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Appendix A: Monitor Rollback Algorithms   
This Appendix details the rollback procedures that you can perform on monitor data. 
The rollback procedure is a quick way to determine the monitor levels that would exist 
under various kinds of changes that you can specify. This includes three basic types of 
rollbacks: Percentage, Increment, and Rollback to Standard.   

Once a set of monitors has been selected, the user may define one or more non-
overlapping rollback regions. A region is simply a set of states with an associated set of 
rollback parameter values. Three rollback types are available:   

• Percentage Rollback. Monitor values are reduced the same percentage.   

• Incremental Rollback. Monitor values are reduced by the same fixed increment.   

• Rollback to a Standard. Monitor values are reduced so that attainment of a 
specified standard is reached.   

Each of these rollback types has different rollback parameters associated with it. 

A.1 Percentage Rollback   
Percentage Rollback involves setting only two parameters - a percentage and a 
background level. The rollback procedure is similarly straightforward - each 
observation at each monitor in the region has the portion of its value which is above 
background level reduced by percentage.   

Example: Background Level: 35; Percentage: 25   

Initial Observations at a monitor in rollback region: 

  20 20  25  59  35  51  83  35  30  67  87  79  63  35  35   

If we select the background level of 35, we first calculate the portion of each 
observation that is above background level, that is, we subtract the background level 
from the initial observation level. Observations below background level are given a 
value of 0.   

Observation portions above background level: 

  0 0 0 24  0 16  48  0 0 32  52  44  28  0 0  

When we apply the rollback percentage, each observation portion gets reduced by 25%.  
Reduced portions above background level:  

0 0 0 18  0 12  36  0 0 24  39  33  21  0 0   
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Then, each reduced portion is added to the background level of 35. Zero values are 
replaced by the initial observations.  Reduced Observations: 

  20  20  25  53  35  47  71  35  30  59  74  68  56  35  35   

Incremental Rollback   

A.2 Incremental Rollback   
Incremental Rollback similarly involves setting only two parameters - an increment 
and a background level. The rollback procedure is quite similar to the percentage 
rollback procedure - each observation at each monitor in the region has the portion of 
its value which is above background level reduced by increment. The reduced values 
are not allowed to become negative, however - that is, they are truncated at zero.  
Example: Background Level: 35; Increment: 25 Initial Observations: 

  20  20  25  59  35  51  83  35  30  67  87  79  63  35  35   

Observation portions above background level: 

  0 0 0 24  0 16  48  0 0 32  52  44  28  0 0  

Reduced portions above background level: 

  0 0 0 0 0 0 23  0 0 7 27  19  3 0 0  

Reduced Observations: 

  20  20  25  35  35  35  58  35  30  42  62  54  38  35  35   

A.3 Rollback to a Standard   
Rollback to a Standard has two groups of parameters - those associated with the 
Attainment Test, which determines whether a monitor is in attainment (meets the 
standard), and those associated with the Rollback Methods, which are used to bring 
out of attainment monitors into attainment.  

The Attainment Test parameters are Metric, Ordinality, and Standard. A monitor is 
considered in attainment if the nth highest value of the metric specified by Metric is at 
or below the value specified by Standard, where n is the value specified by Ordinality. 
For example, if Metric is TwentyFourHourDailyAverage, Ordinality is two, and 
Standard is eighty five, a monitor will be considered in attainment if the second highest 
value of TwentyFourHourDailyAverage is at or below eighty five.   

Supported metrics for pollutants with hourly observations (Ozone) include 
FiveHourDailyAverage, EightHourDailyAverage, TwelveHourDailyAverage, 
TwentyFourHourDailyAverage, OneHourDailyMax, and EightHourDailyMax. Supported 
metrics for pollutants with daily observations (PM10, PM2.5) include 
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TwentyFourHourDailyAverage and AnnualAverage. For Annual Average, Ordinality 
does not apply, since there is only a single metric value to work with.   

The Rollback Method parameters are Interday Rollback Method, Interday 
Background Level, Intraday Rollback Method, and Interday Background Level. 
These four parameters determine the rollback procedures used to bring out of 
attainment monitors into attainment. The Interday Rollback Method and 
Background Level are used to generate target values for the metric specified by the 
Attainment Test. The Intraday Rollback Method and Background Level are used to 
adjust hourly observations to meet the target metric values generated in the previous 
step. As such, the Intraday Rollback Method and Background Level are used only for 
pollutants with hourly observations (ozone).  

A.3.1 Interday Rollback – Generating Target Metric Values  

Because standards are defined on metrics, not directly on observations, the first step in 
rolling back out of attainment monitors is generating target metric values. There are 
four supported rollback methods for Interday Rollbacks - Percentage, Incremental, Peak 
Shaving, and Quadratic. Each of these rollback methods requires some preprocessing of 
the initial monitor metric values. We will discuss this preprocessing first, and then go 
through Percentage, Incremental, and Peak Shaving rollbacks in turn. Quadratic 
rollback is more complicated than these first three, and has its own section.   

The Interday Background Level specifies the portion of each metric value which cannot 
be affected by human intervention - we call this portion the non-anthropogenic portion. 
Whatever portion is left over after subtracting out the background level is referred to as 
the anthropogenic portion. The anthropogenic portion of the initial monitor metric 
values is the only part which will be affected by the Interday Rollback Method.   

BenMAP calculates an out of attainment value by determining the particular monitor 
metric value which caused the monitor to be out of attainment - this value is the nth 
highest value of the metric specified by the Attainment Test metric, where n is the 
Attainment Test ordinality. BenMAP then calculates an anthropogenic out of attainment 
value by subtracting the Interday Background Level from the out of attainment value. 
BenMAP also calculates an anthropogenic standard by subtracting the Interday 
Background Level from the Attainment Test standard. Finally, BenMAP calculates a set 
of anthropogenic metric values and a set of non-anthropogenic metric values using the 
following procedure on each initial monitor metric value:  

IF the metric value is less than or equal to the Interday Background Level,   

non-anthropogenic metric value = metric value   

anthropogenic metric value = 0   
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ELSE   

non-anthropogenic metric value = Interday Background Level   

anthropogenic metric value = metric value - Interday Background Level    

A.3.1.1 Interday Rollback – Percentage  

To generate target metric values using Percentage rollback, BenMAP calculates the 
percentage required to reduce the anthropogenic out of attainment value to exactly the 
anthropogenic standard. This percentage reduction is then applied to all of the 
anthropogenic metric values. Finally, these reduced anthropogenic metric values are 
added to the non-anthropogenic metric values to give the final target metric values.   

Example:   

Initial Metric Values: 

  30  35  50  10  80  44  67  88  90  70  50  30  55  90  80  85  
   0  

Attainment Test: Highest value of metric <= 70   

Interday Background Level: 40   

Out of Attainment Value: 100   

Anthropogenic Out of Attainment Value: 60 (= 100 - 40)   

Anthropogenic Standard: 30 (= 70 - 40)   

Percentage Reduction Required: 50% (=(60-30)/60)    

Non-Anthropogenic Metric Values: 

  30  35  40  40  40  40  40  40  40  40  40  30  40  40  40  40   

Anthropogenic Metric Values: 

  0 0 10  60  40  4 27  48  50  30  10  0 15  50  40  45   

Reduced Anthropogenic Metric Values: 

  0 0 5 30  20  2 14  24  25  15  5 0 8 25  20  23   

Target Metric Values: 

  30  35  45  70  60  42  54  64  65  55  45  30  48  65  60  63   
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A.3.1.2 Interday Rollback – Incremental  

To generate target metric values using Incremental Rollback, BenMAP calculates the 
increment required to reduce the anthropogenic out of attainment value to exactly the 
anthropogenic standard. This incremental reduction is then applied to all of the 
anthropogenic metric values (but they are not allowed to fall below zero). Finally, these 
reduced anthropogenic metric values are added to the non-anthropogenic metric values 
to give the final target metric values.   

Example:   

Initial Metric Values: 

  30  35  50  10  80  44  67  88  90  70  50  30  55  90  80  85  
   0  

Attainment Test: Highest value of metric <= 70   

Interday Background Level: 40   

Interday Rollback Method: Incremental   

Out of Attainment Value: 100   

Anthropogenic Out of Attainment Value: 60   

Anthropogenic Standard: 30 (=70 - 30)   

Incremental Reduction Required: 30    

 

Non-Anthropogenic Metric Values: 

  30  35  40  40  40  40  40  40  40  40  40  30  40  40  40  40   

Anthropogenic Metric Values: 

  0 0 10  60  40  4 27  48  50  30  10  0 15  50  40  45   

Reduced Anthropogenic Metric Values: 

  0 0 5 30  20  2 14  24  25  15  5 0 8 25  20  23   

Target Metric Values: 

  30  35  45  70  60  42  54  64  65  55  45  30  48  65  60  63   
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A.3.1.3 Interday Rollback - Peak Shaving   

To generate target metric values using Peak Shaving rollback, BenMAP simply truncates 
all anthropogenic metric values at the anthropogenic standard. These reduced 
anthropogenic metric values are added to the non-anthropogenic metric values to give 
the final target metric values.  Example:  Initial Metric Values: 

  30  35  50  100  80  44  67  88  90  70  50  30  55  90  80  85   

Attainment Test: Highest value of metric <= 70   

Interday Background Level: 40   

Interday Rollback Method: Peak Shaving   

Anthropogenic Standard: 30    

 

Non-Anthropogenic Metric Values: 

  30  35  40  40  40  40  40  40  40  40  40  30  40  40  40  40   

Anthropogenic Metric Values: 

  0 0 10  60  40  4 27  48  50  30  10  0 15  50  40  45   

Reduced Anthropogenic Metric Values: 

  0 0 10  30  30  4 27  30  30  30  10  0 15  30  30  30  

Target Metric Values: 

  30  35  50  70  70  44  67  70  70  70  50  30  55  70  70  70  

A.3.2 Intraday Rollback - Adjusting Hourly Observations   

Once a set of target metric values has been calculated for a pollutant with hourly 
observations (e.g., Ozone), BenMAP must adjust the hourly observations so that they 
produce the target metric values. There are three supported rollback methods for 
Intraday Rollback - Percentage, Incremental, and Quadratic. Each of these rollback 
methods requires some preprocessing of the initial monitor observations, and each can 
require multiple iterations to hit the target metric values.   

We will discuss this preprocessing and iteration first, and then go through Percentage 
and Incremental rollbacks in turn. Quadratic rollback is more complicated than these 
first two, and has its own section.   

For various reasons, each of the Intraday Rollback methods can fail to hit the target 
metric values during a single pass through the rollback procedure (these will be 
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discussed in detail below). As such, each of the rollback methods uses an iterative 
approach to get within a threshold of each of the target metric values - currently this 
threshold is 0.05. The iterative approach works as follows:   

For each target metric value, BenMAP calculates the current value of the Attainment 
Test metric. For the first iteration, the metric value will be calculated using unadjusted 
hourly observations. For subsequent iterations, the metric value will be calculated using 
the current values of the adjusted hourly observations.   

If the difference between the metric value and the target metric value is less than or 
equal to 0.05, the rollback procedure is finished. Otherwise, another iteration is 
required.   

The Intraday Background Level specifies the portion of each observation which cannot 
be affected by human intervention - we call this portion the non-anthropogenic portion. 
Whatever portion is left over after subtracting out the background level is referred to as 
the anthropogenic portion. The anthropogenic portion of the initial monitor 
observations is the only part which will be affected by the Intraday Rollback Method.   

In a way analogous to the Interday Rollback procedure, BenMAP calculates the twenty-
four hourly anthropogenic observations and the twenty-four hourly non-anthropogenic 
observations using the following procedure for each hourly observation:   

IF the current value of the observation is less than or equal to the Intraday 
Background Level,   

non-anthropogenic observation = observation   

anthropogenic observation = 0   

ELSE  

non-anthropogenic observation = Intraday Background Level   

anthropogenic observation = observation - Intraday Background Level    

Given (i) an Attainment Test Metric (e.g., EightHourDailyMax), (ii) an Intraday 
Background Level, and (iii) a target metric value for the day, BenMAP proceeds to 
adjust hourly observations in the following steps:   

1.  Calculate the Attainment Test metric (e.g., the 8-hour daily maximum);   

2.  Identify the “window” - i.e., the set of hours used to calculate the metric (e.g., if the 
8-hour daily maximum is achieved in the first 8 hours, then the window is 
comprised of the first 8 hours);   

3.  Calculate the non-anthropogenic hourly observations (=min(hourly observation, 
Intraday Background Level));   
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4.  Calculate the anthropogenic hourly observations (=hourly observation - Intraday 
Background Level);   

5.  Calculate the non-anthropogenic metric value (= the metric using the non-
anthropogenic hourly observations in the “window”);   

6.  Calculate the anthropogenic metric value (= the metric using the anthropogenic 
hourly observations in the “window”);   

7.  Calculate the anthropogenic target metric value (= the target metric value minus the 
non- anthropogenic metric value);   

8.  Calculate the reduction required to get the anthropogenic metric value down to the 
anthropogenic target metric value;   

9.  Adjust all anthropogenic hourly observations by the reduction calculated on the 
previous step;   

10. Calculate the adjusted hourly observations (= the adjusted anthropogenic hourly 
observation + the non-anthropogenic hourly observation).  

A.3.2.1  Intraday Rollback - Percentage   

Below, we present two examples of a percentage-based Intraday Rollback. In one 
example, a single iteration is needed, and in the second example, two iterations are 
required because a number of the monitor values fall below the assumed background 
level.   

A.3.2.1.1  Example: All Hourly Observations Exceed the Intraday Background (Single 
Iteration)   

If all of the hourly observations in a day are greater than the Intraday Background 
Level, then the above procedure is straightforward and can be accomplished in a single 
iteration. We illustrate with the following example. Suppose that:   

Metric = EightHourDailyMax,   

Target metric value for a given day = 85   

Intraday Background Level = 40.   

And that the hourly observations on that day are: 

530  45  50  60  45  45  45  60  70  100  100  100  100   

100  100  100  100  60  45  50  45  45  47  47    

Based on these observations, we see that the 8-hour daily maximum = 110.   
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Assuming a background level of 40, then the Anthropogenic hourly observations are: 

490  5 10  20  5 5 5 20  30  60  60  60  60  60   

60  60  60  20  5 10  5 5 7 7  

Then, we know:   

Anthropogenic metric value = 70.   

Non-anthropogenic metric value = 40.   

Anthropogenic target metric value = 45.   

Percentage reduction required = ((70-45)/70) = 35.7%    

All of the hourly anthropogenic observations are reduced by 35.7%. The average of the 
first 8 values (the window on which the Test metric is based) will be exactly 45, the 
anthropogenic target metric value. Finally, the adjusted hourly observations are 
calculated by adding the non- anthropogenic hourly observation to the adjusted hourly 
anthropogenic observations.   

A.3.2.1.2 Example: Some Hourly Observations are Below the Intraday Background 
(Multiple Iterations Required)   

In the above example, the anthropogenic target metric value was met on a single 
iteration because all of the hourly observations were greater than the Intraday 
Background Level. In this case, a simple percent reduction of all hourly values will 
produce an average in the window that is equal to the anthropogenic target metric 
value. If some of the hourly observations in a day are less than or equal to the Intraday 
Background Level, however, then BenMAP uses an iterative procedure.  

On each iteration, it adjusts hourly observations using the 10-step method given above. 
It then compares the new metric value to the target metric value. If the difference is less 
than or equal to 0.05 ppb, the rollback procedure is finished. Otherwise, another 
iteration is required. The iterative procedure is illustrated in the following example. 

Suppose that: 

Metric = EightHourDailyMax, 

Target metric value for a given day = 85  

Intraday Background Level = 40.    

