothesis�S
(zero true concentration in the sample). This approach requires one to consider all sources of
variability in the signal, including any due to sample processing. So, for example, if the presence
of analyte in the reagents causes varying levels of contamination in the prepared sources, this var-
iability may increase the variance of the blank signal and thereby increase the critical net signal.

The MARLAP approach to detection decisions ignores the variability of any term or factor in the
measurement model that does not affect the distribution of the instrument signal obtained from
samples and blanks. For example, measurement errors in the counting efficiency may increase
the variability of the measured concentration, but since they have no effect on the distribution of
the signal, they do not affect the critical value, SC.

The MARLAP approach to the calculation of the MDC also takes into account all sources of
variability in the signal, including those related to sample processing, but it ignores any addi-
tional sources of variability in the measured concentration that do not affect the distribution of
the signal. For example, variability in the true yield from one measurement to another affects the
distribution of  and thereby increases the MDC, but measurement error in the estimated yield�S
typically does not. The estimated yield is applied as a correction factor to ; so, errors in its�S
measurement contribute to the variability of the calculated concentration but do not affect the
variability of  or the true value of the MDC. (On the other hand, yield measurement errors may�S
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make precise determination of the MDC more difficult because they make it harder to determine
the distribution of yields.)

20.2.6  Other Detection Terminologies

Another term frequently used for a measure of detection capability is the �lower limit of detec-
tion,� or LLD (Altshuler, 1963; EPA, 1980; NRC, 1984). Unfortunately this term has been used
with more than one meaning. In Upgrading Environmental Radiation Data (EPA, 1980), the
LLD is defined as a measure of the detection capability of an instrument and is expressed as an
activity. However, the Nuclear Regulatory Commission defines the LLD to be identical to the
MDC when α = β = 0.05 (see, for example, NUREG/CR-4007). It is thus a measure of the detec-
tion capability of a measurement process and is expressed as an activity concentration.

The term �detection limit� is often used as a synonym for �minimum detectable concentration� or
for �minimum detectable value� of any other measured quantity.

Many other terms have been used to describe detection capabilities of measurement procedures.
Most of them will not be listed here, but one term deserves attention because of the possibility of
its confusion with the MDC. The method detection limit, or MDL, is a measure of detection
capability used routinely in the context of analyzing samples for chemical contaminants.

The term �method detection limit� is defined in the Code of Federal Regulations. In Title 40
CFR Part 136, Appendix B, the following definition appears:

The method detection limit (MDL) is defined as the minimum concentration of a
substance that can be measured and reported with 99% confidence that the analyte
concentration is greater than zero and is determined from analysis of a sample in a
given matrix containing the analyte.

The definition is later clarified somewhat by a statement that the MDL �is used to judge the sig-
nificance of a single measurement of a future sample.� Thus, the MDL serves as a critical value;
however, it is also used as a measure of detection capability, like an MDC. Note that, in
MARLAP�s usage, the �method detection limit� is not truly a detection limit.

In March 2003, the Federal Register published a proposed revision of the definition of MDL,
which would make it clear that the MDL serves as a critical value. The proposed new definition
is:

The method detection limit (MDL) is an estimate of the measured concentration at
which there is 99 % confidence that a given analyte is present in a given sample
matrix. The MDL is the concentration at which a decision is made regarding
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whether an analyte is detected by a given analytical method. The MDL is calcu-
lated from replicate analyses of a matrix containing the analyte and is functionally
analogous to the �critical value� described by Currie (1968, 1995 [IUPAC, 1995])
and the Limit of Detection (LOD) described by the American Chemical Society
(Keith et al, 1980, McDougal et al., 1983).

At the time of this writing, the proposed revision had not been approved.

The similarity between the abbreviations MDC and MDL tends to produce confusion. The term
�method detection limit� is seldom used in the context of radiochemistry except when the analyt-
ical method is one that is commonly used to measure stable elements (e.g., ICP-MS methods), or
when the term is misused by those who are more familiar with the terminology of hazardous
chemical analysis. The confusion is made worse by the fact that �MDL� is sometimes interpreted
by radiochemists as an abbreviation for nonstandard terms such as �minimum detectable level�
and �minimum detectable limit,� the use of which MARLAP strongly discourages.

20.2.7  The Minimum Quantifiable Concentration

The minimum quantifiable concentration, or the minimum quantifiable value of the analyte con-
centration, is defined as the concentration of analyte in a laboratory sample at which the measure-
ment process gives results with a specified relative standard deviation.3 A relative standard devi-
ation of 10 % is usually specified, although other values are possible (see for example MARLAP
Appendix C). Since ISO 11843 addresses detection capability but not quantification capability,
MARLAP follows IUPAC guidance in defining �minimum quantifiable value� (IUPAC, 1995).
IUPAC defines both the minimum quantifiable instrument signal and the minimum quantifiable
concentration, although MARLAP considers only the latter. In this document the minimum quan-
tifiable concentration will be abbreviated as MQC and denoted in equations by xQ.

The term �quantification limit� may be used as a synonym for �minimum quantifiable concentra-
tion� or for �minimum quantifiable value� of any other measured quantity.

Section 20.4.3 provides more information about the calculation of the minimum quantifiable
concentration.

Historically much attention has been given to the detection capabilities of radiochemical meas-
urement processes, but less attention has been given to quantification capabilities, although for
some analytical projects, quantification capability may be a more relevant issue. For example,
suppose the purpose of a project is to determine whether the 226Ra concentration in soil from a
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site is below an action level. Since 226Ra occurs naturally in almost any type of soil, the analyte
may be assumed to be present in every sample, making detection decisions irrelevant. The MDC
of the measurement process obviously should be less than the action level, but a more important
question is whether the MQC is less than the action level (see also Chapter 3 and Appendix C).

20.3 Recommendations

MARLAP makes the following recommendations.

  � When an analyte detection decision is required, it should be made by comparing the gross
signal, net signal, or measured analyte concentration to its corresponding critical value.

  � The laboratory should choose expressions for the critical value and minimum detectable
value that are appropriate for the structure and statistics of the measurement process. The
client may specify the desired Type I and Type II error rates (both 5 % by default) but should
not require particular equations for the critical value or the minimum detectable value
without detailed knowledge of the measurement process.

  � The laboratory should use an appropriate radiochemical blank to predict the signal produced
by a sample that contains no analyte. The most appropriate type of blank for this purpose
depends on the analyte and on the method and conditions of measurement. Depending on the
circumstances, it may be a blank source, reagent blank, or other process blank that accounts
for instrument background as well as any contaminants introduced during the processing of
the sample.

  � The laboratory should confirm the validity of the Poisson approximation for the measurement
process before using an expression for the critical value that is based on Poisson statistics.
When the analyte is present at observable levels in the water, reagents, and lab ware used in
the analysis, the Poisson approximation is often inappropriate. In these cases replicated
blanks may be used to determine the critical value.

  � The laboratory should consider all sources of variance in the instrument signal (or other
response variable) when calculating the critical value and minimum detectable value.

  � The minimum detectable value (MDC or MDA) should be used only as a performance
characteristic of the measurement process.

  � A measurement result should never be compared to the minimum detectable value to make a
detection decision.
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Pr[ �S > SC | X �� 0] �� α (20.1)

  � The laboratory should report each measurement result and its uncertainty as obtained (as
recommended in Chapter 19) even if the result is less than zero. The laboratory should never
report a result as �less than MDC.�

  � The minimum detectable value should not be used for projects where the issue is quantifica-
tion of the analyte and not detection. For these projects, MARLAP recommends the min-
imum quantifiable value as a more relevant performance characteristic of the measurement
process.

MARLAP neither encourages nor discourages the reporting of sample-specific MDCs with
measurement results, so long as the recommendations stated above are followed.

20.4 Calculation of Detection and Quantification Limits

20.4.1  Calculation of the Critical Value

In Section 20.2.2, the critical value of the response variable (or gross instrument signal), denoted
by yC, was defined as the response threshold used to decide whether the analyte concentration of
a laboratory sample is greater than that of the blank. The critical value of the net instrument sig-
nal, denoted by SC, was similarly defined as the net signal threshold that may be used for the
same purpose.

The critical value of the net signal, SC, is defined symbolically by the relation

where Pr[  > SC | X = 0] denotes the probability that the observed net signal, , exceeds its criti-�S �S
cal value, SC, when the true analyte concentration, X, is zero, and α denotes the significance
level, or the specified probability of a Type I error. When the signal assumes only discrete values
(e.g., numbers of counts), there may be no value SC that satisfies Equation 20.1 exactly. The criti-
cal value in this case is defined as the smallest value, SC, such that Pr[  > SC | X = 0] # α.�S

Determining a value of SC which satisfies the definition requires knowledge of the distribution of
the net signal, , under the assumption that the analyte concentration in the laboratory sample is�S
zero (the null hypothesis). The measured net signal may be written as  =  − , where �S �Y �B �Y
denotes the measured gross signal and  denotes the estimated value of the gross signal under�B
the null hypothesis H0. In the absence of interferences, the value of  is usually estimated by�B
measuring one or more blanks using the same procedure used to measure the test sample, and the
distribution of  under H0 is determined from that of . In other cases, however, the value of �Y �B �B
includes estimated baseline and other interferences that are present only during the measurement
of the sample and cannot be determined from the blank.
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SC ' z1&ασ0 (20.2)

σ0 ' σB 1 %
1
n

(20.3)

SC ' z1&ασB 1 %
1
n

(20.4)

Since SC, not yC, has traditionally been used for analyte detection decisions in radiochemistry, the
following presentation focuses primarily on SC. However, conversion of either of these values to
the other is simple, because yC = SC + .�B

20.4.1.1  Normally Distributed Signals

If the distribution of the net signal  under H0 is approximately normal with a well-known stan-�S
dard deviation, σ0, the critical value of  is�S

where z1 − α denotes the (1 − α)-quantile of the standard normal distribution. Table G.1 in Appen-
dix G shows that z1 − α . 1.645 when α = 0.05. Attachment 20A describes the calculation of SC
when the standard deviation is not well-known.

The blank signal, , and its standard deviation, σB, may be estimated by replicate blank measure-�B
ments, but at least 20 measurements are generally needed to ensure that the experimental stan-
dard deviation, sB, is an accurate estimate of σB. (If fewer than 20 measurements are made, see
Attachment 20A.) Given σB, the standard deviation, σ0, of the net signal, , under the�S ' �Y & �B
null hypothesis is  equal to

where n denotes the number of replicate blank measurements. So, the critical net signal is given
by

The preceding equation is valid only if the blank measurements are made in the same manner and
under the same conditions as the sample measurement. In particular, count times should be
identical for the sample and the blanks.

