Presentation to Clean Air Act Advisory Committee, Mobile Sources Technical Review Subcommittee

Jim Guthrie, Air Resources Engineer Transportation Fuels Branch Industrial Strategies Division California Air Resources Board May 5, 2015

California Reformulated Gasoline

Current Requirements and California's Strategies for Reducing Greenhouse Gas (GHG) Emissions

Requirements and Short-term Strategies

*The California Reformulated Gasoline (CaRFG) Regulations, 13 CCR 2250 et seq.,

Require that all California motor-vehicle gasoline be produced according to specifications determined by the California Predictive Model

Allow the use of ethanol at 0 to 10 percent by volume

*The Low Carbon Fuel Standard (LCFS) Regulations, 17 CCR 95480 et seq., require carbon intensity (CI) (grams CO₂ equiv./MJ) percent reductions relative to CaRFG produced in 2010, as follows:

Year	2016	2017	2018	2019	2020
Percent	2.00	3.50	5.00	7.50	10.00

California Predictive Model

*Correlates emissions with fuel properties to determine emission-equivalent fuel specifications

- *Developed from test data from 42 studies, 10368 observations, on 1359 vehicles with 336 test fuels
- *Test-fuel oxygenate (MTBE, ethanol) contents ranged from oxygen-equivalent of 0- to 10-percent ethanol
- *Exhaust, evaporative, and supplemental permeation emissions studies were included
- *Model predicts emission differences from reference for NOx, exhaust HCs, evaporative HCs, CO, ozone-forming potential, and toxic air contaminants
- *Determines specifications for oxygen, sulfur, total aromatic hydrocarbon, benzene, and olefin contents, as well as T90, T50, and Rvp

*Octane is not one of the specifications of CaRFG

California Certification Gasoline

*Fuel used to certify new vehicles

*Certification gasoline specifications¹ for LEV III vehicles:

Ethanol	9.8-10.2 vol. %	Olefins	4.0-6.0 vol. %
Oxygen	3.3-3.7 wt. %	Т90	310-320 °F
Sulfur	8-11 ppmw	T50	205-215 °F
Aromatic HC	19.5-22.5 vol. %	Rvp	6.9-7.2 psi
Benzene	0.6-0.8 vol. %	Octane (R+M)/2	87-88.4, 91 (min) ²

*1 Abbreviated table.

*² For vehicles/engines that require the use of premium gasoline as part of their warranty, the Octane ((R+M)/2) may be a 91 minimum. All other certification gasoline specifications must be met.

Short-term GHG Strategies for SI Engine Fuel -Low Carbon Fuel Standard

- * LCFS regulations require a 10-percent reduction in CI by 2020
 * Potential strategies for compliance
 - * Use of low carbon-intensity oxygenated additives
 - Lower-carbon-intensity ethanol at 10 percent by volume
 - Other low carbon-intensity oxygenated compounds at equivalent oxygen content (3.3 to 3.7 percent by wt.) to 10-percent ethanol
 - Must undergo multimedia evaluation
 - May be allowed to use existing California Predictive Model if multimedia evaluation demonstrates no harm
 - Iso-butanol at 16 percent is undergoing multimedia evaluation
 - * Replacement with electricity
 - * Replacement with alternative fuels
 - * Replacement with renewable gasoline

Long-term GHG Strategies for SI Engine Fuel -Phase-out Fossil Fuel Use

*Replacement with electricity

*Replacement with alternative fuels *Replacement with renewable gasoline

Potential Ways of Increasing Gasoline Octane and Issues to Evaluate

*Changes in refinery blendstocks

- Increases in isomerate and alkylate
- Increases in oxygen content by increasing volume or changing type of oxygenated additives
- *Evaluate the criteria, toxic, and GHG emissions impacts of the potential ways to increase octane
- *Re-evaluate engine behavior

E15 and Octane Considerations

*Requiring higher ethanol content and higher octane would be compatible because ethanol has a high blending octane number, however they would be separate regulations which would each require significant additional resources.

*E15

E15 could have GHG benefits, but other impacts are uncertain.

- Materials compatibility impacts on vehicles, other gasoline engines, and fuel distribution infrastructure
- Emissions impacts from LDVs of different vehicle technology classes
- Performance of other(non-light-duty vehicle) gasoline engines (SOREs, off-road recreational, MD trucks, motorcycles, etc.)

E15 and Octane Considerations (continued)

*E15 (continued)

- ...other impacts... (continued)
 - Emissions speciation and reactivities (ozone-forming potential)
 - Photochemical modeling
 - Toxic air contaminant emissions

Developing E15 regulations would take a minimum of 6 years (2-3 years planning, 2-3 years testing, 2-3 years rulemaking). This would include fuel testing for criteria and toxic pollutant emissions performance, both exhaust and evaporative, an update to the California predictive model, and a full multimedia evaluation.