Suppose also that the hourly observations on that day are:   

530  20  25  60  35  35  40  60  70  100  100  100  100   
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100  100  100  100  60  33  40  30  30  25  20   

Then, we know that the 8-hour daily maximum = 100.6.   

Non-Anthropogenic Hourly Observations, Iteration One: 

40  20  25  40  35  35  40  40  40  40  40 40 

40  40  40  40  40  40  33  40  30  30  25  20    

Anthropogenic Hourly Observations, Iteration One:   

490  0 0 20  0 0 0 20  30  60  60  60  60  60   

60  60  60  20  0 0 0 0 0 0   

Non-Anthropogenic Metric Value: 34.4  (EightHourDailyMax - calculated over the 
same eight hour window as the initial metric value was calculated over)   

Anthropogenic Metric Value: 66.3   

Anthropogenic Target Metric Value: 50.6   

Percentage Reduction Required: 23.6%    

Reduced Anthropogenic Hourly Observations, Iteration One:   

374  0 0 15  0 0 0 15  23  46  46  46   

46  46  46  46  46  15  0 0 0 0 0 0   

Reduced Hourly Observations, Iteration One:   

414  20  25  55  35  35  40  55  63  86  86  86  86   

86  86  86  86  55  33  40  30  30  25  20   

Reduced Metric Value (EightHourDailyMax): 85.8   

Target Metric Value (EightHourDailyMax): 85    

Non-Anthropogenic Hourly Observations, Iteration Two:   

40  20  25  40  35  35  40  40  40  40  40  40  40   

40  40  40  40  40  33  40  30  30  25  20    

Anthropogenic Hourly Observations, Iteration Two:   

374  0 0 15  0 0 0 15  23  46  46  46  46   
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46  46  46  46  15  0 0 0 0 0 0  

Non-Anthropogenic Metric Value: 40  (EightHourDailyMax - calculated over the same 
eight hour window the initial metric value was calculated over)   

Anthropogenic Metric Value: 45.8   

Anthropogenic Target Metric Value: 45   

Percentage Reduction Required: 1.9%    

Reduced Anthropogenic Hourly Observations, Iteration Two:   

368  0 0 15  0 0 0 15  23  45  45  45  45  45   

45  45  45  15  0 0 0 0 0 0   

Reduced Hourly Observations, Iteration Two:   

408  20  25  55  35  35  40  55  63  85  85  85  85  85   

85  85  85  55  33  40  30  30  25  20   

Reduced Metric Value (EightHourDailyMax): 85   

The above example, in addition to illustrating the Intraday Percentage Rollback, also 
illustrates one reason why the iterative procedure can be necessary. When using the 
EightHourDailyMax metric in the Attainment Test, it is possible for the window over 
which the maximum eight hour average occurs to move after a single pass through the 
rollback procedure. When this happens, it becomes necessary to go through additional 
iterations to hit the target metric value.   

A.3.3  Intraday Rollback - Incremental   

To adjust hourly observations using Incremental rollback, BenMAP calculates the 
increment required to reduce the anthropogenic metric value to exactly the 
anthropogenic target metric value. This incremental reduction is then applied to all of 
the anthropogenic observations (but - they are not allowed to fall below zero). Finally, 
these reduced anthropogenic observations are added to the non-anthropogenic 
observations to give the final reduced observations.   

Example:   

Initial Hourly Observations:   

20  20  25  60  35  35  40  70  35  30  65  90  76   

65  35  35  54  60  33  40  30  30  25  20   
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Initial Metric Value (EightHourDailyMax): 60   

Target Metric Value (EightHourDailyMax): 55   

Intraday Background Level: 40   

Intraday Rollback Method: Incremental    

 

Non-Anthropogenic Hourly Observations, Iteration One:   

20  20  25  40  35  35  40  40  35  30  40  40  40   

40  35  35  40  40  33  40  30  30  25  20    

 

Anthropogenic Hourly Observations, Iteration One:   

0 0 0 20  0 0 0 30  0 0 25  50  36   

25  0 0 14  20  0 0 0 0 0 0   

Non-Anthropogenic Metric Value (EightHourDailyMax): 38.8  

Anthropogenic Metric Value (EightHourDailyMax): 21.3   

Anthropogenic Target Metric Value (EightHourDailyMax): 16.3   

Incremental Reduction Required: 5.0 

 

Reduced Anthropogenic Hourly Observations, Iteration One:   

0 0 0 15  0 0 0 25  0 0 20  45  31   

20  0 0 9 15  0 0 0 0 0 0   

Reduced Hourly Observations, Iteration One:   

20  20  25  55  35  35  40  65  35  30  60  85  71   

60  35  35  49  55  33  40  30  30  25  20   

Reduced Metric Value (EightHourDailyMax): 56.25   

Target Metric Value (EightHourDailyMax): 55    
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Non-Anthropogenic Hourly Observations, Iteration Two:   

20  20  25  40  35  35  40  40  35  30  40  40  40   

40  35  35  40  40  33  40  30  30  25  20   

Anthropogenic Hourly Observations, Iteration Two:   

0 0 0 15  0 0 0 25  0 0 20  45  31   

20  0 0 9 15  0 0 0 0 0 0   

Non-Anthropogenic Metric Value (EightHourDailyMax): 38.8   

Anthropogenic Metric Value (EightHourDailyMax): 17.5   

Anthropogenic Target Metric Value (EightHourDailyMax): 16.3   

Incremental Reduction Required: 1.25   

 

Reduced Anthropogenic Hourly Observations, Iteration Two:   

0 0 0 14  0 0 0 24  0 0 19  44  30   

19  0 0 8 14  0 0 0 0 0 0   

Reduced Hourly Observations, Iteration Two:   

20  20  25  54  35  35  40  64  35  30  59  84  70   

59  35  35  48  54  33  40  30  30  25  20   

Reduced Metric Value (EightHourDailyMax): 55.3   

Target Metric Value (EightHourDailyMax): 55    

 

This example should actually continue for one further iteration, with a new Incremental 
Reduction of 0.3. This illustrates another reason why the iterative procedure can be 
necessary - for incremental reductions, the prohibition against values becoming 
negative can cause target metric values to not be met. Incremental reductions thus very 
often require multiple iterations.   
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A.3.4  Interday and Intraday Rollback - Quadratic   

Quadratic rollback is based on an algorithm developed by Horst and Duff . The idea 
behind quadratic rollback is to reduce large values proportionally more than small 
values while just achieving the standard - that is, the out-of-attainment value should be 
more or less at the standard after the rollback (some small amount of error is involved).   

The original quadratic rollback algorithm is designed to roll back hourly observations 
given a desired peak value. That is, it assumes that the Attainment Test metric is the 
one-hour average and the Attainment Test ordinality is one. As such, the algorithm was 
modified slightly to allow for ordinalities other than one to be used.   

The basic formula for quadratic rollback is:   

Reduced Observation = [ 1 - ( A + B × Initial Observation ) ] × Initial Observation   

where:   

i ranges over the days being reduced.   

A = 1- V  

V  =  Min( 1, Vi )   

Vi  =  ( 2 × Maximum Observation Value × Standard ) / Xi   

Xi  =  ( 2 × Maximum Observation Value × Metricsi ) - Metricsi2   

B  =  Max( 0, [( V × Out of Attainment Value - Standard ) / Out of Attainment Value2]) 

A.3.4.1  Quadratic Rollback - Interday   

Because Quadratic Rollback was originally designed to adjust hourly observations to 
meet a daily metric standard, it is slightly complicated to use it to generate target metric 
values.   

First, Quadratic Rollback calculates the anthropogenic out of attainment value by 
subtracting the Intraday Background Level from the out of attainment value. Note that 
this differs from the other interday rollback methods, which subtract the Interday 
Background Level from the out of attainment value. Similarly, the anthropogenic 
standard is calculated by subtracting the Intraday Background Level from the standard.   

The anthropogenic observations and non-anthropogenic observations are then 
calculated. For pollutants which have daily observations (PM10, PM2.5) the 
anthropogenic metric values are used (see above for their calculation). For pollutants 
which have hourly observations (Ozone), Quadratic Rollback loops through each metric 
value and calculates the twenty four corresponding anthropogenic observations and 
non-anthropogenic observations as follows:   

IF the metric value is at or below the Interday Background Level,   
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For each observation,   

non-anthropogenic observation = observation   

anthropogenic observation = 0   

ELSE   

For each observation,   

IF the observation is at or below the Intraday Background Level   

non-anthropogenic observation = observation   

anthropogenic observation = 0   

ELSE   

non-anthropogenic observation = Intraday Background Level   

anthropogenic observation = observation - Intraday 
Background Level    

A new set of anthropogenic metric values is then calculated by generating the 
Attainment Test metric from the anthropogenic observations. The Quadratic Rollback 
algorithm is then called, passing in the anthropogenic metric values as Metrics, 
anthropogenic observations as Observations, anthropogenic standard as Standard, and 
anthropogenic out of attainment value as Out of Attainment Value. The result is a set of 
reduced anthropogenic observations. These are then added together with the non-
anthropogenic observations to give a final set of reduced observations.   

Then, if Quadratic Rollback was also selected as the Intraday Rollback method, these 
observations are used as the final reduced observations for the monitor. Otherwise, 
metric targets are generated from these hourly observations, and the observations 
themselves are discarded.  

A.3.4.2  Quadratic Rollback - Intraday   

Quadratic Rollback can also be used to adjust hourly observations to meet metric 
targets generated via a different rollback method. In this case, the algorithm is used to 
adjust each set of twenty four hourly observations to meet the corresponding metric 
target. Intraday Quadratic Rollback uses the normal set of anthropogenic observations 
as Observations, a single normal anthropogenic metric value as Metrics, and the normal 
anthropogenic metric target as Standard. Intraday Quadratic Rollback tends to always 
slightly miss its metric target, so it is not run in an iterative fashion as the other 
Intraday Rollback Methods are (doing so would sometimes result in an infinite loop). 
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Appendix B: Air Pollution Exposure Estimation 
Algorithms   

BenMAP has grouped individuals into what we refer to as “population grid-cells,” where 
the grid-cells typically conform to some type of grid used in an air quality model, such 
as the REMSAD air quality model, or just the counties of the United States. For each type 
of grid, the population is built in each grid-cell by aggregating census block data. In the 
next step, BenMAP estimates the air pollution exposure for each grid-cell, with the 
assumption that people living within a particular grid-cell experience the same air 
pollution levels.   

You have a variety of approaches to estimate the exposure to air pollution for the 
people living within a given population grid-cell. Perhaps the simplest approach is to 
use model data directly, and to assume that the people living within a particular model 
grid-cell experience the level estimated by the model. An alternative approach is to use 
air pollution monitoring data, where you may choose the closest monitor data to the 
center of a grid-cell or take an average of nearby monitors. In a third general approach, 
you may combine both modeling and monitoring data to estimate exposure.   

When combining modeling and monitoring data, BenMAP scales or adjusts the 
monitoring data with modeling data. The advantage of modeling data is that they can 
provide predictions for years in which monitoring data are not available, as well as to 
provide predictions in areas of the country for which monitoring data are not available. 
And the advantage of monitor data is that they are based on actual observations. 
Combining both sources of information, allows BenMAP to make more informed 
predictions.   

The goal of estimating exposure is to provide the necessary input for concentration-
response functions, so that BenMAP can estimate the impact of air pollution on adverse 
health effects. Table B-1 lists the types of metrics commonly used in concentration-
response functions. In the case of air pollution metrics calculated on a daily basis, such 
as the one-hour maximum and the 24-hour average, it is often the case that there are 
missing days of data. Air quality modeling is often conducted on a subset of the days in 
the year, and air quality monitors often miss a number of observations throughout the 
year. To account for missing days, BenMAP represents the distribution of daily metrics 
with a certain number points or “bins,” where each bin represents a certain range of the 
distribution, with the underlying assumption that missing days have the same 
distribution as the available data. For example, for analyses of the United States the 
Environmental Protection Agency has typically used 153 bins to represent the ozone 
season from May through September, and for particulate matter they have used 365 
bins to represent the year. In addition to being able to account for incomplete or 
missing data, and using bins to represent the distribution provides a uniform approach 
that allows for easy comparison of different monitors.  
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 Table B-1.  Metrics Typically Used in Concentration-Response Functions for Criteria 
Air Pollutants 

Measurement 
Frequency Metric Name Metric Description 

Daily (e.g., PM2.5, 
PM10) 

Daily Average Daily average 
Annual Average Average of four quarterly averages. The four 

quarters are defined as:  Jan-Mar, April-June, Jul-
Sep, Oct-Dec. 

 Annual Median Median of values throughout the year. 
Hourly (e.g., Ozone) 1-hour Daily Max Highest hourly value from 12:00 A.M. through 

11:59 P.M. 
8-hour Daily Average Average of hourly values from 9:00 A.M. through 

4:59 P.M. 
 12-hour Daily Average Average of hourly values from 8:00 A.M. through 

7:59 P.M. 
 24-hour Daily Average Average of hours from 12:00 A.M. through 11:59 

P.M. 
 

B.1  Direct Modeling  
When using direct modeling data to estimate exposure, BenMAP assumes that the 
people living within a particular air pollution model grid-cell experience the same air 
pollution levels. BenMAP then estimates the air pollution metrics of interest, as defined 
for each pollutant. (See the section on defining pollutants in the Loading Data chapter.)   

Generally modeling data providing hourly observations are complete for any given day.  
However, it is common to have missing days of modeling data during the course of a 
year. Given the estimated metrics from the available data, BenMAP then represents the 
distribution of daily metrics with the number of days specified for each pollutant. By 
calculating bins with the available days, BenMAP assumes that the distribution of 
missing days is similar to the distribution of available data.   

B.2 Closest Monitor   
When using the closet monitor to represent air pollution levels at a population grid-cell, 
BenMAP identifies the center of the population grid-cell, and then chooses the monitor 
that is closest to the center. In the simplest case, BenMAP assigns the closest monitor to 
a population grid-cell, uses the monitoring data to calculate the annual and daily air 
pollution metrics, and then calculates the bins that represent the distribution of the 
daily metrics. The annual metrics and the binned daily metrics are then used in the 
calculation of health effects.   

The figure below presents nine population grid-cells and three monitors, with the focus 
on identifying the monitor closest to grid-cell “E.” In this example, the closest monitor 
happens to be 10 miles away from the center of grid-cell E, and the data from this 
monitor would be used to estimate air pollution levels for the population in this grid-
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cell. An analogous procedure would be used to estimate air pollution levels in the other 
grid-cells (A, B, C, D, F, G, H, and I).   

To capture some of the information generated by air pollution models, BenMAP can also 
scale the data from the closest monitor with air pollution modeling data. BenMAP 
includes two types of scaling - “temporal” and “spatial” scaling. We discuss each below. 

   
B.2.1  Closest Monitor - Temporal Scaling   

With temporal scaling, BenMAP scales monitoring data with the ratio of the future-year 
to base-year modeling data, where the modeling data is from the modeling grid-cell 
containing the monitor. In the case of pollutants typically measured hourly, such as 
ozone, BenMAP scales the hourly monitor values, calculates the annual and daily 
metrics of interest, and then bins the daily metrics. In the case of pollutants typically 
measured daily, BenMAP scales the daily values, calculates the annual metrics of 
interest, and then bins the daily metric.   

Consider the case in the figure below. To forecast air pollution levels for 2030, BenMAP 
would multiply the 1995 monitor value (80 ppb) by the ratio of the 2030 model value 
(70 ppb) to the 1995 model value (95 ppb):   

Forecast2030 = Monitor Value 1995 × (Model Value D, 2030 / Model Value D, 
1995)   

Forecast2030 = 80 ppb × (70 ppb / 95 ppb) = 58.9 ppb.  
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In this example, we have examined the adjustment of a single monitor value with the 
ratio of single model values. The approach is essentially the same when there are 
multiple monitor values and multiple model values.  