20.4.1.2  Poisson Counting

Radionuclide analyses typically involve radiation counting measurements. Although radiation
counting data never follow the Poisson model exactly, the model may be a useful approximation
in some situations, especially those where the mean blank count is extremely low and the ob-
served count therefore does not follow a normal distribution. At somewhat higher count levels,
features from both models are often used, since the Poisson distribution may be approximated by
a normal distribution. In this case the Poisson model allows one to estimate σ0 without replica-
tion, because one blank measurement provides an estimate of σB.
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�Y ' NS and �B ' NB

tS

tB
(20.5)

�B '
NB

tB

% �RI tS (20.6)

Generally the pure Poisson model is inappropriate when one analyzes for radionuclides that are
found in observable quantities in the water, reagents, and lab ware used in the analysis. Some
radionuclides, such as the naturally occurring isotopes of uranium, thorium, and radium, may be
present as interfering contaminants in the laboratory and require blank corrections that account
for their presence and variability in prepared sources. The variability of these contaminant levels
usually must be determined by replicate measurements. If variability is found, one may either
abandon the Poisson model (in this case see Section 20.4.1.1) or modify it by including addi-
tional non-Poisson variance terms (as shown in the next subsection, �The Poisson-Normal
Approximation,� and in Section 19.5.4 of Chapter 19).

When a test source is analyzed in a radiation counting measurement, either the gross count or the
gross count rate may be considered the instrument signal . In this section, it is assumed that the�Y
instrument signal is the gross count. Therefore, if there are no interferences, the estimated gross
and blank signals are

where
NS is the gross count (source count);
NB is the blank count;
tS is the count time for the test source; and
tB is the count time for the blank.

If there are interferences, the blank signal is

where  denotes the estimated count rate due to the interferences. In either case the net instru-�RI
ment signal is the net count, defined as  = NS − . The net signal is always assumed to have�S �B
zero mean when analyte-free samples are analyzed.

THE POISSON-NORMAL APPROXIMATION

Suppose the distribution of the blank signal can be estimated using the Poisson model, possibly
with an additional small non-Poisson variance component and perhaps a correction for known
interferences, and the instrument background remains at a level where the Poisson distribution is
approximately normal. Then the critical net count is given approximately by the equation
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SC ' z1�α tS

RB % RI

tS

%
RB

tB

% ξ2
B % σ2( �RI) (20.7)

SC ' z1�α RB tS 1 %
tS

tB

(20.8)

SC ' z1�α
�RB tS 1 %

tS

tB

(20.9)

�RB '
NB

tB
(20.10)

SC ' z1�α NB

tS

tB

1 %
tS

tB

(20.11)

where
RB is the (true) mean count rate of the blank;
RI is the mean interference count rate;

is the non-Poisson variance in the blank (count rate) correction (see Section 19.5.4 ofξ2
B

Chapter 19); and
σ2( ) is the variance of the estimator for RI .�RI

When there are no interferences and no non-Poisson blank variance, Equation 20.7 becomes

The preceding formula is equivalent to �Currie�s equation� LC = 2.33  when tB = tS, α = 0.05,µB
and the symbols LC and µB are identified with SC and RBtS, respectively (Currie, 1968).

In Equation 20.8, RB denotes the true mean blank count rate, which can only be estimated. In
practice one must substitute an estimated value, B, for RB, as shown in the following equation.�R

Equation 20.9 resembles Equation 20.8 but involves the estimated count rate, , which varies�RB
with repeated measurements. The value of  is usually estimated from the same blank value NB

�RB
used to calculate the net instrument signal. (See Attachment 20A for other possible estimators.)

The resulting formula, shown below, is equivalent to equations published by several authors
(Currie, 1968; Lochamy, 1976; Strom and Stansbury, 1992; ANSI N13.30).
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Note that this is a commonly used expression for the critical net count, but its validity depends on
the assumption of pure Poisson counting statistics. If the variance of the blank signal is affected
by sample processing, interferences, or background instability, then Equation 20.11 may be
invalid (but Equation 20.7 may be appropriate).

If α = 0.05 and tB = tS, Equation 20.11 leads to the well-known expression  for the2.33 NB
critical net count.

When the blank count is high (e.g., 100 or more), Equation 20.11 works well. At lower blank
levels, it can produce a high rate of Type I errors. For example, if the true mean blank count is
0.693, there is a 25 % chance of observing 0 blank counts and a positive number of test source
counts in paired measurements of equal duration. In this case, a critical value calculated by Equa-
tion 20.11 produces Type I errors more than 25 % of the time regardless of the chosen signif-
icance level α. Attachment 20A describes several expressions for SC that have been proposed for
use in situations where the mean blank count is less than 100.

EXAMPLE 20.1

Problem: A 6000-second blank measurement is performed on a proportional counter and
108 beta counts are observed. A test source is to be counted for 3000 s. Estimate the critical
value of the net count when α = 0.05. (See also Example 20.10.)

Solution:

SC ' z1�α NB

tS

tB

1 %
tS

tB

' 1.645 108 3000 s
6000 s

1 %
3000 s
6000 s

' 14.8 net counts.

EXAMPLE 20.2

Problem: Repeat the same problem assuming the blank correction, expressed as a count rate,
has a non-Poisson uncertainty component of ξB = 0.001 s!1 (see Section 19.5.4 of Chapter 19).
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�B �� F(ZB) (20.12)

SC ' z1�α σ
2( �Y0) % σ

2( �B) (20.13)

Solution:

SC ' z1�α NB

tS

tB

1 %
tS

tB

% ξ2
B t 2

S

' 1.645 108 3000 s
6000 s

1 %
3000 s
6000 s

% (0.001 s&1)2 (3000 s)2

' 15.6 net counts.

20.4.1.3  Batch Blanks

Equation 20.11 is derived with the assumption that a detection decision is based on counts ob-
tained from a single radiation counter. When laboratory samples are analyzed in batches, it is
common to analyze a single blank per batch, so that the measurement conditions for the blank
may differ somewhat from those of the samples. In particular, the counts for the laboratory
samples and the blank may be measured using different detectors. If detection in a laboratory
sample is defined relative to a blank counted on a different instrument, Equation 20.11 is in-
appropriate. Even if a single instrument is used, the presence of positive amounts of analyte in
the reagents probably invalidates the (pure) Poisson assumption. In principle,  should be�B
estimated by converting the absolute activity of the blank ZB to an estimated gross count on the
instrument used to measure the laboratory sample. Thus,

where
F is the calibration function for the laboratory sample measurement, whose parameters

include the instrument background, counting efficiency, chemical yield, and any
estimated interferences and

ZB is the estimated absolute activity of the blank.

Then the net count is  =  − , whose critical value is�S �Y �B

where
σ2( 0) is the variance of the gross count  in the test source measurement when the sample�Y �Y

is analyte-free and
σ2( ) is the variance of the estimator .�B �B

If Poisson counting statistics are assumed, then σ2( 0) may be estimated by  (assuming  > 0),�Y �B �B
but estimating σ2( ) still requires a more complicated expression, which may be based on uncer-�B
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Critical Net Activity ' z1&ασblank 1 %
1
n

(20.14)

Pr[ �S # SC | X ' xD] ' β (20.15)

tainty propagation or replication. The variance of  may be difficult to estimate if positive blank�B
values are caused not by the presence of the analyte in reagents but by contaminated glassware or
instruments, which may represent a loss of statistical control of the analytical process.

A valid alternative to the approach just described is to use replicate blank measurements to deter-
mine the distribution of the measured total activity and to calculate the critical net (absolute)
activity using an equation similar to Equation 20.4. The critical net activity is given by

where σblank denotes the standard deviation of the blank activity and n denotes the number of
replicate blank measurements. Then a detection decision is made for a real sample by comparing
the measured net activity to the critical net activity.

This approach should work best if all samples and blanks are analyzed under very similar con-
ditions, using instruments with similar counting efficiencies and background levels. (Each
sample result and each blank result must still be corrected for instrument background.) If the
instruments are significantly different, special care may be needed to ensure that the replicate
blank measurements are made using all the available instruments and that samples are assigned
to instruments randomly so that the variance of the blank results is similar to the variance ob-
served when analyte-free samples are analyzed.

20.4.2  Calculation of the Minimum Detectable Concentration

The minimum detectable concentration (MDC) is defined as the concentration of analyte xD that
must be present in a laboratory sample to give a specified probability, 1 − β, of obtaining a meas-
ured response greater than its critical value, leading one to conclude correctly that there is analyte
in the sample. In other words, the MDC is the analyte concentration at which the type II error rate
is β.

The MDC may also be defined as the analyte concentration xD that satisfies the relation

where the expression Pr[  # SC | X = xD] is read as �the probability that the net signal  does not�S �S
exceed its critical value SC when the true concentration X is equal to xD.�

The MDC is often used as a performance measure for an analytical process for the purpose of
comparing different analytical procedures or evaluating a laboratory�s capabilities against speci-
fied requirements. The calculation of the �nominal� MDC is complicated by the fact that some
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Pr[ �S # SC | S ' SD ] ' β (20.16)

Pr[ �S # SC | X ' SD / A] ' β (20.17)

input quantities in the mathematical model, such as interferences and the chemical yield, which
have a substantial impact on the MDC, may vary significantly from measurement to measure-
ment. Other quantities that may have similar effects include the decay time, counting efficiency,
and instrument background. Because of these variable quantities, determining the value of xD that
satisfies Equation 20.15 in practice may be difficult. One common approach to this problem is to
make conservative choices for the values of the variable quantities, which tend to increase the
value of xD .

The MDC is also commonly used in radiochemistry to describe the detection capability of the
analytical process as implemented in a particular instance. In this case, the need for conservative
choices is reduced. Instead, the measured values of the variable quantities may be used. How-
ever, since the measured values have uncertainties, their uncertainties contribute to a combined
standard uncertainty in the calculated value of xD. To ensure compliance with regulatory or
contractual requirements, an uncertainty interval or conservative upper bound for xD may still be
useful (see NRC, 1984).

20.4.2.1  The Minimum Detectable Net Instrument Signal

The traditional method for calculating the MDC involves first calculating the minimum detect-
able value of the net instrument signal and then converting the result to a concentration using the
mathematical measurement model. The minimum detectable value of the net instrument signal,
denoted by SD, is defined as the mean value of the net signal that gives a specified probability,
1 ! β, of yielding an observed signal greater than its critical value SC. Thus,

where S denotes the true mean net signal.

In radiochemistry the mean net signal, S, is usually directly proportional to X, the true analyte
concentration in the sample. So, there is a �sensitivity� constant, A, such that S = AX. The
constant A typically is the mean value of the product of factors such as the source count time,
decay-correction factor, yield, counting efficiency, and test portion size (e.g., mass or volume).
Its value in some cases may be sample-dependent, but it is essentially independent of the analyte
concentration over a wide range of values. Combining Equation 20.16 with the relation S = AX
gives

A comparison of Equation 20.17 to Equation 20.15, the defining relation of the minimum detec-
table concentration, xD, shows that
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A ' tS µYµV µg µD µFS (20.19)

SD ' SC % z1&β σ
2( �S | S ' SD) (20.20)

xD '
SD

A
(20.18)

The preceding equation is only true if all sources of variability are accounted for when determin-
ing the distribution of the net signal, . If sample-processing effects are ignored, the expression�S
SD / A may underestimate the MDC. Note that ensuring the MDC is not underestimated also re-
quires that the value of A not be overestimated.