E15 and Octane Considerations (continued)

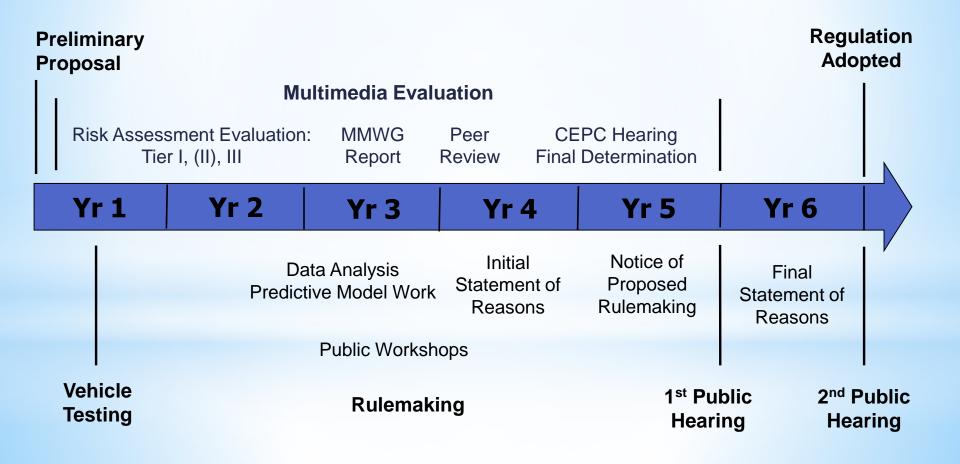
*E15 (continued)

- This process would be highly contentious and involve the biofuel industry, the automakers, the refiners, environmentalists, AAA and consumer groups.
- The potential for E15 to produce significant GHG benefits is contingent on whether it would be used as a long-term fuel (i.e., is E15 a necessary bridge to get to a drop-in renewable gasoline or a strong transition toward ZEVs).
- Legal challenges from AAA and others would be a possibility.

E15 and Octane Considerations (continued)

*Octane

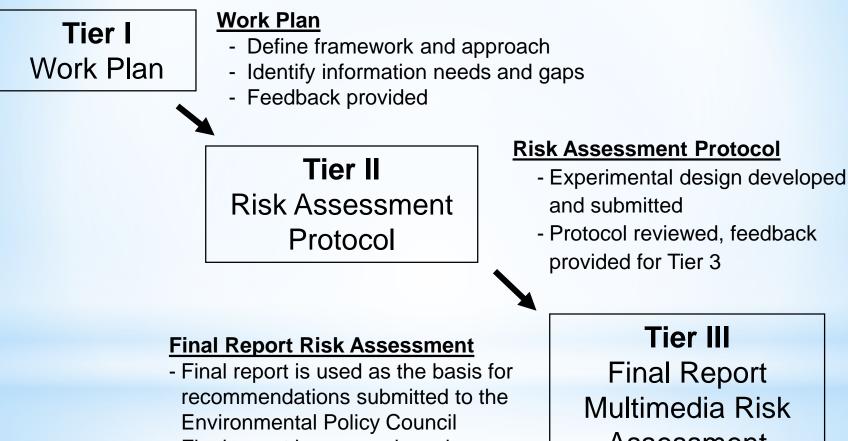
- Increasing the octane number of gasoline would allow the use of spark-ignition engines with higher compression ratios and higher thermal efficiencies.
- A regulation that requires an increase in the octane number of CaRFG would also take a minimum of 6 years of work, and it might not result in additional efforts to increase vehicle efficiency, than already required by LEV GHG standards.
- We would need to amend ARB's certification test procedures to allow the use of high-octane certification gasoline for vehicles that would be required to use high-octane commercial gasoline.
- Enforcement how to prevent mis-fueling with low-octane fuel


Process for Amending the CaRFG Regulations

- *Review available data to determine potential impacts and need for further data for different vehicle classes
- *Work with industries to determine how to perform additional emissions and compatibility studies
- *Initiate studies to collect additional data
- *Use new data to revise predictive model correlations

*Evaluate GHG emissions impacts

- *Work with gasoline marketers and distributors to devise plans for storing, distributing, and dispensing new gasoline
- *Develop regulations and perform multimedia evaluation
- *Hold workshops, ARB hearing, and EPC hearing


Rulemaking Timeline (Fuel Specifications - *General*)

Multimedia Evaluation Process

- Multimedia evaluation (*HSC* §43830.8) must address:
 - -Emissions of air pollutants
 - -Contamination of surface water, groundwater, and soil
 - -Fate and transport mechanisms
 - Disposal or use of byproducts and waste materials
- Review by Multimedia Working Group (MMWG)
- MMWG Staff Report Recommendations to California Environmental Policy Council (CEPC)
- External Scientific Peer Review (HSC §57004)
- Address Comments and Finalize Staff Report
- CEPC Public Hearing
- Final Determination by CEPC

Multimedia Evaluation Tiers

Final report is peer reviewed

Final Report Multimedia Risk Assessment

ARB Contacts:

- *Jim Guthrie, Air Resources Engineer jguthrie@arb.ca.gov, (916) 327-1508
- *John Courtis, Manager, Alternative Fuels Section jcourtis@arb.ca.gov, (916) 323-2661
- *Sam Wade, Chief, Transportation Fuels Branch <u>Samuel.Wade@arb.ca.gov</u>, (916) 322-8263
- *Floyd Vergara, Chief, Industrial Strategies Division <u>fvergara@arb.ca.gov</u>, (916) 324-0356