B.2.2  Closest Monitor - Spatial Scaling   

With spatial scaling, we are estimating a monitor value for the center of each population 
grid-cell. We start by choosing the closest monitor to the center of each population grid-
cell, and then we scale this closest monitor with modeling data. In particular, BenMAP 
multiplies the monitoring data with the ratio of the base-year modeling data for the 
destination grid-cell to the base-year modeling data for grid-cell containing the monitor. 
The spatial scaling occurs in the same fashion as with temporal scaling. In the case of 
pollutants typically measured hourly, such as ozone, BenMAP scales the hourly monitor 
values, calculates the annual and daily metrics of interest, and then bins the daily 
metrics. In the case of pollutants typically measured daily, BenMAP scales the daily 
values, calculates the annual metrics of interest, and then bins the daily metric.   

To estimate air pollution levels for 1995 in grid-cell “E” below, BenMAP would multiply 
the 1995 closest monitor value (80 ppb) by the ratio of the 1995 model value for grid-
cell “E” (70 ppb) to the 1995 model value for grid-cell “D” (95 ppb):   

Forecast1995 = Monitor Value1995 × (Model Value E, 1995 / Model Value D, 
1995)   

Forecast1995 = 80 ppb × (85 ppb / 95 ppb) = 71.6 ppb.  
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B.2.3  Closest Monitor - Temporal and Spatial Scaling   

Combining both temporal and spatial scaling, BenMAP first multiplies monitoring data 
with both the ratio of the future-year to base-year modeling data, where the modeling 
data is from the modeling grid-cell containing the monitor. This gives a temporary 
forecast for 2030. BenMAP then multiplies this temporary forecast with the ratio of the 
future-year modeling data for the destination grid-cell to the future-year modeling data 
for grid-cell containing the monitor. As seen below, this simplifies to multiplying 
monitoring data with both the ratio of future-year modeling data from the destination 
grid-cell to the base-year modeling data from the grid-cell containing the monitor. 
Again, as described for temporal and spatial scaling, BenMAP first scales the hourly and 
daily values, generates the metrics of interest and then bins the daily metrics.   

To forecast air pollution levels for 2030 in the figure below, BenMAP would multiply 
the 1995 monitor value (80 ppb) by the ratio of the 2030 model value (70 ppb) to the 
1995 model value (95 ppb):   

Temporary Forecast 2030 = Monitor Value 1995 × (Model Value D, 2030 / Model 
Value D, 1995)   

Temporary Forecast 2030 = 80 ppb × (70 ppb / 95 ppb) = 58.9 ppb.   

Forecast 2030 = Temporary Forecast 2030 × (Model Value E, 2030 / Model Value 
D, 2030)  
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Forecast 2030 = 58.9 ppb × (60 ppb / 70 ppb) = 50.5 ppb.   

Note that through cancellation, this equation simplifies to:   

Forecast 2030 = Monitor Value 1995 × (Model Value E, 2030 / Model Value D, 
1995)   

  

B.3 Voronoi Neighbor Averaging (VNA)   
Like the closest monitor approach, the Voronoi Neighbor Averaging (VNA) algorithm 
uses monitor data directly or in combination with modeling data. However, instead of 
using the single closest monitor to estimate exposure at a population grid-cell, the VNA 
algorithm interpolates air quality at every population grid cell by first identifying the 
set of monitors that best “surround” the center of the population grid-cell. 
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In particular, BenMAP identifies the nearest monitors, or “neighbors,” by drawing a 
polygon, or “Voronoi” cell, around the center of each BenMAP grid cell. The polygons 
have the special property that the boundaries are the same distance from the two 
closest points.  
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BenMAP then chooses those monitors that share a boundary with the center of grid-cell 
“E.” These are the nearest neighbors, BenMAP uses these monitors to estimate the air 
pollution level for this grid-cell.  

 
To estimate the air pollution level in each grid-cell, BenMAP calculates the metrics for 
each of the neighboring monitors, and then calculates an inverse-distance weighted 
average of the metrics. The further the monitor is from the BenMAP grid-cell, the 
smaller the weight.  

In the figure below, the weight for the monitor 10 miles from the center of grid-cell E is 
calculated as follows:  
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The weights for the other monitors would be calculated in a similar fashion. BenMAP 
would then calculate an inverse-distance weighted average for 1995 air pollution levels 
in grid-cell E as follows:   

Forecast 1995 = 0.35×80 ppb + 0.24×90 ppb+ 0.24×60 ppb + 0.18×100 ppb = 81.2 
ppb. 
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B.3.1 VNA / Temporal Scaling  

Like the closest monitor approach, the Voronoi Neighbor Averaging (VNA) algorithm 
uses monitor data directly or in combination with modeling data. However, instead of 
using the single closest monitor to estimate exposure at a population grid-cell, the VNA 
algorithm interpolates air quality at every population grid cell by first identifying the 
set of monitors that best “surround” the center of the population grid-cell.  
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In particular, BenMAP identifies the nearest monitors, or “neighbors,” by drawing a 
polygon, or “Voronoi” cell, around the center of each BenMAP grid cell. The polygons 
have the special property that the boundaries are the same distance from the two 
closest points. 
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We then choose those monitors that share a boundary with the center of grid-cell “E.” 
These are the nearest neighbors, we use these monitors to estimate the air pollution 
level for this grid-cell. 

 
To estimate the air pollution level in each grid-cell, BenMAP calculates the annual and 
the binned daily metrics for each of the neighboring monitors, and then calculates an 
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inverse-distance weighted average of the metrics. The further the monitor is from the 
BenMAP grid-cell, the smaller the weight. 

In the figure below, the weight for the monitor 10 miles from the center of grid-cell E is 
calculated as follows: 

.35.0

20
1

15
1

15
1

10
1

10
1

10 =






 +++

=milesweight  

The weights for the other monitors would be calculated in a similar fashion. BenMAP 
would then calculate an inverse-distance weighted average for 1995 air pollution levels 
in grid-cell E as follows:  

Forecast 1995 = 0.35×80 ppb + 0.24×90 ppb+ 0.24×60 ppb + 0.18×100 ppb = 81.2 
ppb . 

 
Note that BenMAP is calculating an inverse-distance weighted average of the annual 
metrics and the binned daily metrics. Alternatively, BenMAP could calculate an inverse-
distance weighted average of the hourly and daily observations, calculated the annual 
and daily metrics, and then binned the daily metrics.  
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B.3.2 Voronoi Neighbor Averaging (VNA) - Spatial Scaling   

BenMAP can also combine VNA with spatial scaling. For each of the neighbor monitors, 
BenMAP multiplies the monitoring data with the ratio of the base-year modeling data 
for the destination grid-cell to the base-year modeling data for grid-cell containing the 
monitor. The spatial scaling occurs in the same fashion as with temporal scaling. In the 
case of pollutants typically measured hourly, such as ozone, BenMAP scales the hourly 
monitor values, calculates the annual and daily metrics of interest, and then bins the 
daily metrics. In the case of pollutants typically measured daily, BenMAP scales the 
daily values, calculates the annual metrics of interest, and then bins the daily metric.   

Consider the example in the figure below. To forecast air pollution levels for 1995, 
BenMAP would multiply the 1995 monitor value by the ratio of the 1995 model value 
(of the grid cell destination) to the 1995 model value (of the neighbor grid cell 
containing the monitor): 
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B.3.3 Voronoi Neighbor Averaging (VNA) - Temporal & Spatial Scaling   

Combining both temporal and spatial scaling, BenMAP multiplies monitoring data with 
the ratio of the future-year to base-year modeling data, where the future-year modeling 
data are from the destination grid-cell and the base-year modeling data are from the 
grid-cell containing the monitor. One the hourly and daily monitoring data are scaled, 
BenMAP generates the metrics of interest, bins the daily metrics, and then uses the 
metrics to estimate adverse health effects in the population grid-cell.   

The figure below gives an example of combining temporal and spatial scaling.  
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4

1
2030

i
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i
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××=
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B.4 Fixed Radius   
When using the fixed radius option to represent air pollution levels at a population 
grid-cell, BenMAP identifies all monitors within a specified distance of the center of the 
population grid- cell, calculates the metrics at each monitor, and then calculates a 
weighted average of the metrics using the algorithms described for VNA. When no 
monitors are within the specified distance, BenMAP assigns the closest monitor to a 
population grid-cell, and calculates the metrics using the algorithms described for the 
closest monitor approach.   

B.5 Temporal and Spatial Scaling Adjustment Factors   
As presented in the preceding examples of temporal and spatial scaling, the closest 
monitor, VNA, and fixed radius approaches can use model data to scale monitor 
observations. In the examples above, we scaled single monitor values with the ratio of 
single model values. In fact, however, the scaling involves multiple monitor values and 
multiple model values.   

To proceed with the scaling, BenMAP takes the modeling values and splits them into 
groups, depending on how the pollutant is defined. (See the section on defining 
pollutants in the Loading Data chapter.) The United States setup has defined ozone to 
have a default of 10 adjustment factors for the ozone season, where the first group 
represents the first 10 percent of the model observations; the second group represents 
the observations between the 10th and 20th percentile; and so on through the tenth 
group, which represents the observations between the 90th and 100th percentiles. 
BenMAP then averages the values in each group. The United States setup has defined 
particulate matter to have five adjustment factors for each of the four seasons in the 
year, where the first group in each season represents the first 20 percent of the model 
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observations; the second group represents the observations between the 20th and 40th 
percentiles; and so on. Then, as for ozone model values, BenMAP averages the 
particulate matter model values in each group.   

BenMAP treats the monitor values in a similar way. It sorts the monitor values from low 
to high, and divides them into the same number groups as there are scaling factors.  

B.5.1 Calculation of Scaling Factors   

In developing scaling factors for the standard United States setup, BenMAP sorts the 
modeling data into either 10 groups or 20 groups, depending on the pollutant (e.g., 10 
for ozone and 20 for particulate matter, 5 for each of the 4 seasons). Given the number 
of groups, BenMAP then determines how to assign the model values. In determining to 
which group a value belongs, BenMAP assigns a two-digit “percentile” to each value. 
With values in a given grid-cell sorted from low to high, the percentile for each value 
will equal: (the observation rank number minus 0.5) divided by (the total number of 
values) multiplied by (100). If there are 250 hourly values, the first hourly value will 
have a percentile = (1-0.5)/(250) × (100) = 0.20%; the 27th value will have a percentile 
= (27-0.5)/(250) × (100) = 10.60%; and so on.   

Each data group is represented by “group-lo” and “group-hi” values. These are the 
minimum and the maximum percentiles in each group, where group-lo equals: (group 
rank minus 1) multiplied by (100) divided by (the number of groups); and group-hi 
equals: (group rank) multiplied by (100) divided by (the number of groups) minus 
0.001. If there are ten groups: the first group will have: group-lo = (1-1)/100×10 = 
0.000%, and group-hi = (1/100×10)-0.001 = 9.999% ; the second group will have: 
group-lo = (2-1)/100×10 = 10.000%, and group-hi = (2/100×10)-0.001 = 19.999% ; 
and so on to the tenth group, which will have: group-lo = (10-1)/100×10 = 90.000%, 
and group-hi = (10/100×10)-0.001 = 99.999%. BenMAP assigns each observation to a 
particular group with the following algorithm: if “group-lo” <“percentile” < “group-hi”, 
then assign the observation to that data group.   

Below we give some examples of the calculations that BenMAP performs when scaling.  

B.5.1.1  Example: PM2.5 Scaling Factors in U.S. Setup   

After preparing the PM2.5 model and monitor data, BenMAP calculates the following:  

baselj

futurekj
basejifutureji REMSAD

REMSAD
monitormonitoradjusted

,,

,,
,,,, ×=

  

Where:  

 adjusted monitor  =  predicted daily PM2.5 level, after adjustment by model data 
(µg/m3)   

 monitor  =  observed daily PM2.5 monitor level (µg/m3)  
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 i  =  day identifier 

  j  =  model season/quintile group (1 to 20)  

 k  =  grid cell identifier for population grid cell  

 l  =  grid cell identifier for grid cell containing monitor  

 base  =  base-year (e.g., 2000)  

 future  =  future-year (e.g., 2020)  

 REMSAD  =  representative model season/quintile value (µg/m3)  

After adjusting the monitor values to reflect air quality modeling, BenMAP calculates for 
each monitor the PM2.5 metrics needed to estimate adverse health effects. In the case of 
VNA, BenMAP then calculates a weighted average (e.g., inverse-distance weighted 
average) of the neighbors identified for each population grid cell:  

∑
=

×=
n

m
mfuturemfuture weightmonitoradjustedcellgridpopulation

1
,   

Where:  

population grid cell = inverse distance-weighted PM2.5 metric at population grid cell 
(µg/m3)  

 adjusted monitor = predicted PM2.5 metric, after adjustment by model data 
(µg/m3)  

 m = monitor identifier  

 base = base-year (e.g., 2000) 

  future = future-year (e.g., 2020) 

  weight = inverse-distance weight for monitor  

After generating the bins for both the baseline and control scenarios, BenMAP uses 
these to calculate the change in air quality needed in most health impact functions to 
calculate the change in adverse health effects. To calculate the change in air quality, 
BenMAP subtracts the baseline value in the first bin from the control value in the first 
bin, and so on for each of the bins created for the daily PM2.5 average.  

B.5.1.2  Example: Ozone Scaling in U.S. Setup   

After preparing the ozone model and monitor data, BenMAP calculates the following:  
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baselj

futurekj
basejifutureji CAMX

CAMX
monitormonitoradjusted

,,

,,
,,,, ×=

  

Where:  

 Adjusted monitor = predicted hourly ozone level, after adjustment by model data 
(ppb) 

  Monitor = observed hourly ozone monitor level (ppb) 

  i = hour identifier  

 j  = model decile group (1 to 10)  

 l  = grid cell identifier for grid cell containing monitor  

 base  = base-year (e.g., 1996) 

  future = future-year (e.g., 2030) 

  CAMX = representative model decile value (ppb)  

After adjusting the monitor values to reflect air quality modeling, BenMAP calculates for 
each monitor the ozone metrics needed to estimate adverse health effects. In the case of 
VNA, BenMAP then calculates a weighted average (e.g., inverse-distance weighted 
average) of the neighbors identified for each population grid cell:  

∑
=

×=
n

m
mfuturemfuture weightmonitoradjustedcellgridpopulation

1
,

  

Where: 

 population grid cell = inverse distance-weighted ozone metric at population grid cell 
(ppb) 

  adjusted monitor = predicted ozone metric, after adjustment by model data (ppb) 

  m = monitor identifier 

  future  =  future-year (2020, 2030)  

 weight  =  inverse-distance weight for monitor  

After generating the bins for both the baseline and control scenarios, BenMAP can use 
these to calculate the change in air quality needed in most C-R functions to calculate the 
change in adverse health effects. To calculate the change in air quality, BenMAP 
subtracts the baseline value in the first bin from the control value in the first bin, and so 
on for each of the bins created for the daily ozone metrics.  
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B.6 Binned Metrics  
When estimating air pollution exposure, it will often happen that metrics are often not 
available for each day in the year. To remedy this, BenMAP calculates representative 
values or bins with the available daily metrics, under the assumption that the missing 
days have a similar distribution. Each bin represents a day. In the case where there are 
365 bins, the set of bins represents the entire year.   

When combining air pollution metrics from multiple monitors, BenMAP first calculates 
the bins for the daily metrics, and then combines the bins, such as with some form of 
VNA. Once BenMAP has calculated binned exposure measures for both a baseline and a 
control scenario, BenMAP then takes the difference between the two scenarios for each 
bin - taking the difference between the baseline value in the first bin and the control 
value in the first bin, and so on for each of the bins.
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Appendix C:  Deriving Health Impact Functions  
This Appendix provides of an overview regarding the health impact functions that 
BenMAP uses to estimate the impact of a change in air pollution on adverse health 
effects. It provides a description of the particular types of health impact functions that 
BenMAP uses.   