Certain variations of this procedure for calculating SD and xD may also be useful. As an example,
suppose

where
tS the source count time;
µY the mean chemical yield;
µV the mean test portion size (mass or volume);
µg the mean counting efficiency;
µD the mean decay-correction factor; and

the mean �subsampling factor,� defined in Chapter 19 as the ratio of analyte concen-µFS tration in a subsample to that in a sample (  is assumed to be 1).µFS

Much of the guidance given later for calculating SD presumes that the distribution of the signal is
normal, but the distribution tends not to be normal if the true yield (Y), test portion size (V),
counting efficiency (g), decay-correction factor (D), or subsampling factor (FS) is not normally
distributed, or if the total relative variance of the product of these factors is large. For example,
suppose the yield and decay factor vary over large ranges and are not normally distributed but the
other factors are either constant or approximately normal. Then a reasonable method of calcu-
lating xD is to ignore the variances of Y and D when calculating SD but to compensate for their
omission by replacing µYµD in the expression for the sensitivity factor, A, by a lower value, such
as the β-quantile of the historical distribution of YD (i.e., the 5th percentile when β = 0.05). In
general, the variance of any or all of the factors may be ignored if a sufficiently conservative
value is substituted for the mean value of the product of those factors when estimating the
sensitivity factor, A.

20.4.2.2  Normally Distributed Signals

If the net signal, , is normally distributed and its estimated standard deviation, σ0, under H0 is�S
well-known, the critical value of  is SC = , as previously noted. Then the minimum�S z1&ασ0
detectable net signal, SD, is determined implicitly by the equation
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σ2( �S) ' aS 2 % bS % c (20.21)

SD '
1
Iβ

SC %
z 2

1�βb
2

% z1�β bSC %
z 2

1�βb
2

4
% aS 2

C % Iβc (20.22)

SD '
bz 2

1&β % 2SC

1 & z 2
1&βa

(20.23)

φ2(F1 F2 @@@FN) ' (1 % φ2(F1))(1 % φ2(F2)) @@@ (1 % φ2(FN)) & 1 (20.24)

where σ2(  | S = SD) denotes the variance of the measured signal, , when the true mean signal,�S �S
S, equals SD. If the function σ2(  | S = SD) is constant, Equation 20.20 gives the value of SD

�S
immediately, but typically σ2(  | S = SD) is an increasing function of SD.�S

If the function σ2(  | S = SD) has a simple form, it may be possible to transform Equation 20.20�S
by algebraic manipulation into an explicit formula for SD. For example, the variance of  often�S
has the form

where S denotes the true mean net signal and the constants a, b, and c do not depend on S (see
Section 20.4.2.3, �Poisson Counting�). In this case the minimum detectable net signal is given by

where Iβ = 1 − . When α = β, the preceding equation can be simplified to the following.z 2
1�βa

In Equations 20.21 and 20.22, the constant c equals , the variance of the net signal, , whenσ2
0

�S
analyte-free samples are analyzed. If Poisson counting statistics are assumed (possibly with other
sources of variance) and the signal S is the net count, as defined earlier, the constant b usually
equals 1. In some situations, such as alpha-counting 222Rn and its short-lived progeny in an alpha
scintillation cell, a different value of b may be needed because of the different counting statis-
tics.4

For typical radiochemistry measurement models, the value of the constant a is the relative vari-
ance (squared coefficient of variation) of the overall sensitivity, which is the product of factors
such as the count time, yield, counting efficiency, and subsampling factor. In general the relative
variance of a product of independent positive factors F1, F2, ..., FN  is given by

where n2 denotes relative variance, although an adequate approximation is usually given by
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converges to a fixed point of f, where f(x) = x. Newton�s Method for finding a zero of a function g(x) is one example
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φ2(F1 F2 @@@FN) . φ2(F1) % φ
2(F2) % @@@ % φ2(FN) (20.25)

when each coefficient of variation, n(Fi), is small. So, if the coefficients of variation of the yield,
counting efficiency, subsampling factor, and other such factors are known, the value of a can be
calculated.

EXAMPLE 20.3

Problem: Suppose the sensitivity is the product of the yield (Y), counting efficiency (g), test
portion size (V), count time (tS), and subsampling factor (FS), and that essentially all of the
variance of this product is generated by the variances of the yield and subsampling factor.
Assume the coefficients of variation of these two factors are

n(Y) = 0.06
n(FS) = 0.03

Assume the counts produced by the net sample activity follow Poisson counting statistics, and
assume that , the variance of the net count observed when analyte-free samples are ana-σ2

0
lyzed, equals 209. Determine the values of the constants a, b, and c such that σ2( �S) '

.aS 2 % bS % c

Solution: The value of a is determined using Equation 20.24, as follows:

a ' φ2(YFS) ' (1 % φ2(Y))(1 % φ2(FS)) & 1
' (1 % 0.062)(1 % 0.032) & 1
' 0.0045

The value of b is 1, because Poisson counting statistics are assumed. The value of c equals ,σ2
0

or 209. So, the variance of the net signal, , is given by the equation�S

σ2( �S) ' (0.0045 × S 2) % S % 209

ITERATIVE METHODS

If Equation 20.20 cannot be transformed algebraically, an iterative procedure, such as fixed-point
iteration, may be used to solve the equation for SD. An outline of fixed-point iteration is shown
below.5
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1. Initially calculate SD = SC + z1&β σ
2( �S | S ' SC) (using S = SC)

2. repeat loop (Lines 3�4)

3.      Set h = SD

4.      Recalculate SD = SC + z1&β σ
2( �S | S ' h) (using S = h)

5. until |SD − h | is sufficiently small

6. output the solution SD

In many cases, one iteration of the loop (Lines 3�4) provides an adequate approximation of SD. In
almost all cases, repeated iteration produces an increasing sequence of approximations con-
verging upward to the solution; so, the stopping condition at Line 5 may be replaced by
�until SD # h� to obtain full machine precision in the result.

EXAMPLE 20.4

Problem: Assume the variance of the net signal, , is given by�S

σ2( �S) ' (0.0045 × S 2) % S % 209

where 0.0045 is the value of the constant a determined in Example 20.3, assuming a 3 % coef-
ficient of variation in the subsampling factor and a 6 % coefficient of variation in the yield. Let
α = β = 0.05. The critical net signal, SC, is calculated as follows.

SC ' z1&α σ
2( �S | S ' 0) ' 1.645 209 ' 23.78

Use fixed-point iteration to calculate SD.

Solution: The algorithm produces a sequence of approximations.

SD,0 ' 23.78 % 1.645 σ2( �S | S ' 23.78) ' 49.02

SD,1 ' 23.78 % 1.645 σ2( �S | S ' 49.02) ' 50.75

SD,2 ' 23.78 % 1.645 σ2( �S | S ' 50.75) ' 50.88
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6 Some references use the value 3 instead of  in this formula. A straightforward derivation gives the value ,z 2
1�β z 2

1�β
which is approximately 2.71 when β = 0.05, but replacing this value by −ln β (approximately 3 when β = 0.05)
accounts for the fact that when the mean count is low, a Poisson distribution is only imperfectly approximated by a
normal distribution. The value !ln β is the exact value of SD when the mean blank count rate is zero, because in this
case SC = 0, and Pr[  = 0] # β if and only if S $ !ln β. Note also that the equation in the text is valid only if α = β.�S
MARLAP considers either  or −ln β to be an acceptable value in this case.z 2

1�β
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SD ' z 2
1&β % 2SC (20.26)

SD ' 2.71 % 2SC (20.27)

SD,3 ' 23.78 % 1.645 σ2( �S | S ' 50.88) ' 50.89

SD,4 ' 23.78 % 1.645 σ2( �S | S ' 50.89) ' 50.89

The sequence converges to 50.89, which is the value of SD.

Notice that the same value can be calculated using Equation 20.22 or 20.23 with the constants
a = 0.0045, b = 1, c = 209.

20.4.2.3  Poisson Counting

If the following assumptions are true:

� The mean blank count is at least 100
� The only source of signal variance considered is Poisson counting statistics
� α = β
� Equation 20.11 is used to calculate the critical net signal, SC

then the minimum detectable net signal, SD, is given by the following simple equation.6

In the special case when α = β = 0.05, Equation 20.26 becomes

In the case when α … β, SD is determined from Equation 20.22 using the following values for a, b,
and c.

a ' 0 b ' 1 c ' RB tS 1 %
tS

tB

The resulting formula for SD is
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SD ' SC %
z 2

1�β

2
% z1�β

z 2
1�β

4
% SC % RB tS 1 %

tS

tB

(20.28)

EXAMPLE 20.5

Problem: Consider Example 20.1 again, where a 6000-second blank measurement on a pro-
portional counter produces 108 beta counts and a test source is to be counted for 3000 s.
Assume this blank measurement gives the best available estimate of the true mean blank count
rate, RB, and use Equation 20.27 to calculated the minimum detectable net signal, SD, using the
default value, 0.05, for Type I and Type II error probabilities. Also use Equation 20.28 to
calculate SD for α = 0.05 and β = 0.10.

Solution: As in Example 20.1, the critical net count, SC, equals 14.8. The count times are tS =
3000 s and tB = 6000 s. The mean blank count rate, RB, is estimated by

RB . 108
6000 s

' 0.018 s&1

For the first part of the problem, Equation 20.27 may be used, because α = β = 0.05. It gives
the result

SD ' 2.71 % 2(14.8) ' 32.3 net counts

For the second part of the problem, Equation 20.28 is used, because α … β.

SD ' SC %
z 2

1�β

2
% z1�β

z 2
1�β

4
% SC % RB tS 1 %

tS

tB

' 14.8 %
1.2822

2
% 1.282 1.2822

4
% 14.8 % (0.018 s&1)(3,000 s) 1 %

3000 s
6000 s

' 28.2 net counts

As previously noted, counting data never follow the Poisson model exactly. Variable factors such
as the yield, counting efficiency, subsampling error, and source geometry and placement tend to
increase a, while interferences and background instability tend to increase c. So, using any of
Equations 20.26�28 to calculate SD is only appropriate if a conservative value of the sensitivity
factor, A, (such as the β-quantile of the distribution of the true sensitivity) is used when con-
verting SD to the MDC. The following example illustrates the calculation of SD and xD when both
Poisson counting statistics and other sources of variance are considered.
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EXAMPLE 20.6

Problem: Again consider the scenario of Example 20.5, where tB = 6000 s, tS = 3000 s, and
RB . 0.018 s!1. Let the measurement model be

X '
NS & (NB tS / tB)

tSgYmS DFS

where
X is the specific activity of the radionuclide in the sample;
g is the counting efficiency;
Y is the yield;
mS is the mass of the test portion;
D is the decay-correction factor (calculated); and
FS is the subsampling factor.