The functional form of the relationship between the change in pollutant concentration, 
Δx, and the change in population health response (usually an incidence rate), Δy 
depends on the functional form of the C-R function from which it is derived, and this 
depends on the underlying relationship assumed in the epidemiological study chosen to 
estimate a given effect. For expository simplicity, the following subsections refer simply 
to a generic adverse health effect, “y” and uses particulate matter (PM) as the pollutant - 
that is, Δx = ΔPM - to illustrate how the relationship between Δx and Δy is derived from 
each of several different C-R functions.   

Estimating the relationship between ΔPM and Δy can be thought of as consisting of 
three steps:   

(1) choosing a functional form of the relationship between PM and y (the C-R 
function),  (2) estimating the values of the parameters in the C-R function 
assumed, and   
(3) deriving the relationship between ΔPM and Δy (the health impact function) 
from the relationship between PM and y (the C-R function).   

Epidemiological studies have used a variety of functional forms for C-R functions. Some 
studies have assumed that the relationship between adverse health and pollution is 
best described by a linear form, where the relationship between y and PM is estimated 
by a linear regression in which y is the dependent variable and PM is one of several 
independent variables. Log-linear regression and logistic regression are other common 
forms.   

Note that the the log-linear form used in the epidemiological literature is often referred 
to as “Poisson regression” because the underlying dependent variable is a count (e.g., 
number of deaths), believed to be Poisson distributed. The model may be estimated by 
regression techniques but is often estimated by maximum likelihood techniques. The 
form of the model, however, is still log-linear.   

C.1 Overview   
The relationship between the concentration of a pollutant, x, and the population 
response, y, is called the concentration-response (C-R) function. For example, the 
concentration of the pollutant may be fine particulate matter (PM2.5) in µg/m3 per day, 
and the population response may be the number of premature deaths per 100,000 
population per day. C-R functions are estimated in epidemiological studies. A functional 
form is chosen by the researcher, and the parameters of the function are estimated 
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using data on the pollutant (e.g., daily levels of PM2.5) and the health response (e.g., daily 
mortality counts). There are several different functional forms, discussed below, that 
have been used for C-R functions. The one most commonly used is the log-linear form, 
in which the natural logarithm of the health response is a linear function of the 
pollutant concentration.   

For the purposes of estimating benefits, we are not interested in the C-R function itself, 
however, but the relationship between the change in concentration of the pollutant, Δx, 
and the corresponding change in the population health response, Δy. We want to know, 
for example, if the concentration of PM2.5 is reduced by 10 µg/m3, how many premature 
deaths will be avoided? The relationship between Δx and Δy can be derived from the C-
R function, as described below, and we refer to this relationship as a health impact 
function.   

Many epidemiological studies, however, do not report the C-R function, but instead 
report some measure of the change in the population health response associated with a 
specific change in the pollutant concentration. The most common measure reported is 
the relative risk associated with a given change in the pollutant concentration. A 
general relationship between Δx and Δy can, however, be derived from the relative risk. 
The relative risk and similar measures reported in epidemiological studies are 
discussed in the sections below. The derivation of the relationship of interest for 
BenMAP - the relationship between Δx and Δy - is discussed in the subsequent sections.  

C.2  Review Relative Risk and Odds Ratio   
The terms relative risk and odds ratio are related but distinct. Table C-1 provides the 
basis for demonstrating their relationship.   

Table C-1. Relative Risk and Odds Ratio Notation 

Exposure 
Fraction of Population Adverse Effect Measure 

Affected Not Affected Relative Risk Odds 
Baseline Pollutant Exposure y0 1-y0 

y0/yc 
y0/(1-yc) 

Control Pollutant Exposure yc 1-yc yc/(1-yc) 
 

The “risk” that people with baseline pollutant exposure will be adversely affected (e.g., 
develop chronic bronchitis) is equal to y0, while people with control pollutant exposure 
face a risk, y0, of being adversely affected. The relative risk (RR) is simply:  

cy
yRR 0=

  

The odds that an individual facing high exposure will be adversely affected is:  

0

0

1 y
yOdds
−

=
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The odds ratio is then: 
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This can be rearranged as follows:  
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As the risk associated with the specified change in pollutant exposure gets small (i.e., 
both y0 and yc approach zero), the ratio of (1-yc) to (1-y0) approaches one, and the odds 
ratio approaches the relative risk. This relationship can be used to calculate the 
pollutant coefficient in the C-R function from which the reported odds ratio or relative 
risk is derived, as described below.  

C.3 Linear Model   
A linear relationship between the rate of adverse health effects (incidence rate) and 
various explanatory variables is of the form:  

 PMy ×+= βα   

where α incorporates all the other independent variables in the regression (evaluated 
at their mean values, for example) times their respective coefficients. The relationship 
between the change in the rate of the adverse health effect from the baseline rate (y0) to 
the rate after control (yc) associated with a change from PM0 to PMc is then:   

( ) PMPMcPMycyy ∆×=−×=−=∆ ββ 00   

For example, Ostro et al. (1991, Table 5) reported a PM2.5 coefficient of 0.0006 (with a 
standard error of 0.0003) for a linear relationship between asthma and PM2.5 exposure.   

The lower and upper bound estimates for the PM2.5 coefficient are calculated as follows:  

( ) ( ) 5102.10003.096.10006.096.1 −×=×−=×−= βσββ boundlower  
( ) ( ) 00119.00003.096.10006.096.1 =×+=×+= βσββ boundlower   

It is then straightforward to calculate lower and upper bound estimates of the change in 
asthma.  
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C.4 Log-linear Model  
The log-linear relationship defines the incidence rate (y) as:  

PMeBy •×= β   

Or, equivalently,  

,)( PMyIn ×+= βα   

where the parameter B is the incidence rate of y when the concentration of PM is zero, 
the parameter β is the coefficient of PM, ln(y) is the natural logarithm of y, and α = 
ln(B). Other covariates besides pollution clearly affect mortality. The parameter B might 
be thought of as containing these other covariates, for example, evaluated at their 
means. That is,   

nn xxeBoB ββ +⋅⋅⋅+×= 11   

where Bo is the incidence of y when all covariates in the model are zero, and x1, ... , xn 
are the other covariates evaluated at their mean values. The parameter B drops out of 
the model, however, when changes in y are calculated, and is therefore not important.   

The relationship between ∆PM and ∆y is:   

( )10
0 cPMPM

c eeByyy ββ −=−=∆   

This may be rewritten as:  

( )( ) ( )






∆×

−=−×=∆ −−•

PM
yeeBy cPMPMPM

β
ββ

exp
111 0

00   

where y0 is the baseline incidence rate of the health effect (i.e., the incidence rate before 
the change in PM).   

The change in the incidence of adverse health effects can then be calculated by 
multiplying the change in the incidence rate, ∆y, by the relevant population (e.g., if the 
rate is number per 100,000 population, then the relevant population is the number of 
100,000s in the population).   

When the PM coefficient (β) and its standard error (σβ) are published (e.g., Ostro et al., 
1989), then the coefficient estimates associated with the lower and upper bound may 
be calculated easily as follows: 

 ( )βσββ ×−= 96.1boundlower   

( )βσββ ×+= 96.1boundupper   
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Epidemiological studies often report a relative risk for a given ΔPM, rather than the 
coefficient, β (e.g., Schwartz et al., 1995, Table 4). Recall that the relative risk (RR) is 
simply the ratio of two risks: 

 PM

c

e
y
yRR ∆•== β0   

Taking the natural log of both sides, the coefficient in the C-R function underlying the 
relative risk can be derived as:  

( )
PM
RRIn

∆
=β

  

The coefficients associated with the lower and upper bounds (e.g., the 2.5 and 97.5 
percentiles) can be calculated by using a published confidence interval for relative risk, 
and then calculating the associated coefficients.   

Because of rounding of the published RR and its confidence interval, the standard error 
for the coefficient implied by the lower bound of the RR will not exactly equal that 
implied by the upper bound, so an average of the two estimates is used. The underlying 
standard error for the coefficient (σβ) can be approximated by: 

 96.1
5.2

5.2,
percentile

percentile

ββ
σβ

−
=

  

96.1
5.97

5.97,

ββ
σβ

−
= percentile

percentile
  

2
5.97,5.2, percentilepercentile ββ

β

σσ
σ

+
≅

  

C.5 Logistical Model  
In some epidemiological studies, a logistic model is used to estimate the probability of 
an occurrence of an adverse health effect. Given a vector of explanatory variables, X, the 
logistic model assumes the probability of an occurrence is:  

( ) 







+

=×= •

•

β

β

β X

X

e
eXoccurrenceproby

1
| ,  

where β is a vector of coefficients. Greene (1997, p. 874) presents models with discrete 
dependent variables, such as the logit model. See also Judge et al. (1985, p. 763). This 
may be rewritten as:  
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The odds of an occurrence is:  

β

β

•−

•−

+
−








+=

−
=

X

X

e

e
y

yodds

1
11

1
1

1
  

β
β

β

β

β

β

β
•

•−

•−

•−

•−

•−

•−

==









+








+=

+
−








+=⇒ X

X

X

X

X

X

X

e
e

e
e

e

e

eodds 1

1

1
1

1
11

1
1

  

( ) β×=⇒ XoddsIn   

The odds ratio for the control scenario (oddsc) versus the baseline (odds0) is then:  
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The change in the probability of an occurrence from the baseline to the control (Δy), 
assuming that all the other covariates remain constant, may be derived from this odds 

ratio: PMX
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When the coefficient (β) and its standard error (σβ) are published (e.g., Pope et al., 
1991, Table 5), then the coefficient estimates associated with the lower and upper 
bound may be calculated easily as follows: 

 ( )σβββ ×−= 96.1boundlower   

( )σβββ ×−= 96.1boundupper   

Often the logistic regression coefficients are not published, and only the odds ratio 
corresponding to a specified change in PM is presented (e.g., Schwartz et al., 1994). It is 
easy to calculate the underlying coefficient as follows: 

 β×∆= PMratiooddsIn )(   

PM
ratiooddsIn

∆
=⇒

)(β   

The coefficients associated with the lower and upper bound estimates of the odds ratios 
are calculated analogously.  The underlying standard error for the coefficient (σβ) can 
be approximated by: 
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Sometimes, however, the relative risk is presented. The relative risk does not equal the 
odds ratio, and a different procedure should be used to estimate the underlying 
coefficient. Note that ESEERCO (1994, p. V-21) calculated (incorrectly) the underlying 
regression coefficient for Abbey et al. (1993, Table 5) by taking the logarithm of the 
relative risk and dividing by the change in TSP.   

The relative risk (RR) is simply:  

,0

cy
yRR =

  

where y0 is the risk (i.e., probability of an occurrence) at the baseline PM exposure and 
yc is the risk at the control PM exposure.  When the baseline incidence rate (y0) is given, 
then it is easy to solve for the control incidence rate (yc):  

,0

RR
yyc =

  

The odds ratio, may then be calculated: 
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Given the odds ratio, the underlying coefficient (β) may be calculated as before:  

,)(
PM

ratiooddsIn
∆

=β
  

The odds ratio and the coefficient calculated from it are dependent on the baseline and 
control incidence rates. Unfortunately, it is not always clear what the baseline and 
control incidence rates should be. Abbey et al. (1995b, Table 2) reported that there are 
117 new cases of chronic bronchitis out of a sample of 1,631, or a 7.17 percent rate. In 
addition, they reported the relative risk (RR = 1.81) for a new case of chronic bronchitis 
associated with an annual mean concentration “increment” of 45 µg/m3 of PM2.5 
exposure.   
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Assuming that the baseline rate for chronic bronchitis (y0) should be 7.17 percent, the 
question becomes whether the “increment” of 45 µg/m3 should be added to or 
subtracted from the existing PM2.5 concentration. If added the control incidence rate 
(yc) would be greater than the baseline rate (y0), while subtraction would give a control 
rate less than the incidence rate. In effect, one might reasonably derive two estimates of 
the odds ratio:  
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An alternative is to simply assume that the relative risk (1.81) is reasonably close to the 
odds ratio and calculate the underlying coefficient. It is easy to show that the relative 
risk equals:   

( ) 00
0 1 yey

y
yRR PM

c

+×−== •∆− β   

Assuming that:  

 ( ) 001 yeye PMPM +×−≅ •∆−•∆− ββ   

β•∆−≅⇒ PMeRR   
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It is then possible to calculate the underlying coefficient:  

( ) β≅
∆− PM

RRIn
  

( ) 01319.0
45

81.1
3 ==⇒

Inβ
  

Since this coefficient estimate is based on the assumption that 

 ( ) 001 yeye PMPM +×−≅ •∆−•∆− ββ   , 

 it should be used in a C-R function that maintains this assumption. In effect, it should be 
applied to a log-linear C-R function: 

 ( )[ ]10 −×=∆ ∆• PMeyy β   

Using the formula for the change in the incidence rate and assuming a 10 µg/m3 decline 
in PM2.5, it is shown that this results in changes within the bounds suggested by the two 
estimates based on using the estimated odds ratios:  
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In this instance, it seems that simply using the relative risk to estimate the underlying 
coefficient results in a good approximation of the change in incidence. Since it is unclear 
which of the two other coefficients (β1 or β2) should be used - as the published work 
was not explicit - the coefficient based on the relative risk and the log-linear functional 
form seems like a reasonable approach.  

C.6 Cox Proportional Hazards Model  
Use of a Cox proportional hazards model in an epidemiological study results in a C-R 
function that is log-linear in form. It is often used to model survival times, and as a 
result, this discussion focuses on mortality impacts.   
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The Cox proportional hazards model is based on a hazard function, defined as the 
probability that an individual dies at time t, conditional on having survived up to time t 
(Collet, 1994, p. 10). More formally, the hazard function equals the probability density 
function for the risk of dying divided by one minus the cumulative probability density 
function: 

( ) ( )
( )tXF

tXftXh
,1

,,
−

=   

The proportional hazards model takes the form: 

( ) ( ) β•= XethtXh 0,   

where X is a vector of explanatory variables, β is a vector of coefficients, and h0(t) is the 
so- called “baseline hazard” rate. This terminology differs from that used in most of this 
discussion: this “baseline hazard” is the risk when all of the covariates (X) are set to 
zero; this is not the risk in the baseline scenario.   

The Cox proportional hazards model is sometimes termed a “semi-parametric” model, 
because the baseline hazard rate is calculated using a non-parametric method, while the 
impact of explanatory variables is parameterized. Collet (1994) details the estimation of 
Cox proportional hazards models; in particular, see Collet’s discussion (pp. 95-97) of 
nonparametric estimation of the baseline hazard.   

Taking the ratio of the hazard functions for the baseline and control scenarios gives the 
relative risk:  
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where it is assumed that the only difference between the baseline and control is the 
level of PM pollution.   

The relative risk is often presented rather than the coefficient β, so it is necessary to 
estimate β in order to develop functional relationship between ∆PM and ∆y, as 
described previously for log- linear C-R functions. 
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Appendix D:  Health Incidence & Prevalence Data 
in U.S. Setup  

Health impact functions developed from log-linear or logistic models estimate the 
percent change in an adverse health effect associated with a given pollutant change. In 
order to estimate the absolute change in incidence using these functions, we need the 
baseline incidence rate of the adverse health effect. And for certain health effects, such 
as asthma exacerbation, we need a prevalence rate, which estimates the percentage of 
the general population with a given ailment like asthma. This appendix describes the 
data used to estimate baseline incidence and prevalence rates for the health effects 
considered in this analysis.   