Assume:
� the mass of the test portion is always between 0.98 g and 1.05 g
� the half-life of the analyte is 5.07 d, and decay times from collection to start of

counting range from about 3 d to about 10 d
� the counting efficiency has mean 0.42 and a 2 % coefficient of variation
� the yield has approximate mean 0.85 and a 5 % coefficient of variation
� the subsampling factor, whose mean is assumed to be 1, has a 3 % coefficient of

variation
� background instability contributes a non-Poisson standard deviation of 0.001 s!1 to the

blank correction, expressed as a count rate (see Section 19.5.4 of Chapter 19).

Calculate SD and xD using the value 0.05 for both the Type I and Type II error probabilities.

Solution: First determine how to handle each variable sensitivity factor. The following
approach is reasonable.

� The source count time, tS, has negligible variability; so, use the given value 3000 s and
ignore the variance.

� The mass of the test portion, mS, has only a little variability; so, use the lower bound,
0.98 g, and ignore the variance of mS.

� The decay-correction factor, D, can vary significantly from sample to sample, but no
information is given about the distribution except its range of values. Assume a rec-
tangular distribution of decay times from 3 d to 10 d, and calculate the 95th percentile, 3
+ 0.95(10 ! 3) = 9.65 d, which gives the 5th percentile of the decay-correction factor
(calculated below).
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� Use the stated mean values of the counting efficiency (g), yield (Y), and subsampling
factor (FS) to calculate the sensitivity factor, and use the stated coefficients of variation
for these factors when calculating SD.

Next write an expression for the variance of the net signal, . The Poisson counting variance�S
is given by

Poisson variance of NS & NB

tS

tB

' E(NS) % E(NB)
t 2
S

t 2
B

' (S % RB tS) % RB

t 2
S

tB

where E( @ ) denotes expectation. The non-Poisson variance of the background contributes to �S
an additional variance component equal to . The variability of the efficiency, yield,(0.001)2t 2

S
and subsampling factor contribute a variance component of 

(1 % 0.022)(1 % 0.052)(1 % 0.032) & 1 × S 2 ' 0.0038 × S 2

Therefore, the total variance of  is given by�S

σ2( �S) ' S % RB tS % RB

t 2
S

tB

% (0.001 s&1)2t 2
S % (0.0038 × S 2)

' (0.0038 × S 2) % S % RB tS 1 %
tS

tB

% (0.001 s&1)2t 2
S

So, let a, b, and c be as follows.

a ' 0.0038 b ' 1 c ' RB tS 1 %
tS

tB

% (0.001 s&1)2 t 2
S ' 90

As in Example 20.2, the critical net count, SC, equals 15.6. Then Equation 20.23 gives the
minimum detectable net signal, SD.

SD '
(1)(1.645)2 % 2(15.6)
1 & (1.645)2(0.0038)

'
33.918
0.9897

' 34.3 counts

The value of the sensitivity factor, A, is obtained from the product of the chosen values for the
count time, counting efficiency, yield, test portion size, decay factor, and subsampling factor.
The decay constant, λ, must be calculated from the half-life, T1/2 = 5.07 d.
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λ ' ln2
T1/2

'
0.693147

(5.07 d)(86,400 s /d)
' 1.582 × 10&6 s &1

Then the decay-correction factor is calculated.

D ' e&λ tD 1 & e&λ tS

λ tS

' e&(1.582×10&6 s&1)(9.65 d)(86,400 s/d) 1 & e&(1.582×10&6 s&1)(3000 s)

(1.582×10&6 s&1)(3000 s)
' 0.2667

So, the sensitivity factor is

A ' tSgYmS DFS ' (3000 s)(0.42)(0.85)(0.98 g)(0.2667)(1) ' 279.9 g @s

Therefore, the minimum detectable concentration is

xD '
SD

A
'

34.3
279.9

' 0.12 Bq/g

20.4.2.4  More Conservative Approaches

More conservative (higher) estimates of the MDC may be obtained by following the recommen-
dations of NUREG/CR-4007, in which formulas for MDC (LLD) include estimated bounds for
relative systematic error in the blank determination ( B) and the sensitivity ( A). The critical net∆| ∆|
count SC is increased by , and the minimum detectable net count SD is increased by .∆| B

�B 2∆| B
�B

The MDC is then calculated by dividing SD by the sensitivity and multiplying the result by
. The NUREG�s conservative approach treats random errors and systematic errors differ-1 % ∆| A

ently to ensure that the MDC for a measurement process is unlikely to be consistently under-
estimated, which is an important consideration if the laboratory is required by regulation or
contract to achieve a specified MDC.

20.4.2.5  Experimental Verification of the MDC

To ensure that the MDC has been estimated properly, one may test the estimate experimentally
by analyzing n identical control samples spiked with an analyte concentration equal to xD. If the
MDC has been determined properly (the null hypothesis), the probability of failing to detect the
analyte in each control sample is at most β. Then the number of nondetectable results in the ex-
periment may be assumed to have a binomial distribution with parameters n and β. If k non-
detectable results are actually obtained, one calculates the cumulative binomial probability
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P 'j
n

j'k

n
j
β j (1 � β)n� j or 1 � j

k�1

j'0

n
j
β j (1 � β)n� j (20.29)

and rejects the null hypothesis if P is smaller than the chosen significance level for the test
(which may differ from the significance level for the analyte detection test).

NOTE: For any nonnegative integers n and j, the notation  denotes a binomial coefficient, usually read �nn
j

choose j,� which is the number of possible combinations of n objects chosen j at a time. For 0 # j # n, the
value of  equals , where the symbol ! denotes the factorial operator. The number of combinationsn

j
n!

j!(n& j)!

of n objects chosen j at a time is also denoted sometimes by nCj .

To make the test realistic, one should ensure that the physical and chemical characteristics of the
control samples, including potential interferences, are representative of laboratory samples
encountered in practice.

EXAMPLE 20.7

Problem: Assume xD is estimated with β = 0.05. As a check, 10 control samples spiked with
concentration xD are analyzed and 3 of the 10 produce nondetectable results. Does xD appear to
have been underestimated (at the 10 % level of significance)?

Solution: The variables are n = 10, β = 0.05, and k = 3. Calculate the P-value

P �� 1 � j
2

j��0

10
j

(0.05) j (0.95)10� j �� 1 � 0.9885 �� 0.0115

Since P # 0.10, reject the null hypothesis and conclude that the MDC was underestimated.

20.4.3  Calculation of the Minimum Quantifiable Concentration

The minimum quantifiable concentration (MQC), or the minimum quantifiable value of the con-
centration, was defined in Section 20.2.7 as the analyte concentration in a laboratory sample that
gives measured results with a specified relative standard deviation 1 / kQ, where kQ is usually
chosen to be 10.

Calculation of the MQC requires that one be able to estimate the standard deviation for the result
of a hypothetical measurement performed on a laboratory sample with a specified analyte con-
centration. Section 19.5.13 of Chapter 19 discusses the procedure for calculating the standard
deviation for such a hypothetical measurement.
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xQ ' kQ σ2( �X | X ' xQ) (20.30)

xQ '
k 2

Q

2AIQ

1 % 1 %
4 IQ

k 2
Q

RB tS 1 %
tS

tB

% ξ2
B t 2

S % RI tS % σ
2( �RI) t 2

S
(20.31)

The MQC is defined symbolically as the value xQ that satisfies the relation

where σ2(  | X = xQ) denotes the variance of the estimator  when the true concentration X�X �X
equals xQ. If the function σ2(  | X = xQ) has a simple form, it may be possible to solve Equation�X
20.30 for xQ using only algebraic manipulation. Otherwise, fixed-point iteration, which was
introduced in Section 20.4.2, may be used. The use of fixed-point iteration for this purpose is
shown below.

1. Initially calculate xQ = kQ σ2( �X | X ' 0) (using X = 0)

2. repeat loop (Lines 3�4)

3. Set h = xQ

4. Recalculate xQ = kQ σ2( �X | X ' h) (using X = h)

5. until |xQ ! h | is sufficiently small

6. output the solution xQ

The sequence of values generated by the algorithm typically converges upward to the solution.

When Poisson counting statistics are assumed, possibly with excess variance components, and
the mathematical model for the analyte concentration is X = S / A , where S is the net count, A
denotes the overall sensitivity of the measurement, Equation 20.30 may be solved for xQ to obtain
the formula

where
tS is the count time for the test source;
tB is the count time for the blank;
RB is the mean blank count rate;

is the non-Poisson variance component of the blank count rate correction;ξ2
B

RI is the mean interference count rate;
is the standard deviation of the measured interference count rate;σ( �RI)
is the relative variance of the measured sensitivity, , including the subsamplingφ2

�A
�A

variance; and
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xQ '
k 2

Q

2(1 & k 2
Q a)

b % b 2 %
4c (1 & k 2

Q a)

k 2
Q

(20.32)

IQ is equal to 1 ! kQ
2 .φ2

�A

If the true sensitivity A may vary, then a conservative value, such as the 0.05-quantile A0.05 ,
should be substituted for A in the formula. Note that  denotes only the relative variance of φ2

�A
�A

due to subsampling and measurement error � it does not include the variance of the true
sensitivity, A.

Note that Equation 20.31 defines the MQC only if IQ > 0. If IQ # 0, the MQC is infinite, because
there is no concentration at which the relative standard deviation of  fails to exceed 1 / kQ. In�X
particular, if the relative standard deviation of the measured sensitivity  or the subsampling�A
standard deviation φSamp exceeds 1 / kQ, then IQ < 0 and the MQC is infinite.

More generally, if the variance of the measured concentration  can be expressed in the form�X
σ2( ) = aX2 + bX + c, where a, b, and c do not depend on X, then the MQC is given by the�X
formula

For example, if pure Poisson counting statistics are assumed and there are no interferences, then
, , and c = RB tS (1 + tS / tB) / A2.a ' φ2

�A b ' 1 / A

EXAMPLE 20.8

Problem: Refer once more to Examples 20.5 and 20.6, where the measurement model is given
by

X '
NS & (NB tS / tB)

tSgYmS DFS

where
X is the specific activity of the radionuclide in the sample;
NS is the sample (gross) count;
NB is the blank count;
tS is the sample count time (s);
tB is the blank count time (s);
g is the counting efficiency;
Y is the yield;
mS is the mass of the test portion (g);
D is the decay-correction factor; and
FS is the subsampling factor.
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Keep the same assumptions as in the earlier examples. Assume also that the relative standard
deviation of the yield measurement (as opposed to that of the yield itself) is 3 %, and that the
relative standard deviation of the efficiency measurement is 2 %. Use Equation 20.31 to calcu-
late the minimum quantifiable concentration, xQ, defined as the analyte concentration at which
the relative standard deviation of the measurement process is 10 %.

Solution: The relative measurement variance of the sensitivity, , is assumed to be the sumφ2
�A

of the relative subsampling variance and the relative measurement variances of Y and g, since
the other sensitivity factors are measured with better relative precision. As in the earlier
example, conservative values for mS (0.98 g) and D (0.2667) will be used in the calculation of
the sensitivity factor, A. However, for this problem, a somewhat conservative value of the
yield will also be used, because the true yield has a 5 % relative standard deviation, which is
not otherwise taken into account. Since the mean value of the yield is 0.85 and the relative
standard deviation is 5 %, estimate the 0.05-quantile of the yield as follows:

Y = 0.85 × (1 − 1.645 × 0.05) = 0.78

The following values are also used in this problem.

tS ' 3000 s
tB ' 6000 s

RB ' 0.018 s&1

g ' 0.42
RI ' 0, σ2( �RI) ' 0, ξB ' 0
kQ ' 10
φg ' 0.02
φY ' 0.03

φSamp ' 0.03

φ2
�A ' φ

2
g % φ

2
Y ' φ

2
Samp ' 0.022 % 0.032 % 0.032

IQ ' 1 & k 2
Qφ

2
�A ' 1 & 100(0.022 % 0.032 % 0.032) ' 0.78

The sensitivity factor, A, is now evaluated as follows.

A =  = (3000 s)(0.42)(0.78)(0.98 g)(0.2667)(1) = 256.9 g @ stSgYmS DFS

Next, the MQC can be calculated as shown below.
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xQ '
k 2

Q

2AIQ

1 % 1 %
4 IQ

k 2
Q

RB tS 1 %
tS

tB

% 0

'
100

2(256.9 g @s)(0.78)
1 % 1 %

4(0.78)
100

(0.018 s&1) (3000 s) 1 %
3000 s
6000 s

% 0

' 0.718 Bq/g

Now, as a check, one may use the procedure described in Section 19.5.13 of Chapter 19 to
predict the combined standard uncertainty of a measurement made on a hypothetical sample
whose analyte concentration is exactly xQ.

NB ' RB tB ' (0.018 s&1)(6000 s) ' 108

NS ' xQ A % RB tS ' (0.718 Bq/g)(256.9 g @s) % (0.018 s&1)(3000 s) ' 238.45

uc(X) '
NS % NB t 2

S / t 2
B

A 2
% x 2

Q
u 2(g)
g2

%
u 2(Y)

Y 2
% φ2

Samp

'
238.45 % (108)(3000 s)2 / (6000 s)2

(256.9 g @s)2
% (0.718 Bq/g)2 0.022 % 0.032 % 0.032

' 0.0718 Bq/g

So, the combined standard uncertainty is predicted to be 0.0718 , or 10 % of the trueBq/g
value, as expected.
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Pr[ �S > SC | X ' 0] ' α (20.33)

SC ' z1�ασ0 (20.34)

SC ' t1&α(ν) × �σ0 (20.35)

ATTACHMENT 20A
Low-Background Detection  Issues

20A.1  Overview

This attachment describes methods for determining critical values and minimum detectable con-
centrations (MDCs) when the standard deviation of the blank signal is not known precisely,
which occurs for example when the blank is measured by low-background Poisson counting or
when the standard deviation is estimated from a small number of replicate measurements. The
methods described below are applicable more generally, even when the background is high or the
number of degrees of freedom is large, but in these situations the simpler methods described
previously should be adequate.

20A.2  Calculation of the Critical Value

The critical value of the net signal SC was defined earlier by the relation

When the signal assumes only discrete values (e.g., numbers of counts), there may be no value SC
that satisfies Equation 20.33 exactly. The critical value in this case is defined as the smallest
value SC such that Pr[  > SC | X = 0] # α.�S

20A.2.1 Normally Distributed Signals

If the distribution of the net signal  under H0 is approximately normal with a well-known stan-�S
dard deviation, σ0, the critical value of  is�S

where z1!α denotes the (1 ! α)-quantile of the standard normal distribution. Typically the stan-
dard deviation σ0 is not well-known and must therefore be replaced by an estimate, σ�0. If σ�0 is
determined by a statistical evaluation with ν degrees of freedom, the multiplier z1 − α should be
replaced by t1!α(ν), the (1 ! α)-quantile of the t-distribution with ν degrees of freedom (cf. Type
A evaluation of standard uncertainty in Section 19.4.2.1 of Chapter 19). Thus,

Table G.2 in Appendix G lists values of t1!α(ν). In general, t1!α(ν) is greater than z1!α , but the two
values are approximately equal if ν is large.
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�σ0 ' sB 1 %
1
n

(20.36)

SC ' t1&α(n&1) × sB 1 %
1
n

(20.37)

When  is estimated by the average of n replicate blank measurements (assuming no interfer-�B
ences), the standard deviation σ�0 of the net signal  under the null hypothesis may be estimated�S
from the experimental standard deviation of the measured blank values, sB. Specifically,

The number of degrees of freedom, ν, in this case equals n ! 1; so, the critical value of  is�S

EXAMPLE 20.9

Problem: Suppose seven replicate blank measurements are made, producing the following
results (total counts).

58    43    64    53    47    66    60

Assume the blank distribution is approximately normal and calculate the critical value of the
net count (gross sample count minus average blank count) using a 5 % significance level.

Solution: First, calculate the mean blank count, .B

B '
1
n j

n

i'1
Bi '

391
7

' 55.857

Calculate the standard deviation of the blank counts, sB.

sB '
1

n & 1 j
n

i'1
(Bi & B)2 '

442.857
7 & 1

' 8.5912

Find the 0.95-quantile of the t-distribution with 7 ! 1 = 6 degrees of freedom in Appendix G.

t1 & α(n&1) ' t0.95(6) ' 1.943

Calculate the critical net count using Equation 20.37.

SC ' t1&α(n&1) × sB 1 %
1
n
' 1.943 × 8.5912 1 %

1
7
' 17.85

Thus, the net count must exceed 17.85 to be considered detected.
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�Y ' NS
�B '

NB

tB

% �RI tS (20.38)

�S ' NS &
NB

tB

% �RI tS (20.39)

e&RB tS j
n

k'0

(RB tS)k

k!
$ 1 & α (20.40)

Note that if  were used instead of  in the equation, the critical value would bez1&α t1&α(n&1)
underestimated as

SC ' z1&α × sB 1 %
1
n
' 1.645 × 8.5912 1 %

1
7
' 15.11 (incorrect)

20A.2.2 Poisson Counting

It is assumed here, as in Section 20.4, that the instrument is a radiation counter and the instru-
ment signal is the gross count. Therefore,

and the net instrument signal is the net count,  which is given by

where
NS is the gross count (source count);
NB is the blank count;

is the estimated count rate due to interferences;�RI
tS is the count time for the test source; and
tB is the count time for the blank.

If tB is much greater than tS, generally at least 10 times greater, the blank count rate, RB, can be
considered to be �well-known,� because it contributes little variance to the net signal, . The�S
value of RB may be estimated from a single measurement of long duration or from an average of
several measurements of shorter duration. Whenever RB is well-known, if there are no inter-
ferences, then according to the Poisson model, the critical gross count, yC, equals the smallest
nonnegative integer n such that

Then SC, the critical net count, equals  yC ! RBtS. Table 20.1 shows critical gross counts for α =
0.05 for small values of RBtS (adapted from NRC, 1984).7 To use the table, one calculates the
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P(µ) ' 1 & e&µ (1% tB/ tS) j
4

n'0

(µtB/ tS)n

n! j
yC(n)

k'0

µk

k!

where µ = RBtS (the true mean gross count when the sample contains no analyte) and yC(n) denotes the critical gross
count obtained from Table 20.1 when RBtS is approximated by .n (tS / tB)
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yC ' 0.5 % RB tS % z1&α RB tS (20.41)

value of RBtS, finds the appropriate line in the table, and compares the observed gross count NS to
the value of yC read from the table. The analyte is considered detected if and only if NS > yC.
When RBtS is greater than about 20, yC may be approximated by

where z1!α denotes the (1 − α)-quantile of the standard normal distribution, and for any number x,
the expression lxm denotes the largest integer not greater than x.

Note that these critical values are appropriate only under the assumption of Poisson counting
statistics with no interferences.

Figure 20.2 shows the Type I error rates produced by Table 20.1 for α = 0.05 and three different
count-time ratios, tB / tS. The error rates are much greater than 0.05 when the blank count time
equals the sample count time, but they fall as the blank count time increases (and the blank count
rate becomes better known). If the blank count rate were known perfectly, the Type I error rate
would remain at or below 0.05 everywhere.8

      RB tS yC       RB tS yC       RB tS yC

0.000�0.051 0 5.425�6.169 10 13.255�14.072 20

0.051�0.355 1 6.169�6.924 11 14.072�14.894 21

0.355�0.818 2 6.924�7.690 12 14.894�15.719 22

0.818�1.366 3 7.690�8.464 13 15.719�16.549 23

1.366�1.970 4 8.464�9.246 14 16.549�17.382 24

1.970�2.613 5 9.246�10.036 15 17.382�18.219 25

2.613�3.285 6 10.036�10.832 16 18.219�19.058 26

3.285�3.981 7 10.832�11.634 17 19.058�19.901 27

3.981�4.695 8 11.634�12.442 18 19.901�20.746 28

4.695�5.425 9 12.442�13.255 19 20.746�21.594 29

TABLE 20.1 � Critical gross count (well-known blank)
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SC ' z1&α tS

RB % RI

tS

%
RB

tB

% ξ2
B % σ2( �RI) (20.42)

SC ' z1&α RB tS 1 %
tS

tB

(20.43)

tB = tS
tB = 5tS tB = 10tS
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FIGURE 20.2 � Type I error rates for Table 20.1

Other commonly used methods for calculating the critical value when the blank count rate is not
well-known are described below.