D.1 Mortality   
This section describes the development of county mortality rates for years 2010 
through 2050 for use in BenMAP. First, we describe the source of 2004-2006 
individual-level mortality data and the calculation of county-level mortality rates. Then 
we describe how we use national-level Census mortality rate projections to develop 
county-level mortality rate projections for years 2010-2050.   

D.1.1 Mortality Data for 2004-2006   

We obtained individual-level mortality data from 2004-2006 for the whole United 
States from the Centers for Disease Control (CDC), National Center for Health Statistics 
(NCHS). The data were compressed into a CD-ROM, which contains death information 
for each decedent, including residence county FIPS, age at death, month of death, and 
underlying causes (ICD-10 codes).   

Since the detailed mortality data obtained from CDC do not include population, we 
combined them with U.S. Census Bureau postcensal population estimates exported from 
BenMAP. We then generated age-, cause-, and county-specific mortality rates using the 
following formula:   
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where Ri,j,k is the mortality rate for age group i, cause j, and county k; D is the death 
count; and P is the population.   

Following CDC Wonder (http://wonder.cdc.gov), we treated mortality rates as 
“unreliable” when the death count is less than 20. Among all the calculated age-, cause-, 
and county-specific mortality rates, there were about 67% “unreliable” rates. For each 
combination of age group and mortality cause, we used the following procedure to deal 
with the problem of “unreliable” rates:   
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• For a given state, we grouped the counties where the death count (i.e., the 
numerator on the right-hand side of the above equation) was less than 20 and 
summed those death counts across those counties. If the sum of deaths was 
greater than or equal to 20, we then summed the populations in those counties, 
and calculated a single rate for the “state collection of counties” by dividing the 
sum of deaths by the sum of populations in those counties. After this adjustment, 
there were 17% unreliable rates left. This rate was then applied to each of those 
counties.   

• If the sum of deaths calculated in the above step was still less than 20, the 
counties in the “state collection of counties” were not assigned the single rate 
from the above step. Instead, we proceeded to the regional level, according to 
the regional definitions shown below in Table D-1. In each region, we identified 
all counties whose death counts were less than 20 (excluding any such counties 
that were assigned a rate in the previous step). We summed the death counts in 
those counties. If the sum of deaths was greater than or equal to 20, we then 
summed the populations in those counties, and calculated a single rate for the 
“regional collection of counties” by dividing the sum of deaths by the sum of 
populations in those counties. This rate was then applied to each of those 
counties in the “regional collection of counties.”  

Table D-1.  Regional Definitions from U.SS. Census 

Region States Included 
Northeast Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, Connecticut, New York, 

New Jersey, Pennsylvania 
Midwest Ohio, Indiana, Illinois, Michigan, Wisconsin, Minnesota, Iowa, Missouri, North Dakota, 

South Dakota, Nebraska, Kansas 
South Delaware, Maryland, District of Columbia, Virginia, West Virginia, North Carolina, South 

Carolina, Georgia, Florida, Kentucky, Tennessee, Alabama, Mississippi, Arkansas, 
Louisiana, Oklahoma, Texas 

West Montana, Idaho, Wyoming, Colorado, New Mexico, Arizona, Utah, Nevada, Washington, 
Oregon, California, Alaska, Hawaii 

 

If the sum of deaths calculated in the previous (regional) step was still less than 20, the 
counties in the “regional collection of counties” were not assigned the single rate from 
the above step. Instead, we proceeded to the national level, identifying all counties in 
the nation whose death counts were less than 20 (excluding any such counties that 
were assigned a rate in the previous steps). We summed the death counts in those 
counties and divided by the sum of the populations in those counties to derive a single 
rate for the “national collection of counties.” This rate was then applied to each of those 
counties in the “national collection of counties.” Even after this national adjustment, 
there were about 1% unreliable rates left. In these cases, we simply calculated a single 
rate for the “national collection of counties, even though it was “unreliable,” and 
assigned it to those counties in the “national collection of counties.”  
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 Table D-2.  National Mortality Rates (per 100 people per year)  
by Health Endpoint and Age Group 

Mortaity 
Category 

ICD-10 
codes Infant* 1-17 18-24 25-34 35-44 45-54 55-64 65-74 75-84 85+ 

Mortality, 
All Cause 

All 0.22981 0.02813 0.08869 0.10429 0.19248 0.43195 0.90832 2.12421 5.26957 13.97875 

Mortality, 
Non-
Accidental 

A00-R99 0.19705 0.01138 0.02118 0.04298 0.12831 0.36278 0.85309 2.06079 5.13808 13.66477 

Mortality, 
Respiratory 

J00-J98 0.01570 0.00100 0.00126 0.00211 0.00560 0.01817 0.06366 0.22866 0.63404 1.51364 

Mortality, 
Chronic 
Lung 

J40-J47, 
J67 

0.00076 0.00029 0.00040 0.00064 0.00200 0.00906 0.04086 0.15507 0.37626 0.62631 

Mortality, 
Lung 
Cancer 

C34 0.00001 0.00001 0.00006 0.00036 0.00516 0.02980 0.10372 0.25966 0.37795 0.30788 

Mortality, 
Ischemic 
Heart 
Disease 

I20-I25 0.00019 0.00006 0.00041 0.00262 0.01574 0.05952 0.15438 0.37559 1.03204 3.19986 

Mortality, 
Cardio-
Pulmonary 

I00-I78, 
J10-J18, 
J40-J47, 

J67 

0.01685 0.00193 0.00468 0.01171 0.04044 0.12568 0.31814 0.86408 2.52456 7.83928 

*We estimate post-neonatal mortality (deaths after the first month) for infants because the health impact 
function (see Appendix E) estimates post-neonatal mortality.   

 

D.1.2 Mortality Rate Projections 2010-2050  

To estimate age- and county-specific mortality rates in years 2010 through 2050, we 
calculated adjustment factors, based on a series of Census Bureau projected national 
mortality rates (for all- cause mortality), to adjust the age- and county-specific 
mortality rates calculated using 2004- 2006 data as described above. We used the 
following procedure:   

• For each age group, we obtained the series of projected national mortality rates 
from 2005 to 2050 (see the 2005 rate in Table D-3) based on Census Bureau 
projected life tables.   

• We then calculated, separately for each age group, the ratio of Census Bureau 
national mortality rate in year Y (Y = 2010, 2011, ..., 2050) to the 2005 rate. 
These ratios are shown for selected years in Table D-4.   

• Finally, to estimate mortality rates in year Y (Y = 2010, 2010, ..., 2050) that are 
both age group-specific and county-specific, we multiplied the county- and age-
group-specific mortality rates for 2004-2006 by the appropriate ratio calculated 
in the previous step. For example, to estimate the projected mortality rate in 
2010 among ages 18-24 in Wayne County, MI, we multiplied the mortality rate 
for ages 18-24 in Wayne County in 2004-2006 by the ratio of Census Bureau 
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projected national mortality rate in 2010 for ages 18-24 to Census Bureau 
national mortality rate in 2005 for ages 18-24.  

Table D-3. All-Cause Mortality Rate (per 100 people per year),  
by Source, Year, and Age Group 

Source & Year Infant 1-17 18-24 25-34 35-44 45-54 55-64 65-74 75-84 85+ 

Calculated CDC 
2004-2006 

0.230* 0.028 0.089 0.104 0.192 0.432 0.908 2.124 5.270 13.979 

Census Bureau 
2005** 

0.654 0.029 0.088 0.102 0.183 0.387 0.930 2.292 5.409 13.091 

* The Census Bureau estimate is for all deaths in the first year of life. BenMAP uses post-neonatal mortality 
(deaths after the first month, i.e., 0.23 per 100 people) because the health impact function (see Appendix E) 
estimates post-  neonatal mortality. For comparison purpose, we also calculated the rate for all deaths in the 
first year, which is 0.684 per 100 people).   

**For a detailed description of the model, the assumptions, and the data used to create Census Bureau 
projections, see the working paper, “Methodology and Assumptions for the Population Projections of the 
United States: 1999 to 2100, Working Paper #38,” which is available on 
http://www.census.gov/population/www/documentation/twps0038/twps0038.html    

Table D-4. Ratio of Future Year All-Cause Mortality Rate to 2005 Estimated All-
Cause Mortality Rate, by Age Group 

Year Infant 1-17 18-24 25-34 35-44 45-54 55-64 65-74 75-84 85+ 

2010 0.95 0.93 0.95 0.96 0.94 0.95 0.96 0.93 0.95 0.96 

2015 0.90 0.86 0.90 0.93 0.89 0.90 0.91 0.88 0.89 0.94 

2020 0.85 0.81 0.86 0.90 0.83 0.85 0.87 0.85 0.83 0.91 

2025 0.78 0.76 0.81 0.85 0.79 0.79 0.82 0.81 0.78 0.87 

2030 0.71 0.70 0.76 0.79 0.74 0.74 0.77 0.78 0.76 0.82 

2035 0.66 0.65 0.71 0.74 0.70 0.70 0.72 0.74 0.72 0.77 

2040 0.60 0.60 0.67 0.70 0.65 0.66 0.67 0.70 0.70 0.74 

2045 0.55 0.56 0.63 0.66 0.61 0.62 0.64 0.66 0.67 0.73 

2050 0.51 0.52 0.59 0.62 0.57 0.57 0.60 0.63 0.63 0.71 
 

D.2 Hospitalizations  
Hospitalization rates were calculated using data from the Healthcare Cost and 
Utilization Project (HCUP). HCUP is a family of health care databases developed through 
a Federal-State-Industry partnership and sponsored by the Agency for Healthcare 
Research and Quality (AHRQ). HCUP products include the State Inpatient Databases 
(SID), the State Emergency Department Databases (SEDD), the Nationwide Inpatient 
Sample (NIS), and the Nationwide Emergency Department Sample (NEDS). HCUP 
databases can be obtained from the following data services:   

http://www.census.gov/population/www/documentation/twps0038/twps0038.html
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• The HCUP Central Distributor: Many of the HCUP databases are available for 
purchase through the HCUP Central Distributor. The databases include detailed 
information for individual discharges, such as primary diagnosis (in ICD-9 
codes), patient’s age and residence county.   

• HCUP State Partners: Some HCUP participating states do not release their data to 
the Central Distributor; however, the data may be obtained through contacting 
the State Partners. Some State Partners (e.g., CA, TX, PA, MO, and NY) provided 
discharge-level data; others (e.g., OH) provided summarized data.   

• HCUPnet: This is a free, on-line query system based on data from HCUP. It 
provides access to summary statistics at the state, regional and national levels.   

Figure D-1 shows the level of hospitalization data (e.g, discharge-level or state-level) for 
each state. Note that for some states neither discharge-level nor state-level data were 
available. In such cases we used regional statistics from HCUPnet to estimate 
hospitalization rates for those states. The data year for most states is 2007; the 
exception is MA, for which the data year is 2006. We assume hospitalization rates are 
reasonably constant from 2006-2007 and consider all as 2007 rates.  

Figure D-1. Hospitalization Data from HCUP   

 
More information about HCUP can be found at http://www.hcup-us.abrq.gov/ 

http://www.hcup-us.abrq.gov/
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The procedures for calculating hospitalization rates are summarized as follows:   

• For states with discharge-level data:   

o We calculated age-, health endpoint-, and county-specific hospitalization 
counts. Ohio was the only state that, while not providing discharge-level data, 
did provide county-level data for each age group-endpoint combination.   

o The above calculation excluded hospitalizations with missing patient age or 
county FIPS, which may lead to underestimation of rates. Therefore we 
scaled up the previously calculated age-, endpoint-, and county-specific 
counts using an adjustment factor obtained as follows:   

 We first counted the number of discharges for a specific endpoint in the 
state including those discharges with missing age or county FIPS.   

 We then counted the number of discharges for the endpoint in the state 
excluding those records with missing age or county FIPS.   

 The adjustment factor is the ratio of the two counts.  

o We calculated hospitalization rates for each county by dividing the adjusted 
county-level hospitalization counts by the Census estimated county-level 
population for the corresponding year (2006 or 2007). Following CDC 
Wonder, we treated rates as “unreliable” when the hospitalization count was 
less than 20, using the same procedure we used for mortality rates (see 
Section D.1.1).   

• For states with summarized state statistics (from HCUPnet) we calculated the 
state-, age-, endpoint- specific hospitalization rates and applied them to each 
county in the state. We used the previously described procedure to adjust the 
“unreliable” rates.   

• For states without discharge-level or state-level data:   

o We obtained the endpoint-specific hospitalization counts in each region from 
HCUPnet/NIS (we refer to this count for the ith endpoint in the jth region as 
“TOTALij”)   

o For those states in the jth region that do have discharge-level or state-level 
data, we summed the hospital admissions by endpoint (we refer to this count 
for the ith endpoint in the jth region as “SUB ij”).   

o We then estimated the hospitalization count for states without discharge or 
state data for the ith endpoint in the jth region as TOTALij - SUB ij. Note that 
while this count is endpoint- and region- specific, it is not age-specific. We 
obtained the distribution of hospital admission counts across age groups 
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based on the National Hospital Discharge Survey (NHDS) and assumed the 
same distribution for the HCUP hospitalizations. We then applied this 
distribution to the estimated hospital counts (i.e., TOTALij - SUB ij) to obtain 
endpoint-, region-, and age-specific counts.  

o Using the corresponding age- and region-specific populations, we calculated 
age-specific hospitalization rates for the ith endpoint in the jth region and 
applied them to those counties in the region that didn’t have discharge-level 
or state-level data.   

The endpoints in hospitalization studies are defined using different combinations of ICD 
codes. Rather than generating a unique baseline incidence rate for each ICD code 
combination, for the purposes of this analysis, we identified a core group of 
hospitalization rates from the studies and applied the appropriate combinations of 
these rates in the health impact functions:   

• congestive heart failure (ICD-9 428)   

• dysrhythmia (ICD-9 427)   

• heart rhythm disturbances (ICD-9 426-427)   

• acute myocardial infarction (ICD-9 410)   

• ischemic heart disease - 1 (ICD-9 410-414)   

• ischemic heart disease - 2 (ICD-9410-414, 429)   

• ischemic heart disease (less myocardial infarction) (ICD-9 411-414)  

• all cardiovascular (ICD-9 390-429)   

• all cardiovascular (less myocardial infarctions) (ICD-9 390-409, 411-429)   

• cardiovascular, cerebrovascular and peripheral vascular diseases (ICD-9 410-
414, 429, 426-  427, 428, 430-438, 440-449)   

• all cardiac outcomes (ICD-9 390-459)   

• cerebrovascular events (ICD-9 430-438)  stroke (ICD-9 431-437)   

• peripheral vascular disease -1 (ICD-9 440-448) peripheral vascular disease -2 
(ICD-9 440-449)   

• all respiratory (ICD-9 460-519)  respiratory illness -1 (ICD-9 466, 480-486, 490-
493)  respiratory illness -2 (ICD-9 464-466, 480-487, 490-492)   
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• chronic lung disease (ICD-9 490-496)   

• chronic lung disease (less asthma) (ICD-9 490-492, 494-496)   

• chronic lung disease (less asthma) -2 (ICD-9 490-492, 494, 496)   

• chronic lung disease (less asthma) -3 (ICD-9 490-492)   

• chronic lung disease (less asthma) -4 (ICD-9 491,492, 494, 496)   

• pneumonia (ICD-9 480-486)  asthma (ICD-9 493)   

• lower respiratory infection (ICD-9 466.1, 466.0, 480-487, 490, 510-511)  

For each C-R function, we selected the baseline rate or combination of rates that most 
closely matches to the study endpoint definition. For studies that define chronic lung 
disease as ICD 490- 492, 494-496, we subtracted the incidence rate for asthma (ICD 
493) from the chronic lung disease rate (ICD 490-496). In some cases, the baseline rate 
will not match exactly to the endpoint definition in the study. For example, Burnett et al. 
(2001) studied the following respiratory conditions in infants <2 years of age: ICD 
464.4, 466, 480-486, 493. For this C-R function we apply an aggregate of the following 
rates: ICD 464, 466, 480-487, 493. Although they do not match exactly, we assume that 
relationship observed between the pollutant and study-defined endpoint is applicable 
for the additional codes. Table D-5 presents a summary of the national hospitalization 
rates for 2007 from HCUP.  