THE POISSON-NORMAL APPROXIMATION

As stated in Section 20.4.1.2, when Poisson counting statistics are assumed (possibly with addi-
tional variance components) and the instrument background remains stable between measure-
ments at a level where the Poisson distribution is approximately normal, the critical net count is
given approximately by the equation

where RB denotes the (true) mean count rate of the blank, RI denotes the mean interference count
rate, denotes non-Poisson variance in the blank (count rate) correction, and σ2( I) denotes theξ2

B
�R

variance of the estimator for RI . When there are no interferences and no non-Poisson blank var-
iance, this equation becomes

Low mean blank levels cause the Poisson distribution to deviate from the normal model. Figure
20.3 shows the effects of these deviations on the Type I error rates for the Poisson-normal
approximation when tB = tS and α = 0.05. The graph has discontinuities because of the discrete
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9 Probabilities on the curve are calculated using the equation

P(µ) ' 1 & e&2µj
4

n'0

µn

n! j
n%2.33 µ

k'0

µk

k!

where µ denotes the (true) mean blank count. Terms of the infinite sum are accumulated until the cumulative
Poisson probability, , approaches 1. The calculated values agree with those listed in Table 1 ofe&µ'n

i'0 µi / i!
Brodsky (1992). The discontinuities occur at µ = k2 / 2.332 for k = 1, 2, 3, �.
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SC ' z1&α
�RB tS 1 %

tS

tB

(20.44)

�RB ' wS

NS

tS

% wB

NB

tB
(20.45)
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FIGURE 20.3 � Type I error rate for the Poisson-normal approximation (tB = tS)

nature of the Poisson distribution, but the Type I error rate is approximately correct (equal to
0.05) when the mean blank count is 10 or more.9

In Equation 20.43, RB denotes the true mean blank count rate. In practice, RB is usually not well-
known; so, one must substitute an estimated value, , as shown in the following equation.�RB

The most frequently used expressions for SC may be derived from Equation 20.44 using an esti-
mator  that equals a weighted average of the measured blank count rate NB / tB and the meas-�RB
ured source count rate NS / tS. A weighted average of both measured rates may be used here to
estimate the true blank level for the purpose of the hypothesis test, because, under the null
hypothesis of zero net source activity, both measured rates are unbiased estimates of the true
blank count rate. Given nonnegative weights wS and wB such that wS + wB = 1, the mean blank
count rate is estimated by
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10 The common practice of using the same Poisson measurement data to calculate both the net signal  and its�S
critical value tends to produce a correlation between the two variables. This correlation does not exist when the
critical value is determined by a statistical evaluation of normally distributed data as described earlier in the attach-
ment.

11 The critical value  may be written as a function  of the observed net signal  and the blank count NB. Then�SC f( �S) �S
 exceeds  if and only if it exceeds the fixed point of f, which is the value SC where f(SC) = SC. The fixed point is�S �SC

a function of NB but not of NS .

20-43JULY 2004 MARLAP

�SC ' z1&α wS

NS

tS

% wB

NB

tB

tS 1 %
tS

tB

(20.46)

SC '
z 2

1&αwS

2
1 %

tS

tB

% z1&α

z 2
1&αw 2

S

4
1 %

tS

tB

2
% NB

tS

tB

1 %
tS

tB

(20.47)

This estimator  is always unbiased under the null hypothesis of zero net activity and no inter-�RB
ferences, but the choice of weights affects the variance of the estimator. (When interferences are
present, this weighted average is inappropriate.)10

This attachment will use the notation , which is nonstandard, to denote any version of the�SC
critical value that depends on the gross signal NS (or ). Then Equations 20.44 and 20.45 imply�Y
the following.

It is often convenient to eliminate NS from the expression for  (e.g., when calculating the�SC
MDC). When the same measured value of NB is used to calculate both the critical value  and�SC
the net signal , elimination of NS from Equation 20.46 produces the following formula for an�S
alternative critical value SC.11

It is not generally true that SC =  unless wS = 0, but either critical value may be used to imple-�SC
ment the same test for analyte detection, because  > SC if and only if  > .�S �S �SC

If there is additional non-Poisson variance associated with the blank correction, an extra term
may be included under the radical (e.g., , where  is as in Equation 20.42), although at veryξ2

B t 2
S ξ2

B
low blank levels the Poisson variance tends to dominate this excess component.

FORMULA A

The most commonly used approach for calculating SC is given by Formula A (shown below).
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12 Probabilities on the two curves are calculated using the equation

P(µ) ' 1 & e&µ (1% tB/ tS) j
4

n'0

(µtB / tS)n

n! j
yC(n)

k'0

µk

k!

where yC(n) = and µ = RB tS (the mean gross count when the sample contains no analyte). The sameSC(n) % n (tS / tB)
equation with different expressions for SC(n) is used to calculate the Type I error rates shown in Figures 20.5�8.
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SC ' z1&α NB

tS

tB

1 %
tS

tB

Formula A

(20.48)
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FIGURE 20.4 � Type I error rates for Formula A

If α = 0.05 and tB = tS, Formula A leads to the well-known expression  for the critical2.33 NB
net count (e.g., see Currie, 1968).

Formula A may be derived from Equation 20.44 by using the blank measurement alone to
estimate the true blank count rate � i.e., by using the weights wS = 0 and wB = 1.

As noted in Section 20.4.1.2, when the blank count is high (e.g., 100 or more), Formula A works
well, but at lower blank levels, it can produce a high rate of Type I errors. Figure 20.4 shows
Type I error rates for Formula A as a function of the mean blank count for count time ratios
tB / tS = 1 and 5 when α = 0.05.12
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�SC ' z1&α NS % NB

t 2
S

t 2
B

(20.49)

SC '
z 2

1&α

2
% z1&α

z 2
1&α

4
% NB

tS

tB

1 %
tS

tB

Formula B

(20.50)

tB = tS
tB = 5tS
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FIGURE 20.5 � Type I error rates for Formula B

FORMULA B

Another published formula for the critical value is (equivalent to) the following (Nicholson,
1966).

The critical value calculated by Equation 20.49 equals z1 − α times the combined standard uncer-
tainty of the net count. This fact is the basis for the original derivation of the formula, but the
formula may also be derived from Equation 20.46 using the weights wS = tB / (tS + tB) and wB =
tS / (tS + tB) to estimate . When NS is eliminated from Equation 20.49, one obtains Formula B�RB
(below), which is equivalent to the equation for the critical value given in Atoms, Radiation, and
Radiation Protection (Turner, 1995).

Type I error rates for Formula B are shown in Figure 20.5.

Formula B appears natural and intuitive when it is derived in terms of the combined standard
uncertainty of the net count, and it gives excellent results when tB = tS and the pure Poisson
model is valid. However, when the formula is derived using the weights wS and wB, as described
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13 The approach here is conceptually similar to that of a two-sample t-test, which employs a pooled estimate of
variance in the comparison of two normal populations.
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�SC ' z1&α (NS % NB)
tS

tB

(20.51)

SC '
z 2

1&α tS

2tB

% z1&α

z 2
1&α t 2

S

4t 2
B

% NB

tS

tB

1 %
tS

tB

Formula C

(20.52)

tB = tS tB = 5tS
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FIGURE 20.6 � Type I error rates for Formula C

above, the expression seems much less natural, because the weights clearly are not optimal when
tB … tS. Notice that when tB > tS, the Type I error rate tends to be less than α.

FORMULA C

If the pure Poisson model is valid, then under the null hypothesis, the weights wS = tS / (tS + tB)
and wB = tB / (tS + tB) provide the minimum-variance unbiased estimator  for the mean blank�RB
count rate and lead to the following formula for the critical net count (Nicholson, 1963; 1966).13

Elimination of NS from Equation 20.51 produces Formula C, shown below.

Formula C is equivalent to the equation for the �decision threshold� given in Table 1 of ISO
11929-1 for the case of fixed-time counting. Figure 20.6 shows Type I error rates for Formula C.
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Z ' 2
NS % d

tS

&
NB % d

tB

1
tS

%
1
tB

(20.53)

SC ' d
tS

tB

& 1 %
z 2

1&α

4
1 %

tS

tB

% z1&α (NB % d)
tS

tB

1 %
tS

tB

The Stapleton Approximation

(20.54)

SC ' 1.35 % 2.33 NB % 0.4 (20.55)

If the blank correction involves additional non-Poisson variance, an extra term may be included
under the radical in Formula C; however, the weights wS and wB used to derive the formula are
not necessarily optimal in this case. (See ISO 11929-2 for another approach.)

Note that Formulas B and C are equivalent when tB = tS, because both assign equal weights to the
blank measurement and the source measurement. In this case, both formulas are also equivalent
to the formula given by Altshuler and Pasternack (1963).

THE STAPLETON APPROXIMATION

When the mean counts are low and tB … tS, another approximation formula for SC appears to out-
perform all of the approximations described above. For small values of the constant d, the
statistic

which involves variance-stabilizing transformations of the Poisson counts NS and NB, has a distri-
bution that is approximately standard normal under the null hypothesis (Stapleton, 1999; Strom
and MacLellan, 2001). So, the critical value of Z is z1!α, the (1 − α)-quantile of the standard
normal distribution. From these facts one may derive the following expression for the critical net
count as a function of NB.

When α = 0.05, the value d = 0.4 appears to be a near-optimal choice. Then for tB = tS, the
Stapleton approximation gives the equation

Figure 20.7 shows the Type I error rates for the Stapleton approximation when α = 0.05 and
d = 0.4. This approximation gives Type I error rates almost identical to those of Formulas B and
C when tB = tS, but it has an advantage when tB … tS.
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14 The left-hand side of the inequality is a cumulative binomial probability (see Attachment 19A of Chapter 19). It
also equals

I tS
tS% tB

(NS,NB%1)

where Ix(a,b) denotes the incomplete beta function (NBS, 1964; Press et al., 1992). 
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tB = tS

tB = 5tS
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FIGURE 20.7 � Type I error rates for the Stapleton approximation

j
NS%NB

k'NS

NS % NB

k

tS

tS% tB

k tB

tS% tB

NS%NB&k
# α (20.56)

When α … 0.05, the value d = z1!α / 4.112 appears to give good results (4.112 = z0.95 / 0.4).

When the blank correction involves a small non-Poisson variance component, a term ( ) mayξ2
B t 2

S
be included under the radical in Equation 20.54 to account for it.

THE EXACT TEST

Poisson counting statistics also permit an �exact� test for analyte detection, whose Type I error
rate is guaranteed to be no greater than the chosen value of α, although it may be less. A ran-
domized version of the test can provide a Type I error rate exactly equal to α (Nicholson, 1963),
but only the nonrandomized version will be considered here, since its outcome is always based
solely on the data and not on a random number generator. The test is implemented by rejecting
H0 if and only if the following inequality is true.14

NOTE: For any nonnegative integers n and k, the notation  denotes a binomial coefficient, usually readn
k

�n choose k,� which is the number of possible combinations of n objects chosen k at a time. For 0 # k # n,
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15 To implement the randomized test, calculate the critical value , and, if NS > , reject H0, as in the non-�yC �yC
randomized test. If NS = , calculate a rejection probability P by subtracting 1 ! α from the sum on the left-hand�yC
side of the inequality (with n = NS) and dividing the difference by the summation�s last term

NS % NB
NS

tS

tS % tB

NS tB

tS % tB

NB

Then reject H0 with probability P.
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j
n

k'0

NS % NB

k

tS

tS % tB

k tB

tS % tB

NS%NB&k
$ 1 & α (20.57)

j
n

k'0

NB % k
NB

tS

tS % tB

k
$ (1 & α)

tS % tB

tB

NB%1

(20.58)
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FIGURE 20.8 � Type I error rates for the nonrandomized exact test

the value of  equals , where the symbol ! denotes the factorial operator. The number of combina-n
k

n!
k!(n&k)!

tions of n objects chosen k at a time is also denoted sometimes by nCk .

Nicholson presents the test as a comparison of the gross count NS to a critical value. The critical
value  is the smallest nonnegative integer n such that15�yC

The same (nonrandomized) test is implemented by calculating a critical gross count, yC, equal to
the smallest nonnegative integer, n, such that

Then the critical net count, SC, equals yC ! NB (tS / tB). (Note that Inequality 20.58 is intended for
use when NB is small.) Table G.4 in Appendix G lists critical values yC for α = 0.01 and 0.05 and
for integral values of the count time ratio, tB / tS, ranging from 1 to 5.

Figure 20.8 shows the Type I error rates for the nonrandomized exact test. (The Type I error rate
for the randomized version of the test equals 0.05 everywhere.)
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EXAMPLE 20.10

Problem: A 60,000-second blank measurement is performed on an alpha-particle spectrometer
and 4 counts are observed in a region of interest. A test source is to be counted for 60,000 s.
Use the methods described in this attachment to estimate the critical value of the net count
when α = 0.05.

Solution: Table 20.1 should not be used in this case, because the ratio of count times, tB / tS, is
too small.

Formula A gives the result

SC ' z1&α NB

tS

tB

1 %
tS

tB

' 1.645 4 60,000 s
60,000 s

1 %
60,000 s
60,000 s

' 4.65 net counts.

Formula B gives the result

SC '
z 2

1&α

2
% z1&α

z 2
1&α

4
% NB

tS

tB

1 %
tS

tB

'
1.6452

2
% 1.645 1.6452

4
% 4 60,000 s

60,000 s
1 %

60,000 s
60,000 s

' 6.20 net counts.

Formula C gives the result

SC '
z 2

1&α tS

2tB

% z1&α

z 2
1&α t 2

S

4t 2
B

% NB

tS

tB

1 %
tS

tB

'
1.6452(60,000 s)

2(60,000 s)
% 1.645 1.6452(60,000 s)2

4(60,000 s)2
% 4 60,000 s

60,000 s
1 %

60,000 s
60,000 s

' 6.20 net counts.
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Notice that Formula B and Formula C give the same result, because tS = tB.

The Stapleton approximation (with d = 0.4) gives the result 

SC ' d
tS

tB

& 1 %
z 2

1&α

4
1 %

tS

tB

% z1&α (NB % d)
tS

tB

1 %
tS

tB

' 0.4 60,000
60,000

& 1 %
1.6452

4
1 %

60,000
60,000

% 1.645 (4 % 0.4) 60,000
60,000

1 %
60,000
60,000

' 6.23 net counts.

The exact test gives the result yC = 11 counts (the entry in Table G.4 for α = 0.05, tB / tS = 1,
and NB = 4), which implies that

 net counts.SC ' 11 & (4) (60,000 / 60,000) ' 7

EXAMPLE 20.11

Problem: Consider again the problem presented in Example 20.1. A 6000-second blank meas-
urement is performed on a proportional counter and 108 beta counts are observed. A test
source is to be counted for 3000 s. Use the methods described in this attachment to estimate
the critical value of the net count when α = 0.05.

Solution: Again, Table 20.1 should not be used, because the ratio of count times, tB / tS, is too
small.

Formula A gives the result

SC ' z1&α NB

tS

tB

1 %
tS

tB

' 1.645 108 3000
6000

1 %
3000
6000

' 14.8 net counts.

Notice that this is the same result that was obtained in Example 20.1.
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Formula B is not recommended. Since tB > tS in this case, Formula B produces a Type I error
rate that is less than α.

Formula C gives the result

SC '
z 2

1&α tS

2tB

% z1&α

z 2
1&α t 2

S

4t 2
B

% NB

tS

tB

1 %
tS

tB

'
(1.645)2(3000)

2(6000)
% 1.645 (1.645)2(3000)2

4(6000)2
% 108 3000

6000
1 %

3000
6000

' 15.5 net counts.

The Stapleton approximation (with d = 0.4) gives the result 

SC ' d
tS

tB

& 1 %
z 2

1&α

4
1 %

tS

tB

% z1&α (NB % d)
tS

tB

1 %
tS

tB

' 0.4 3000
6000

& 1 %
1.6452

4
1 %

3000
6000

% 1.645 (108 % 0.4) 3000
6000

1 %
3000
6000

' 15.6 net counts.

The exact test gives the result yC = 70 counts (the entry in Table G.4 for α = 0.05, tB / tS = 2,
and NB = 108), which implies that

 net counts.SC ' 70 & (108)(3000 / 6000) ' 16

COMPARISONS AND RECOMMENDATIONS

Although Formula A gives the highest Type I error rates of all the formulas described above in
the pure Poisson counting scenario, it is the formula that can be adapted most easily for dealing
with interferences. It can also be modified to reduce the very high Type I error rates at low blank
levels (by adding 1 or 2 to the number of blank counts NB under the radical). Formula B cannot
be recommended. When the pure Poisson model is valid, Formula C gives better results than
either A or B, but the Stapleton approximation appears to give the most predictable Type I error
rates of all.  Nicholson�s exact test is the only one of the tests whose Type I error rate is guaran-
teed not to exceed the chosen significance level, but it is also the most complicated of the tests
and requires either software or lookup tables to be practical. Furthermore, the nonrandomized
version of the test has relatively low power. Achieving the chosen significance level exactly
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16  The reduced power of the exact test at low blank levels is evident from the low Type I error rates shown in Figure
20.8.
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Pr[ �S # SC | X ' xD] ' β (20.59)

appears to require the randomized version of Nicholson�s test. Using critical values from Table
20.1 is appropriate when the blank is counted much longer than the sample and the expected
count for an analyte-free sample is very low.

MARLAP makes the following recommendations regarding the use of the various equations for
the critical value when Poisson statistics are assumed:

  � A laboratory should confirm the validity of the Poisson approximation before using Table
20.1, Formula A, Formula C, Stapleton�s approximation, Nicholson�s exact test, or any other
detection criterion that is based on pure Poisson counting statistics. (If the Poisson approx-
imation is invalid, the blank distribution should be determined by repeated measurements.)

  � If the blank count time is at least 10 times longer than the sample count time, the critical
gross counts in Table 20.1 can be used.

  � If the mean blank count is at least 100, Formula A can be used and may be preferred for its
relative simplicity.

  � Formula B for the critical value should not be used.
  � If the ratio of count times, tB / tS, is not large, and if the mean blank count is less than 100,

either Formula C or Stapleton�s approximation should be used. Stapleton�s approximation
seems to have an advantage over Formula C when tS … tB.

  � Nicholson�s exact test may be used to compare the means of two Poisson distributions when
a high level of statistical rigor is required, but it is more complicated than necessary for
routine laboratory analyses and lacks the power of Formula C and Stapleton�s approx-
imation.16

20A.3  Calculation of the Minimum Detectable Concentration

The minimum detectable concentration, or MDC, was defined earlier as the concentration of
analyte, xD, that must be present in a laboratory sample to give a probability 1 − β of obtaining a
measured response greater than its critical value. Equivalently, the MDC is defined as the analyte
concentration xD that satisfies the relation

where the expression Pr[  # SC | X = xD] may be read as �the probability that the net signal �S �S
does not exceed its critical value SC when the true concentration X is equal to xD.�

The MDC may be estimated by calculating the minimum detectable value of the net instrument
signal, SD, and converting the result to a concentration. Recall that the minimum detectable value
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Pr[ �S # SC | S ' SD ] ' β (20.60)

SC ' t1&α(ν) × �σ0 (20.61)

SD ' δα,β,νσ0 (20.62)

t )β(ν,δα,β,ν) ' t1&α(ν) (20.63)

δα,β,ν . t1&α(ν) × 1 &
1
4ν

% z1&β 1 %
t1&α(ν)

2

2ν
(20.64)

of the net instrument signal is defined as the mean value of the net signal that gives a specified
probability, 1 − β, of yielding an observed signal greater than its critical value SC. Thus,

where S denotes the true mean net signal.

20A.3.1 Normally Distributed Signals

If the net signal, , is normally distributed and its estimated standard deviation, σ�0, under H0 is�S
determined from a statistical evaluation with ν degrees of freedom (e.g., n = ν + 1 replicate blank
measurements), then the critical value of  is�S

Then, if the variance of  is constant at all concentrations � or at least can be considered constant�S
at sufficiently low concentrations � the minimum detectable value of the signal is given by

where δα,β, ν denotes the noncentrality parameter of a noncentral t-distribution with ν degrees of
freedom. The parameter δα,β, ν is such that

where  denotes the β-quantile of the noncentral t-distribution. The noncentrality par-t )β(ν,δα,β,ν)
ameter δα,β, ν may be approximated by

which is based on an approximation for the noncentral t distribution function (NBS, 1964). When
α = β = 0.05 and ν $ 4, the noncentrality parameter is also approximated adequately by  ×t0.95(ν)
8ν / (4ν + 1) (Currie, 1997).

Conceptually the standard deviation σ�0 used to calculate the critical value, SC, is only an estimate
and therefore can be considered a random variable. If it were the true standard deviation, the cor-
rect multiplier used to calculate SC would be z1!α, not . However, the standard deviationt1&α(ν)
used to calculate SD is, conceptually at least, the true standard deviation σ0, even if its value is not
known exactly. The true standard deviation may be estimated by σ�0, but since the estimator σ�0 is
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17 Although  is assumed here to be an unbiased estimator for the variance, its square root, , is a biased esti-�σ2
0 �σ0

mator for the standard deviation (see Section 19.4.5.2 in Chapter 19).
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c4 '
Γ ν%1

2

Γ ν
2

2
ν (20.65)

SD ' δα,β,ν

�σ0

c4
(20.66)

biased, a correction factor should be used for ν less than about 20.17 An unbiased estimator for σ0
is σ�0  / c4, where

and where Γ denotes the gamma function (NBS, 1964). The gamma function is easily computed
in software (Press et al., 1992), but c4 is also approximated well by 4ν / (4ν + 1), and values of c4
are commonly tabulated in references for statistical quality control (whence the notation c4 is bor-
rowed). Then SD is estimated by

which is approximately 2 σ�0, or 2SC, when α = β = 0.05 and ν $ 4. Values of c4 for ν = 1 tot0.95(ν)
40 are listed in Table 20.2.