Table D-5. Hospitalization Rates (per 100 people per year), by Health Endpoint and 
Age 

Hospitalization 
Category 

ICD-9 
Code 

Age  
0-1 2-17 18-24 25-34 35-44 45-54 55-64 65-74 75-84 85+ 

Respiratory            
All Respiratory 460-519 2.872 0.426 0.205 0.231 0.408 0.791 1.313 2.972 4.970 8.045 

Pneumonia 480-486 0.695 0.144 0.057 0.078 0.132 0.250 0.412 1.046 1.972 3.822 

Chronic Lung Disease 490-496 0.350 0.158 0.057 0.064 0.135 0.299 0.503 1.028 1.502 1.506 

Asthma 493 0.330 0.155 0.051 0.055 0.094 0.136 0.160 0.198 0.240 0.302 

Cardiovascular            
All Cardiovascular 390-429 0.056 0.017 0.107 0.164 0.481 1.221 2.272 4.681 7.749 11.583 

Acute Myocardial 
Infarction, Nonfatal 410 0.000 0.000 0.010 0.017 0.071 0.215 0.379 0.673 1.096 1.858 

Ischemic Heart 
Disease 410-414 0.001 0.000 0.019 0.032 0.177 0.597 1.144 2.001 2.754 3.078 

Dysrhythmia 427 0.017 0.006 0.022 0.031 0.071 0.166 0.345 0.870 1.608 2.216 

Congestive Heart 
Failure 428 0.015 0.001 0.014 0.025 0.075 0.198 0.399 1.080 2.183 4.512 

Stroke 431-437 0.007 0.003 0.014 0.020 0.071 0.204 0.415 1.043 1.860 2.953 
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D.3 Nonfatal Heart Attacks  
The relationship between short-term particulate matter exposure and heart attacks was 
quantified in a case-crossover analysis by Peters et al. (2001). The study population was 
selected from heart attack survivors in a medical clinic. Therefore, the applicable 
population to apply to the C-R function is all individuals surviving a heart attack in a 
given year. Several data sources are available to estimate the number of heart attacks 
per year. For example, several cohort studies have reported estimates of heart attack 
incidence rates in the specific populations under study. However, these rates depend on 
the specific characteristics of the populations under study and may not be the best data 
to extrapolate nationally. The American Heart Association reports approximately 
785,000 new heart attacks per year (Roger et al., 2012). Exclusion of heart attack 
deaths reported by CDC Wonder yields approximately 575,000 nonfatal cases per year.   

An alternative approach to the estimation of heart attack rates is to use data from the 
Healthcare Cost and Utilization Project (HCUP), assuming that all heart attacks that are 
not instantly fatal will result in a hospitalization. Details about HCUP data are described 
in Section D.2.  According to the 2007 HCUP data there were approximately 624,936 
hospitalizations due to heart attacks (acute myocardial infarction: ICD-9 410, primary 
diagnosis). We used rates based on HCUP data over estimates extrapolated from cohort 
studies because the former is a national database with a larger sample size, which is 
intended to provide reliable national estimates. The incidence rate calculation is also 
described in Section D.2 and the incidence rates for AMI hospitalization are presented 
in Table D-5.   

Rosamond et al. (1999) reported that approximately six percent of male and eight 
percent of female hospitalized heart attack patients die within 28 days (either in or 
outside of the hospital). We, therefore, applied a factor of 0.93 to the estimated number 
of PM-related acute myocardial infarctions to exclude the number of cases that result in 
death within the first month. Note that we did not adjust for fatal AMIs in the incidence 
rate estimation, due to the way that the epidemiological studies are designed. Those 
studies consider total admissions for AMIs, which includes individuals living at the time 
the studies were conducted. Therefore, we use the definition of AMI that matches the 
definition in the epidemiological studies.   

D.4  Emergency Department Visits   
The data source for emergency department/room (ED or ER) visits is also HCUP, i.e., 
SID, SEDD, and NEDS. And the types of data providers are also the same as those 
described in Section D.2. Figure D-2 shows the emergency department data in each 
state.  
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 Figure D-2. Emergency Department Data from HCUP 

  
The calculation of ER visit rates is also similar to the calculation of hospitalization rates, 
except for the following differences:   

• The SEDD databases include only those ER visits that ended with discharge. To 
identify the ER visits that ended in hospitalization, we used a variable called 
“admission source” in the SID databases. Admission source identified as 
“emergency room” indicates that the hospital admission came from the ER - i.e., 
the ER visit ended in hospitalization. For each combination of age group, 
endpoint and county, we summed the ER visits that ended with discharge and 
those that resulted in hospitalization.   

• The data year varies across the states from 2005 to 2007; we assumed that ER 
visit rates are reasonably constant across these three years and consider them as 
2007 rates.   

• Instead of using HCUPnet/NIS and NHDS in the last step as described in 
Section D.2., we used HCUPnet/NEDS and the National Ambulatory Medical Care 
Survey (NAMCS) to calculate ER visit rates for states without discharge level or 
state level data. Table D-6 presents the estimated asthma emergency room rates 
by health endpoint and age group.  
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Table D-6. Emergency Department Visit Rates (per 100 people per year) by Health 
Endpoint and Age Group  

Emergency 
Department 

Category ICD-9 Codes Age 0-17 18-44 45-64 65-84 85+ 

Asthma 493 0.865 0.557 0.441 0.381 0.368 

Respiratory 491-493, 460-466, 477.0-477.9, 
480-486, 496, 786.07, 786.09 

5.772 2.889 2.273 4.275 6.817 

Cardiovascular 410-414, 427-428, 433-437, 
440.0-440.9, 443-445, 451-453 

0.029 0.302 1.695 5.950 12.512 

 

D.5 School Loss Days   
Epidemiological studies have examined the relationship between air pollution and a 
variety of measures of school absence. These measures include: school loss days for all 
causes, illness- related, and respiratory illness-related. We have two sources of 
information. The first is the National Center for Education Statistics, which provided an 
estimate of all-cause school loss days, and the other is the National Health Interview 
Survey (Adams et al., 1999, Table 47), which has data on different categories of acute 
school loss days.  

Table D-7 presents the estimated school loss day rates. Further detail is provided 
below on these rates. Table D-7. School Loss Day Rates (per student per year) 

Type Northeast Midwest South West 

Respiratory illness-related 
absences 

1.3 1.7 1.1 2.2 

Illness-related absences 2.4 2.6 2.6 3.7 

All-cause 9.9 9.9 9.9 9.9 
* We based illness-related school loss day rates on data from the 1996 NHIS and an estimate of 180 
school days per year. This excludes school loss days due to injuries. We based the all-cause school loss 
day rate on data from the National Center for Education Statistics.  

All-Cause School Loss Day Rate   

Based on data from the U.S. Department of Education (1996, Table 42-1), the National 
Center for Education Statistics estimates that for the 1993-1994 school year, 5.5 
percent of students are absent from school on a given day. This estimate is comparable 
to study-specific estimates from Chen et al. (2000) and Ransom and Pope (1992), which 
ranged from 4.5 to 5.1 percent.   

Illness-Related School Loss Day Rate   

The National Health Interview Survey (NHIS) has regional estimates of school loss days 
due to a variety of acute conditions (Adams et al., 1999). NHIS is a nationwide sample-
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based survey of the health of the noninstitutionalized, civilian population, conducted by 
NCHS. The survey collects data on acute conditions, prevalence of chronic conditions, 
episodes of injury, activity limitations, and self-reported health status. However, it does 
not provide an estimate of all-cause school loss days.   

In estimating illness-related school loss days, we started with school loss days due to 
acute problems (Adams et al., 1999, Table 47) and subtracted lost days due to injuries, 
in order to match the definition of the study used in the C-R function to estimate illness-
related school absences (Gilliland et al., 2001). We then divided by 180 school days per 
to estimate illness- related school absence rates per school day. Similarly, when 
estimating respiratory illness-related school loss days, we use data from Adams et al. 
(1999, Table 47). Note that we estimated 180 school days in a year to calculate 
respiratory illness-related school absence rates per year.   

D.6 Other Acute and Chronic Effects  
For many of the minor effect studies, baseline rates from a single study are often the 
only source of information, and we assume that these rates hold for locations in the U.S. 
The use of study- specific estimates are likely to increase the uncertainty around the 
estimate because they are often estimated from a single location using a relatively small 
sample. These endpoints include: acute bronchitis, chronic bronchitis, upper 
respiratory symptoms, lower respiratory symptoms. Table D-8 presents a summary of 
these baseline rates.  

Table D-8. Selected Acute and Chronic Incidence (Cases / Person-Year) & 
Prevalence (Percentage Population) 

Endpoint Age Parameter Rate Source 

Acute Bronchitis 8-12 Incidence 0.043 American Lung Association (2002b, 
Table 11) 

Chronic Bronchitis 27+ Incidence 0.00378 Abbey et al. (1993, Table 3) 

Chronic Bronchitis 

18+ 

Prevalence 

4.37% American Lung Association (2010a, 
Table 4). The rate numbers may be 

slightly different from those in Table 
4 because we received more current 

estimates form ALA. 

18-44 3.15% 

45-64 5.49% 

65+ 5.63% 

Lower Respiratory 
Symptoms (LRS) 7-14 Incidence 0.483 Schwartz et al. (1994, Table 2) 

Minor Restricted Activity 
Days (MRAD) 18-64 Incidence 7.8 Ostro and Rothschild (1989, p. 243) 

Work Loss Day (WLD) 

18-64 

Incidence 

2.172 

Adams et al. (1999, Table) U.S. 
Bureau of the Census (1997, No.22) 

18-24 1.971 

25-44 2.475 

45-64 1.796 
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NOTE: The incidence rate is the number of cases per person per year. Prevalence refers to the fraction of 
people that have a particular illness during a particular time period.   

D.6.1  Acute Bronchitis   

The annual rate of acute bronchitis for children ages 5 to 17 was obtained from the 
American Lung Association (2002b, Table 11). The authors reported an annual 
incidence rate per person of 0.043, derived from the 1996 National Health Interview 
Survey.    

D.6.2 Chronic Bronchitis Incidence Rate   

The annual incidence rate for chronic bronchitis is estimated from data reported by 
Abbey et al. (1993, Table 3). The rate is calculated by taking the number of new cases 
(234), dividing by the number of individuals in the sample (3,310), dividing by the ten 
years covered in the sample, and then multiplying by one minus the reversal rate 
(estimated to be 46.6% based on Abbey et al. (1995a, Table 1).   

Age-specific incidence rates are not available. Abbey et al. (1995a, Table 1) did report 
the incidences by three age groups (25-54, 55-74, and 75+) for “cough type” and 
“sputum type” bronchitis. However, they did not report an overall incidence rate for 
bronchitis by age-group. Since, the cough and sputum types of bronchitis overlap to an 
unknown extent, we did not attempt to generate age-specific incidence rates for the 
over-all rate of bronchitis.   

D.6.3 Chronic Bronchitis Prevalence Rate   

We obtained the annual prevalence rate for chronic bronchitis from the American Lung 
Association (2010a, Table 4). Based on an analysis of 2008 National Health Interview 
Survey data, they estimated a rate of 0.0437 for persons 18 and older; they also 
reported the following prevalence rates for people in the age groups 18-44, 45-64, and 
65+: 0.0315, 0.0549, and 0.0563, respectively.   

D.6.4 Lower Respiratory Symptoms  

Lower respiratory symptoms (LRS) are defined as two or more of the following: cough, 
chest pain, phlegm, wheeze. The proposed yearly incidence rate for 100 people, 43.8, is 
based on the percentiles in Schwartz et al. (Schwartz et al., 1994, Table 2). The authors 
did not report the mean incidence rate, but rather reported various percentiles from the 
incidence rate distribution.  The percentiles and associated per person per day values 
are 10th = 0 percent, 25th = 0 percent, 50th = 0 percent, 75th = 0.29 percent, and 90th = 
0.34 percent. The most conservative estimate consistent with the data are to assume 
the incidence per person per day is zero up to the 75th percentile, a constant 0.29 
percent between the 75th and 90th percentiles, and a constant 0.34 percent between 
the 90th and 100th percentiles. Alternatively, assuming a linear slope between the 50th 
and 75th, 75th and 90th, and 90th to 100th percentiles, the estimated mean incidence 
rate per person per day is 0.12 percent. (For example, the 62.5th percentile would have 
an estimated incidence rate per person per day of 0.145 percent.) We used the latter 
approach in this analysis.  
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D.6.5 Minor Restricted Activity Days (MRAD)   

Ostro and Rothschild (1989, p. 243) provide an estimate of the annual incidence rate of 
MRADs per person of 7.8.   

D.6.6 Work Loss Days   

The yearly work-loss-day incidence rate per 100 people is based on estimates from the 
1996 National Health Interview Survey (Adams et al., 1999, Table 41). They reported a 
total annual work loss days of 352 million for individuals ages 18 to 65. The total 
population of individuals of this age group in 1996 (162 million) was obtained from 
(U.S. Bureau of the Census, 1997, No. 22). The average annual rate of work loss days per 
individual is 2.17. Using a similar approach, we calculated work-loss-day rates for ages 
18-24, 25-44, and 45-64, respectively.   

D.7 Asthma-Related Health Effects   
Several studies have examined the impact of air pollution on asthma development or 
exacerbation. Many of the baseline incidence rates used in the health impact functions 
are based on study-specific estimates. The baseline rates for the various endpoints are 
described below and summarized in Table D-9. The prevalence of asthma is 
summarized in Table D-10.  

Table D-9. Asthma-Related Health Effects Incidence Rates  

Endpoint Age Parameter Rate Source 

Asthma Exacerbation, Shortness 
of Breath, African American 

8-13 Incidence 13.51 
Ostro et al. (2001, p. 202) 

8-13 Prevalence 7.40% 

Asthma Exacerbation, Wheeze, 
African American 

8-13 Incidence 27.74 
Ostro et al. (2001, p. 202) 

8-13 Prevalence 17.30% 

Asthma Exacerbation, Cough, 
African American 

8-13 Incidence 24.46 
Ostro et al. (2001, p. 202) 

8-13 Prevalence 14.50% 

Upper Respiratory Symptoms 
(URS) 9-11 Incidence 124.79 Pope et al. (1991, Table 2) 

 NOTE: The incidence rate is the number of asthma attacks per person per year. 
Prevalence refers to the fraction of people that have a particular illness during a 
particular time period.  

D.7.1 Shortness of Breath  

To estimate the annual rate of new shortness of breath episodes among African-
American asthmatics, ages 8-13, we used the rate reported by Ostro et al. (2001, p.202).   
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D.7.2 Wheeze   

The daily rate of new wheeze episodes among African-American asthmatics, ages 8-13, 
is reported by Ostro et al. (2001, p.202) as 0.076. We multiplied this value by 100 and 
by 365 to get the annual incidence rate per 100 people.   

D.7.3 Cough   

The daily rate of new cough episodes among African-American asthmatics, ages 8-13, is 
reported by Ostro et al. (2001, p.202) as 0.067. We multiplied this value by 100 and by 
365 to get the annual incidence rate per 100 people.   

D.7.4 Upper Respiratory Symptoms   

Upper Respiratory Symptoms are defined as one or more of the following: runny or 
stuffy nose; wet cough; burning, aching, or red eyes. Using the incidence rates for upper 
respiratory symptoms among asthmatics, published in Pope et al. (1991, Table 2), we 
calculated a sample size-weighted average incidence rate.   