TABLE 20.2 � Bias factor for the experimental standard deviation

ν c4 ν c4 ν c4 ν c4

1 0.79788 11 0.97756 21  0.98817 31  0.99197
2 0.88623 12 0.97941 22  0.98870 32  0.99222
3 0.92132 13 0.98097 23  0.98919 33  0.99245
4 0.93999 14 0.98232 24  0.98964 34  0.99268
5 0.95153 15 0.98348 25  0.99005 35  0.99288
6 0.95937 16 0.98451 26  0.99043 36  0.99308
7 0.96503 17 0.98541 27  0.99079 37  0.99327
8 0.96931 18 0.98621 28  0.99111 38  0.99344
9 0.97266 19 0.98693 29  0.99142 39  0.99361

10 0.97535 20 0.98758 30  0.99170 40  0.99377

EXAMPLE 20.12

Problem: Use the blank data from Example 20.10 to calculate the minimum detectable net
signal, SD. Assume the variance of the net signal, , is approximately constant at low analyte�S
concentrations.
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t )β ν,
SD

σD

' t1&α(ν) ×
σ0

σD
(20.67)

Solution: In Example 20.9 the standard deviation of the blank, sB, based on seven replicate
measurements was found to be 8.5912. The estimated standard deviation of the net signal
therefore is

�σ0 ' (8.5912) 1 %
1
7
' 9.1844

The number of degrees of freedom, ν, equals 7 ! 1 = 6. So, the value of the noncentrality par-
ameter, δα,β, ν, may be approximated as follows.

t1&α(ν) ' t0.95(6) ' 1.943

δα,β,ν ' t1&α(ν) × 1 &
1
4ν

% z1&α 1 %
t1&α(ν)

2

2ν

' 1.943 × 1 &
1

(4)(6)
% 1.645 1 %

1.9432

(2)(6)
' 3.748

The value of c4 for 6 degrees of freedom is 0.95937. So,

SD ' δα,β,ν

�σ0

c4

' (3.748) 9.1844
0.95937

' 35.88 .

If the variance of  is not constant but increases with the mean signal S, the minimum detectable�S
net signal is determined implicitly by the equation

where σD denotes the standard deviation of  when S = SD. An iterative algorithm, such as the�S
one shown below, may be needed to solve the equation for SD.

1. Set σ0 ' σ2( �S | S ' 0)

2. Initially calculate SD ' t1&α(ν) × σ0

3. repeat loop (Lines 4�7)

4. Set σD ' σ2( �S | S ' SD)
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δ . t1&α(ν) ×
σ0

σD

1 &
1
4ν

% z1&β 1 %
t1&α(ν) × σ0 /σD

2

2ν
(20.68)

5. Find the value of δ such that t )β(ν,δ) ' t1&α(ν) × σ0 /σD

6. Set h ' SD

7. Recalculate SD ' δσD

8. until  is sufficiently smallSD & h

9. output the solution SD

The value of the noncentrality parameter δ in Step 5 may be approximated by

When σ�0 is determined by any means other than a statistical evaluation, SD must be calculated
differently.

EXAMPLE 20.13

Problem: Assume the signal, , is the net count for a radioactivity measurement, and its�S
variance is given by an expression of the form

aS 2 % bS % c

The coefficient b is assumed to be 1, because the term bS represents the Poisson counting vari-
ance due to activity in the sample (see Section 20.4.2.2). The term c is estimated by , the�σ2

0
variance of the net signal observed when analyte-free samples are analyzed. The coefficient a
is estimated to be 0.052, and represents a 5 % coefficient of variation, which is observed at
high analyte concentrations. Assume σ�0 is evaluated from 7 replicate blank measurements and
is found to be 9.1844, as in the preceding example. Use the iterative algorithm described above
to approximate the minimum detectable net signal, SD.

Solution: The first two steps are performed as follows.

σ0 ' 9.1844
SD ' 1.943 × 9.1844 ' 17.85

Then the first iteration of the loop is performed as follows.
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SD ' SC % z1&β σ
2( �S | S ' SD) (20.69)

σ2( �S) ' aS 2 % bS % c (20.70)

SD '
1
Iβ

SC %
z 2

1&βb
2

% z1&β bSC %
z 2

1&βb
2

4
% aS 2

C % Iβc (20.71)

σD ' (0.05)2(17.85)2 % 17.85 % (9.1844)2 ' 10.149

t1&α(ν) ×
σ0

σD

' 1.943 × 9.1844
10.149

' 1.7584

δ ' 1.7584 × 1 &
1

(4)(6)
% 1.645 1 %

1.75842

(2)(6)
' 3.5298

SD ' (3.5298)(10.149) ' 35.822

Subsequent iterations produce the sequence of approximations

37.242   37.354   37.363   37.364   37.364   ...

The sequence converges to 37.364, which is the approximate value of the minimum detectable
net signal.

20A.3.2 Poisson Counting

Another equation for SD, which was described in Section 20.4.2.2, is

where SC = z1 ! ασ0 and σ2(  | S = SD) denotes the variance of the measured signal, , when the�S �S
true mean signal, S, equals SD. This equation is the basis for formulas that are commonly used for
SD when the Poisson-normal approximation is assumed. Regardless of whether the signal follows
the pure Poisson model or has non-Poisson variance, the variance of  can usually be expressed�S
in the form

as in Example 20.13, where S denotes the true mean net signal and the constants a, b, and c do
not depend on S. In this case, the minimum detectable net signal is given by

where . Iβ ' 1 & z 2
1&βa
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[SC] ' 0.4
tS

tB

& 1 %
1.6452

4
1 %

tS

tB

% 1.645 (9 % 0.4)
tS

tB

1 %
tS

tB

(20.72)

SD ' SC %
z 2

1&β

2
% z1&β

z 2
1&β

4
% SC % RB tS 1 %

tS

tB

(20.73)

Equation 20.69 is often used even when SC is calculated using one of the formulas presented
above for low-background Poisson counting, with RB tB substituted for the blank count NB, but in
this case SD may be underestimated because of the fact that the calculated value of SC varies from
measurement to measurement. One option for obtaining a more conservative estimate of SD is to
substitute a conservative value of SC, which will be denoted here by [SC]. For Poisson counting,
one method of obtaining [SC] is to use the value of SC calculated from the largest blank count NB
likely to be observed, given the assumed mean blank count rate RB  (e.g., use Table 20.1 with
RB tB replacing RB tS and NB replacing yC in the column headings). To calculate SD, one may sub-
stitute [SC] for SC in Equation 20.71.

Note that [SC] is not used to make detection decisions. It is used only to calculate SD.

For example, suppose α = β = 0.05, the assumed mean blank count rate is RB = 8 × 10!4 s!1, and
the blank count time is tB = 6000 s. Then RB tB = 4.8 counts. Using Table 20.1, one finds 4.8 in
the first column between 4.695 and 5.425, and reads the value 9 from the second column. So, 9 is
the largest value of NB likely to be observed when measuring a blank. Now, if Stapleton�s
approximation is used to calculate SC when making a detection decision, the value of [SC] used to
calculate SD is given by the following equation.

So, if tS = tB, then [SC] = 8.49 counts.

PURE POISSON COUNTING

As previously noted, counting data never follow the Poisson model exactly, but the model can be
used to calculate SD if the variance of the blank signal is approximately Poisson and a conserva-
tive value of the sensitivity factor is used to convert SD to xD. Equation 20.28, which is repeated
below as Equation 20.73, shows how to calculate SD using the pure Poisson model.

When Formula A is used for the critical net count, and α = β, this expression for SD simplifies to
. Example 20.5 in Section 20.4.2.3 illustrates the use of the latter expression. z 2

1&β % 2SC
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SD '
(z1&α % z1&β)

2

4
1 %

tS

tB

% (z1&α % z1&β) RB tS 1 %
tS

tB

(20.74)

SD ' 5.41 % 4.65 RB tS (20.75)

Power ' 1 & j
4

n'0

(RB tB)n e&RB tB

n! j
yC(n)

k'0

(RB tS%S)k e&(RB tS%S)

k!

' 1 & exp(&RB (tS% tB)&S) j
4

n'0

(RB tB)n

n! j
yC(n)

k'0

(RB tS%S)k

k!

(20.76)

DETECTION LIMITS FOR THE STAPLETON APPROXIMATION

When the Stapleton approximation is used for SC, the minimum detectable net count SD may be
calculated using Equation 20.73, but when the pure Poisson model is assumed, a better estimate
is given by the formula

Equation 20.74 also gives a better approximation of SD even when Formula C is used for the
critical value as long as the ratio of count times tB / tS is not too far from 1 (see Table 20.3). It is
recommended by ISO 11929-1 in a slightly different but equivalent form.

When α = β = 0.05 and tB = tS, the preceding equation becomes

PRECISE CALCULATION OF SD

When the pure Poisson model is assumed, with no other sources of variance, the mean blank
count rate RB and the analyte detection criteria completely determine SD. So, in principle, a
computer program can be written to calculate SD precisely. The calculation is most easily
described when the critical net count is expressed in terms of NB but not NS (e.g., SC as defined by
Formulas A�C, the Stapleton approximation, and the exact test). Then, at any specified value S
of the mean net signal, the power of the detection test can be computed using either of the
following expressions:

where yC(n) denotes the value of yC (or SC + NB tS / tB) when NB = n. Terms of the infinite sum
must be accumulated only until the cumulative Poisson probability, (RBtB)m /m!,e&RB tB'n

m'0
approaches 1. Given a software procedure to compute Equation 20.76, the value of SD may be
determined using an iterative algorithm, such as Newton�s method or bisection, which calculates
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Power ' 1 & e&RB tB j
4

n'0

(RB tB)n

n! j
yC(n)

k'0
f(k;S) (20.77)

f(k;S) ' 1
2δx

P k % 1, RB tS % S 1 %
δ

µA

& P k % 1, RB tS % S 1 &
δ

µ A
(20.78)

the power at trial values of S until the correct value is found where the power equals 1 ! β (e.g.
see Burden and Faires, 1993).

Since no sources of variance except Poisson counting statistics are being considered here, a con-
servative value of the sensitivity factor should be used when converting SD to the minimum
detectable concentration, xD.

A procedure of the type described above generated the true values of SD for Table 20.3, which
shows both the estimated and true values of SD obtained when Formulas A and C and the
Stapleton approximation are used for the critical value. The estimated values of SD in this table
are based on values of SC calculated using the true mean blank count, not the upper bound [NB].
The use of [NB] would produce larger estimates.

If one can assume that the sensitivity, A, has a particular distribution, such as a rectangular or
triangular distribution, then it is still possible to calculate SD precisely in software, although the
mathematics is less straightforward than that needed when only Poisson variance is considered.
At any specified value, S, of the mean net signal, the detection power equals

where f(k,S) is the probability that the gross count will equal k when the mean net signal is S.
Given an assumed distribution for A, the value of f(k,S) can be calculated in software. For
example, if the sensitivity has a rectangular distribution with mean µA and half-width δ, then

where P(@, @) denotes the incomplete gamma function. Other combinations of the incomplete
gamma function appear when different polygonal distributions are assumed (e.g., triangular).

To the extent that this approach accounts for the variance of the sensitivity, A, it becomes unnec-
essary to assume a conservative value of A when converting SD to xD. Instead, one uses the best
available estimates of the actual distribution parameters (e.g., µA and δ above).
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