D.7.5 Asthma Population Estimates   

In studies examining the association between air pollution and the development or 
exacerbation of asthma, often times an estimate of the percent of the population with 
asthma is required. Asthma percentages were obtained from an American Lung 
Association (2010b) report summarizing data from NHIS.  

Table D-10 presents asthma prevalence rates used to define asthmatic populations 
in the health impact functions. Table D-10. Asthma Prevalence Rates Used to 

Estimate Asthmatic Populations 

Population Group 
Asthma 

Prevalence Source 

All Ages 7.80% 

American Lung Association (2010b, Table 7) 

<5 6.14% 

<18 9.41% 

5-17 10.70% 

18-44 7.19% 

45-64  7.45% 

65+ 7.16% 

African-American, <5 9.98% 
American Lung Association (2010b, Table 9) 

African-American, 5 to 17 17.76% 

African-American, <18 15.53% American Lung Association* 
       * Calculated by ALA for U.S. EPA, based on NHIS data (CDC, 2008). 
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Appendix E: Particulate Matter Health Impact 
Functions in U.S. Setup   

In this Appendix, we present the PM-related health impact functions in BenMAP. Each 
sub- section has a table with a brief description of the health impact function and the 
underlying parameters. Following each table, we present a brief summary of each of the 
studies and any items that are unique to the study.   

Note that Appendix C mathematically derives the standard types of health impact 
functions encountered in the epidemiological literature, such as, log-linear, logistic and 
linear, so we simply note here the type of functional form. And Appendix D presents a 
description of the sources for the incidence and prevalence data used in the health 
impact functions.   

E.1  Long-term Mortality   
There are two types of exposure to PM that may result in premature mortality. Short-
term exposure may result in excess mortality on the same day or within a few days of 
exposure. Long-term exposure over, say, a year or more, may result in mortality in 
excess of what it would be if PM levels were generally lower, although the excess 
mortality that occurs will not necessarily be associated with any particular episode of 
elevated air pollution levels. In other words, long-term exposure may capture a facet of 
the association between PM and mortality that is not captured by short-term exposure. 
Table E-1 lists the long-term mortality health impact functions.   

Table E-1. Health Impact Functions for Particulate Matter and Long-Term Mortality  

Effect Author Year Location Age Metric Beta Std Err Form Notes 

Mortality, 
All Cause Expert A 2006  30-99 Annual 0.015180  Log-

linear  

Mortality, 
All Cause Expert B 2006  30-99 Annual 0.012620  Log-

linear 

Range >10 to 30 µg. 
Unconditional dist. 2% 
no causality included. 

Mortality, 
All Cause Expert B 2006  30-99 Annual 0.011950  Log-

linear 

Range 4 to 10 µg. 
Unconditional dist. 2% 
no causality included. 

Mortality, 
All Cause Expert C 2006  30-99 Annual 0.011930  Log-

linear  

Mortality, 
All Cause Expert D 2006  30-99 Annual 0.008380  Log-

linear 
Unconditional dist. 5% 
no causality included 

Mortality, 
All Cause Expert E 2006  30-99 Annual 0.019670  Log-

linear 
Unconditional dist. 1% 
no causality included 

Mortality, 
All Cause Expert F 2006  30-99 Annual 0.011440  Log-

linear Range >7 to 30 µg 

Mortality, 
All Cause Expert F 2006  30-99 Annual 0.009370  Log-

linear Range 4 to 7 µg 
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Effect Author Year Location Age Metric Beta Std Err Form Notes 

Mortality, 
All Cause Expert G 2006  30-99 Annual 0.006970  Log-

linear 
Unconditional dist. 30% 
no causality included 

Mortality, 
All Cause Expert H 2006  30-99 Annual 0.008700  Log-

linear  

Mortality, 
All Cause Expert I 2006  30-99 Annual 0.011810  Log-

linear 
Unconditional dist. 5% 
no causality included 

Mortality, 
All Cause Expert J 2006  30-99 Annual 0.009620  Log-

linear  

Mortality, 
All Cause Expert K 2006  30-99 Annual 0.006890  Log-

linear 

Range >16 to 30. No 
threshold. Conditional 
dist. 

Mortality, 
All Cause Expert K 2006  30-99 Annual 0.003940  Log-

linear 

Range 4 to 16 µg. No 
threshold. Conditional 
dist. 

Mortality, 
All Cause Expert K 2006  30-99 Annual 0.003940  Log-

linear 

Range 4 to 16 µg. 
Threshold 0 to 5 µg. 
Conditional dist. 

Mortality, 
All Cause Expert K 2006  30-99 Annual 0.003940  Log-

linear 

Range 4 to 16 ug. 
Threshold 5 to 10 µg. 
Conditional dist. 

Mortality, 
All Cause Expert L 2006  30-99 Annual 0.009340  Log-

linear 

Range >10 to 30 µg. 
Unconditional dist. 1% 
no causality included. 

Mortality, 
All Cause Expert L 2006  30-99 Annual 0.007390  Log-

linear 

Range 4 to 10 µg. 
Unconditional dist. 25% 
no causality included 

Mortality, 
All Cause 

Laden et 
al. 2006 6 cities 25-99 Annual 0.014842 0.004170 Log-

linear  

Mortality, 
All Cause Pope et al. 2002 51 cities 30-99 Annual 0.005827 0.002157 Log-

linear  

Mortality, 
All Cause 

Woodruff 
et al. 1997 86 cities Infant Annual 0.003922 0.001221 Logistic  

Mortality, 
All Cause 

Woodruff 
et al. 2006 204 

counties Infant Annual 0.006766 0.007339 Logistic  

Mortality, 
All Cause 

Krewski 
et al. 2009 116 U.S. 

cities 30-99 Annual 0.005827 0.000963 Log-
linear  

Mortality, 
Lung 
Cancer 

Krewski 
et al. 2009 116 U.S. 

cities 30-99 Annual 0.013103 0.003795 Log-
linear  

Mortality, 
IHD 

Krewski 
et al. 2009 116 U.S. 

cities 30-99 Annual 0.021511 0.002058 Log-
linear  

 

E.1.1 Expert Functions   

In this section, we describe the approach taken to incorporate into BenMAP 
concentration- response (C-R) functions that were obtained through expert elicitation 
for EPA (IEc, 2006).    
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We have specified expert distributions for the PM2.5 effect either as truncated 
parametric distributions or as non-parametric distributions. Therefore they can only be 
included in BenMAP in the form of custom distribution tables containing 15,000 
random draws (with replacement) from an underlying distribution. We first describe 
the way these custom distribution tables were created. Then we explain how these 
custom distribution tables should be handled in a configuration file to represent the 
expert-specified distribution as closely as possible.   

Note that the table on page 3-30 of the expert elicitation report (IEc, 2006) refers to the 
non-parametric distributions as “custom” distributions. However, BenMAP refers to 
distribution tables that are supplied in the form of a simulated draw as “custom 
distribution tables”. In order to avoid confusion in terminology, we will call the expert-
specified distributions, which did not have a parametric shape, “non-parametric” expert 
distributions.   

We divided the experts into two groups - those who specified a parametric distribution 
and those who specified a non-parametric distribution. This division was necessary 
because the two groups required different methods for generating the custom 
distribution tables. We describe the respective algorithms below and then provide an 
assessment of the results for each expert.  

E.1.1.1  Parametric Distributions   

Experts A, C, D, E, G, I, J, and K chose parametric distribution functions to represent 
their subjective beliefs about the percent change in risk associated with an increase in 
PM2.5. In particular, they specified the following characteristics of the distribution:   

• The shape (e.g., Normal, Triangular, Weibull)   

• The truncation points (i.e., minimum and/or maximum)   

• Two or three percentile points   

• The likelihood that the association is causal and whether the function includes 
that (i.e., whether the function is conditional on the association being causal or 
unconditional).   

There were two types of inconsistencies encountered in these specifications:   

(1) The experts who chose Normal or Weibull shapes for their distributions also 
specified minimum and/or maximum values at which there could be an effect. The 
Normal distribution has an unlimited support from -8 to + 8. The Weibull distribution 
has support (l + 8), where l is a location parameter that can be any value on the real 
line. The specification of a minimum or a maximum value for the effect is therefore 
inconsistent with specifying these distributions.  Therefore, we interpreted these 
experts’ distributions as truncated Normal or truncated Weibull distributions. In other 
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words, we assumed that the shape of the distribution is Normal or Weibull between the 
truncation points.   

(2) Experts A, C, and J indicated that they included the likelihood of causality in their 
subjective distributions. However, the continuous parametric distributions specified 
were inconsistent with the causality likelihoods provided by these experts. Because 
there was no way to reconcile this, we chose to interpret the distributions of these 
experts as unconditional and ignore the additional information on the likelihood of 
causality. For example, Expert A specified a truncated Normal distribution with a 
minimum 0 and a maximum 4. The expert also indicated that the likelihood of causality 
is 95 percent and it is included in the distribution. This implies that the 5th percentile of 
the truncated Normal distribution should be zero. The minimum and 5th percentile of 
the distribution both being zero imply a density with a large (discrete) mass at zero. 
This, however, is not consistent with specifying a continuous Normal density. (In the 
case of Expert A, in addition, he specified a 5th percentile value of 0.29, whereas a 5 
percent chance of non-causality would imply a 5th percentile value of 0.)   

In order to create a random draw from a parametric distribution it is not sufficient to 
know its shape and truncation points. In addition, one needs to know the values of 
parameters that distinguish this particular distribution from a class of similarly shaped 
distributions with identical truncation points. Experts D and I reported parameter 
values of their subjective distributions (see details in Table 1). Therefore, we simply 
drew 15,000 times from each of their distributions.   

However, the only information, in addition to the shape and truncation points, which 
the other experts provided was the percentile points. To derive the parameter values of 
interest, we used this information as follows:   

Let F(x;å θ,min,max) be a truncated continuous parametric (cumulative) distribution 
function with (vector of) parameters θ and truncation points min and max. The nth 
percentile point is defined as the value xn such that F(xn; θ,min,max)=n/100. Thus, if 
we know that the expert distribution’s nth percentile point is xn and mth percentile 
point is xm then the following has to hold:   

( )
( ) 100/maxmin,,;

100/maxmin,,;
mxmF
nxnF

=
=

θ
θ

  

This is a system of non-linear equations that can be solved for the unknown distribution 
parameters θ. We used the Nelder and Mead (1965) numeric optimization algorithm, 
available in R, to find the best-fitting estimates of parameters θ for the truncated 
distributions specified by the experts. Once estimates of θ were obtained, the 
distributions were specified fully and we had enough information to make 15,000 
draws from each.   

Table E-2 below summarizes the results for each expert who specified a parametric 
distribution. In each case, we provide an “input” line that has all the information that 
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was provided by the expert. We also show the “output” line that contains the inferred 
parameters and five percentile points of the distribution from which draws were made.  

Highlighted in yellow are the percentiles specified by the expert and used to create the 
equation system for the optimization. After finding the best-fitting parameters, we 
calculated the associated percentiles and confirmed that they are close to the input 
values. 

 Table E-2. Description of the Parametric Expert Functions 

Expert Information Distribution Min P5 P25 P50 P75 P95 Max Parameters 

A 
input Normal 0 0.290    2.900 4 mean=? 

sd=? 

output   0.290 0.929 1.481 2.059 2.900  mean=1.42 
sd=0.895 

C 
input Normal 0   1.200  2.000 +8 mean=? sd=? 

output   0.423 0.875 1.200 1.528 2.000  mean = 1.196 
sd=0.488 

D 
input Triangular 0.100      1.600 mode =0.95 

output   0.350 0.662 0.897 1.107 1.382   

E 
input Normal 0   2.000  3.000 +8 mean=? sd=? 

output   1.002 1.590 2.000 2.410 3.000  mean=2 
sd=0.608 

G 
input Normal -8   1.000  1.300 1.500 mean=? sd=? 

output   0.695 0.875 1.000 1.124 1.300  mean=1.001 
sd=0.185 

I 
input Normal 0.200      2.300 mean=1.25 

sd=0.53 

output   0.473 0.912 1.250 1.588 2.027   

J 

input Weibull 0 0.150  0.900  2.000 3.000 shape=? scale=? 
location=? 

output   0.150 0.525 0.900 1.331 2.000  
shape=2.21 
scale=1.413 

location=-0.326 

K1  
4-16 

µg/m3 

input Normal -8 0.100  0.400   0.800 mean=? sd=? 

output   0.100 0.277 0.400 0.521 0.682  mean=0.404 
sd=0.184 

K2  
>16-30 
µg/m3 

input Normal -8 0.100  0.700   1.500 mean=? sd=? 

output   0.100 0.455 0.700 0.942 1.264  mean=0.707 
sd=0.367 
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For example, Expert A indicated that the distribution of the effect is Normal, with 
minimum 0 and maximum 4. Under the assumption that this is actually a truncated 
Normal distribution, we looked for the corresponding mean and standard deviation for 
it. The 5th and the 95th percentile values (0.29 and 2.90, respectively) were used to 
specify the following equations:  

 0.05=4)=max0,=min?,=sd?,=meanN(0.29;  
0.95=4)=max0,=min?,=sd?,=meanN(2.90;   

The solution to this system was a mean of 1.42 and a standard deviation of 0.89. We 
also verified that these parameters produced percentile values consistent with the ones 
supplied by the expert. We similarly solved for the parameters of the other experts who 
specified parametric distributions, with the exception of experts D and I, who specified 
their distributions fully.   

The experts were asked to describe uncertainty distributions for the percent change in 
mortality risk associated with a 1 µg/m3 change in PM2.5. All of the experts assumed log-
linear (or piecewise log-linear) C-R functions. If Z denotes the percent change elicited 
from an expert, the relative risk associated with a 1 µg/m3 change in PM2.5 is (1+Z/100), 
and the PM2.5 coefficient in the log-linear C-R function is ln(1+(Z/100)). We applied this 
transformation to the values drawn from each distribution.   

Finally, some experts stated that their distribution does not incorporate the likelihood 
of causality - i.e., they specified conditional distributions. We made 15,000 draws from 
an expert’s conditional distribution. BenMAP contains a function that is zero. If an 
expert specified, for example, a five percent chance that there is not a causal 
association, BenMAP will draw from this zero function with five percent probability and 
draw from the 15,000-draw custom distribution (of positive values) with 95 percent 
probability. Table E-3 below shows summary statistics for the draws from the 
parametric distributions that became BenMAP “custom” distribution tables.  Additional 
details on the form of the distributions are below and in Belova et al. (2007).  

Table E-3. Descriptive Statistics of the Random Draws from the Parametric Expert 
Distributions 

Expert Mean 
Standard 
Deviation Min P25 P50 P75 Max 

A 0.01518 0.00773 0.00000 0.00944 0.01483 0.02051 0.03917 
C 0.01193 0.00466 0.00001 0.00870 0.01189 0.01509 0.02848 
D (cond) 0.00884 0.00305 0.00105 0.00671 0.00899 0.01108 0.01577 
D 0.00838 0.00354 0.00000 0.00623 0.00875 0.01092 0.01577 
E (cond) 0.01975 0.00591 0.00026 0.01577 0.01986 0.02376 0.04534 
E 0.01967 0.00619 0.00000 0.01575 0.01989 0.02381 0.04534 
G (cond) 0.00996 0.00181 0.00256 0.00873 0.00996 0.01123 0.01489 
G 0.00697 0.00480 0.00000 0.00000 0.00892 0.01062 0.01489 
I (cond) 0.01240 0.00458 0.00200 0.00905 0.01244 0.01575 0.02273 
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Expert Mean 
Standard 
Deviation Min P25 P50 P75 Max 

I 0.01181 0.00523 0.00000 0.00845 0.01214 0.01559 0.02273 
J 0.00962 0.00567 0.00000 0.00525 0.00902 0.01329 0.02936 
K1 (cond) 0.00394 0.00175 -0.00262 0.00278 0.00398 0.00520 0.00797 
K1 0.00139 0.00215 -0.00262 0.00000 0.00000 0.00298 0.00796 
K2 (cond) 0.00689 0.00350 -0.00766 0.00452 0.00698 0.00937 1.01489 
K2 0.00237 0.00382 -0.00402 0.00000 0.00000 0.00489 0.01488 

 

E.1.1.2  Non-Parametric Distributions   

Experts B, F, H, and L chose a non-parametric distribution function to represent their 
subjective beliefs about the percent change in risk associated with 1 µg/m3 increase in 
PM2.5. They specified the following characteristics of the distribution:   

• The truncation points (i.e., minimum and/or maximum)  

• Five percentile points   

• The likelihood that the association is causal and whether the function includes 
that (i.e., whether the function is conditional on the association being causal or 
unconditional)   

The only information that we had about these distributions was the minimum, the 
maximum, and the five percentiles. The shape of the distribution was unknown. Therefore, 
we made an assumption that the cumulative distribution function (cdf) is piece-wise 
linear. In other words, we assumed that all values between the percentiles are equally 
likely. Following this assumption, we used linear interpolation between the percentile 
points to derive the cdf for each expert. We then made 15,000 draws from each cdf.    

Table E-4 shows the inputs and the outputs of this process for each expert. The inputs are the 
minimum, the maximum, and the percentiles. The outputs are the percentiles that we 
calculated from the draws from the respective linearly interpolated cdfs.    

Table E-4. Description of the Non-Parametric Expert Functions  

Expert Information Min P5 P10 P25 P50 P75 P95 Max 

B1 4-10 
µg/m3 

input 0.010 0.100  0.200 1.200 2.100 2.600 2.800 

output  0.099  0.203 1.213 2.092 2.599  

B2 >10-
30 µg/m3 

input 0.100 0.200  0.500 1.200 2.100 2.600 2.800 

output  0.198  0.501 1.191 2.096 2.597  

F1 4-7 
µg/m3 

input 0.370 0.580  0.730 0.930 1.100 1.400 1.700 

output  0.581  0.732 0.928 1.097 1.407  

F2 >7-30 input 0.290 0.770  0.960 1.100 1.400 1.600 1.800 
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Expert Information Min P5 P10 P25 P50 P75 P95 Max 

µg/m3 output  0.771  0.958 1.100 1.398 1.606  

H 
input 0 0 0 0.400 0.700 1.300 2.000 3.000 

output  0 0 0.407 0.710 1.320 2.010  

L1 4-10 
µg/m3 

input 0 0.200  0.570 1.000 1.400 1.600 2.700 

output  0.201  0.570 0.996 1.400 1.619  

L2 >10-
30 µg/m3 

input 0.020 0.200  0.570 1.000 1.400 1.600 2.700 

output  0.018  0.568 1.003 1.396 1.634  
 

Table E-5 below shows summary statistics for the draws from the non-parametric 
distributions that became BenMAP “custom” distribution tables. The section below on 
distributional details contains histograms for all the experts’ distributions.   

Table E-5. Descriptive Statistics of the Random Draws from the Non-Parametric 
Expert Distributions 

Expert Mean 
Standard 
Deviation Min P25 P50 P75 Max 

B1 (cond) 0.01217 0.00897 0.00010 0.00200 0.01195 0.02090 0.02761 
B1 0.01195 0.00901 0.00000 0.00195 0.01167 0.02075 0.02761 
B2 (cond) 0.01290 0.00813 0.00100 0.00489 0.01187 0.02068 0.02761 
B2 0.01262 0.00827 0.00000 0.00464 0.01159 0.02042 0.02761 
F1 0.00937 0.00268 0.00370 0.00727 0.00924 0.01092 0.01686 
F2 0.01144 0.00292 0.00290 0.00951 0.01091 0.01387 0.01784 
H 0.00870 0.00662 0.00000 0.00406 0.00702 0.01302 0.02954 
L1 (cond) 0.00985 0.00511 0.00001 0.00582 0.00999 0.01391 0.02662 
L1 0.00739 0.00613 0.00000 0.00001 0.00727 0.01250 0.02659 
L2 (cond) 0.00953 0.00544 0.00000 0.00567 0.00991 0.01389 0.02661 
L2 0.00934 0.00549 0.00000 0.00531 0.00964 0.01371 0.02661 

 

E.1.1.3 Using Expert Functions in BenMAP   

When an expert has specified certain functional specifics with certain probabilities, the 
resulting “C-R function” becomes a set of possible functions, each with an associated 
probability. For example, expert K specified a piecewise log-linear function (i.e., two 
different log-linear functions on two different parts of the range of PM2.5); this expert 
also specified a threshold within different ranges with different probabilities (and no 
threshold with a specified probability). BenMAP incorporates such a set of possible 
functions specified by an expert function by assigning appropriate weights to each 
specification. We illustrate this using expert K’s specification.   

Expert K specified one log-linear function if the baseline PM2.5 value falls within the 
range from 4 µg/m3 to 16 µg/m3 and another log-linear function if the baseline value 
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falls within the range from >16 µg/m3 to 30 µg/m3. BenMAP thus incorporates two sets 
of functions - one set for each of these two PM2.5 ranges - and selects from the set 
appropriate for a given PM2.5 baseline value.  Expert K also specified a 64% probability 
that there is no causal relationship; an 18% probability that there is a causal 
relationship with no threshold, a 4% probability that there is a causal relationship with 
a threshold somewhere between 5 µg/m3 to 10 µg/m3, and a 14% probability that there 
is a causal relationship with a threshold somewhere between 0 µg/m3 to 5 µg/m3. Thus, 
the set of log-linear functions in BenMAP for expert K on the range from 4 µg/m3 to 16 
µg/m3 contains:   

• a function with PM2.5 coefficient = 0 (no causality), which BenMAP selects with 
65% probability;   

• a function with the PM2.5 coefficient expert K specified for the log-linear function 
on that range and no threshold, which BenMAP selects with 18% probability;   

• a function with the PM2.5 coefficient expert K specified for the log-linear function 
on that range and a threshold (with uniform probability) between 0 µg/m3 to 5 
µg/m3, which BenMAP selects with 14% probability; and   

• a function with the PM2.5 coefficient expert K specified for the log-linear function 
on that range and a threshold (with uniform probability) between 5 µg/m3 to 10 
µg/m3, which BenMAP selects with 4% probability.   

If the PM2.5 baseline value is greater than 16 µg/m3, BenMAP goes through an analogous 
procedure to select a function from among the two functions in that set.  

E.1.1.4  Distributional Details by Expert   

Distributional details on each expert distribution are presented below. The derivation 
of the distributions is described above with additional details provided by Belova et al. 
(2007).   
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E.1.1.4.1  Expert A   

Figure E-1. Histogram of the Random Draw from the Distribution of the PM2.5 Effect 
Specified by Expert A 

  
Notes:   

• Expert A specified a truncated Normal Distribution. We inferred the following 
values for the parameters of this distribution: mean=1.42 and standard 
deviation=0.89.   

• The experts specified distributions for the percent changes in the relative risk. 
The distribution of the corresponding PM2.5 effects was the following 
transformation of the percent change in relative risk Z - log(1+(Z/100)).  
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E.1.1.4.2  Expert B   

Figure E-2. Characteristics of the Random Draw from the Approximated Distribution of 
the PM2.5 Effect Specified by Expert B  
(1) Results for the range 4-10 µg/m3  

 
Notes:   

• Expert B specified a non-parametric distribution using five percentile points. We 
linearly interpolated the cdf between them. Panel (a) shows q-q plot of the 
expert percentiles and empirical percentiles for the draw. Panel (b) shows 
empirical cdf associated with the draw, the red “X” marks indicate 
corresponding expert percentiles. The distribution was conditional on causality. 
We created a corresponding unconditional distribution by adding extra 2 
percent zeros to the draw. Panels (c) and (d) show the respective distributions.  
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• The experts specified distributions for the percent changes in the relative risk. 
The distribution of the corresponding PM2.5 effects was the following 
transformation of the percent change in relative risk Z - log(1+(Z/100)).  

 
Figure E-2. Characteristics of the Random Draw from the Approximated Distribution of  

the PM2.5 Effect Specified by Expert B (continued)   
(2) Results for the range >10-30 µg/m3  

 
Notes:   

• Expert B specified a non-parametric distribution using five percentile points. We 
linearly interpolated the cdf between them. Panel (a) shows q-q plot of the 
expert percentiles and empirical percentiles for the draw. Panel (b) shows 
empirical cdf associated with the draw, the red “X” marks indicate 
corresponding expert percentiles. The distribution was conditional on causality. 
We created a corresponding unconditional distribution by adding extra 2 
percent zeros to the draw. Panels (c) and (d) show the respective distributions.   
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• The experts specified distributions for the percent changes in the relative risk. 
The distribution of the corresponding PM2.5 effects was the following 
transformation of the percent change in relative risk Z - log(1+(Z/100)).  

E.1.1.4.3 Expert C  

Figure E-3. Histogram of the Random Draw from the Distribution of the PM2.5 Effect 
Specified by Expert C  

 
Notes:   

• Expert C specified a truncated Normal Distribution. We inferred the following 
values for the parameters of this distribution: mean=1.20 and standard 
deviation=0.49.   

• The experts specified distributions for the percent changes in the relative risk. 
The distribution of the corresponding PM2.5 effects was the following 
transformation of the percent change in relative risk Z - log(1+(Z/100)).  
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E.1.1.4.4 Expert D  

Figure E-4. Histogram of the Random Draw from the Distribution of the PM2.5 Effect 
Specified by Expert D  

  
Notes:   

• Expert D specified a Triangular Distribution with minimum=0.1, maximum=1.6, 
and mode=0.95. The distribution was conditional on causality. We created a 
corresponding unconditional distribution by adding extra 5 percent zeros to the 
draw.   

• The experts specified distributions for the percent changes in the relative risk. 
The distribution of the corresponding PM2.5 effects was the following 
transformation of the percent change in relative risk Z - log(1+(Z/100)).  
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E.1.1.4.5 Expert E  

Figure E-5. Histogram of the Random Draw from the Distribution of the PM2.5 Effect 
Specified by Expert E 

 

  
 

Notes:   

• Expert E specified a truncated Normal Distribution. We inferred the following 
parameters for this distribution: mean=2.00 and standard deviation=0.61. The 
distribution was conditional on causality. We created a corresponding 
unconditional distribution by adding extra 1 percent zeros to the draw.   

• The experts specified distributions for the percent changes in the relative risk. 
The distribution of the corresponding PM2.5 effects was the following 
transformation of the percent change in relative risk Z - log(1+(Z/100)).  
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E.1.1.4.6 Expert F  

Figure E-6. Characteristics of the Random Draw from the Approximated Distribution of 
the PM2.5 Effect Specified by Expert F  

(1) Results for the range 4-7 µg/m3  

   
Notes:   

• Expert F specified a non-parametric distribution using five percentile points. We 
linearly interpolated the cdf between them. Panel (a) shows q-q plot of the 
expert percentiles and empirical percentiles for the draw. Panel (b) shows 
empirical cdf associated with the draw, the red “X” marks indicate 
corresponding expert percentiles. Panel (c) shows the histogram of the 
distribution.   

• The experts specified distributions for the percent changes in the relative risk. 
The distribution of the corresponding PM2.5 effects was the following 
transformation of the percent change in relative risk Z - log(1+(Z/100)).  
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Figure E-6. Characteristics of the Random Draw from the Approximated Distribution of 
the PM2.5 Effect Specified by Expert F (continued)  

(2) Results for the range >7-30 µg/m3  

  
Notes:   

• Expert F specified a non-parametric distribution using five percentile points. We 
linearly interpolated the cdf between them. Panel (a) shows q-q plot of the 
expert percentiles and empirical percentiles for the draw. Panel (b) shows 
empirical cdf associated with the draw, the red “X” marks indicate 
corresponding expert percentiles. Panel (c) shows the histogram of the 
distribution.   

• The experts specified distributions for the percent changes in the relative risk. 
The distribution of the corresponding PM2.5 effects was the following 
transformation of the percent change in relative risk Z - log(1+(Z/100)).  
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E.1.1.4.7 Expert G  

Figure E-7. Histogram of the Random Draw from the Distribution of the PM2.5  
Effect Specified by Expert G 

  

  
Notes:   

• Expert G specified a truncated Normal Distribution. We inferred the following 
parameters for this distribution: mean=1.00 and standard deviation=0.19. The 
distribution was conditional on causality. We created a corresponding 
unconditional distribution by adding extra 30 percent zeros to the draw.   

• The experts specified distributions for the percent changes in the relative risk. 
The distribution of the corresponding PM2.5 effects was the following 
transformation of the percent change in relative risk Z - log(1+(Z/100)).  
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E.1.1.4.8 Expert H  

Figure E-8. Characteristics of the Random Draw from the Approximated Distribution of 
the PM2.5 Effect Specified by Expert H  

  
Notes:   

• Expert H specified a non-parametric distribution using six percentile points. We 
linearly interpolated the cdf between them. Panel (a) shows q-q plot of the 
expert percentiles and empirical percentiles for the draw. Panel (b) shows 
empirical cdf associated with the draw, the red “X” marks indicate 
corresponding expert percentiles. Panel (c) shows the histogram of the 
distribution.   

• The experts specified distributions for the percent changes in the relative risk. 
The distribution of the corresponding PM2.5 effects was the following 
transformation of the percent change in relative risk Z - log(1+(Z/100)).  
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E.1.1.4.9 Expert I  

Figure E-9. Histogram of the Random Draw from the Distribution of the PM2.5 Effect 
Specified by Expert I  

 
Notes:   

• Expert I specified a truncated Normal Distribution with mean=1.25 and standard 
deviation=0.53. The distribution was conditional on causality. We created a 
corresponding unconditional distribution by adding extra 5 percent zeros to the 
draw.   

• The experts specified distributions for the percent changes in the relative risk. 
The distribution of the corresponding PM2.5 effects was the following 
transformation of the percent change in relative risk Z - log(1+(Z/100)).  
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E.1.1.4.10 Expert J  

Figure E-10. Histogram of the Random Draw from the Distribution of the PM2.5 Effect 
Specified by Expert J  

  
Notes:   

• Expert J specified a truncated Weibull Distribution. We inferred the following 
values for the parameters of this distribution: shape=2.21, scale=1.41, and 
location=-0.33.   

• The experts specified distributions for the percent changes in the relative risk. 
The distribution of the corresponding PM2.5 effects was the following 
transformation of the percent change in relative risk Z - log(1+(Z/100)).    
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E.1.1.4.11 Expert K   

Figure E-11. Histogram of the Random Draw from the Distribution of the PM2.5 Effect 
Specified by Expert K 

 

  
Notes:   

• Expert K specified a truncated Normal Distribution for two ranges separately (4-
16 µg/m3 and >16-30 µg/m3). We inferred the following parameters for this 
distribution: mean=0.40 and standard deviation=0.18 in the lower range and 
mean=0.71 and standard deviation=0.37 in the upper range. The distribution 
was conditional on causality. We created a corresponding unconditional 
distribution by adding extra 65 percent zeros to the draws in each range.   

• The experts specified distributions for the percent changes in the relative risk. 
The distribution of the corresponding PM2.5 effects was the following 
transformation of the percent change in relative risk Z - log(1+(Z/100)).  
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E.1.1.4.12 Expert L   

Figure E-12. Characteristics of the Random Draw from the Approximated Distribution of 
the PM2.5 Effect Specified by Expert L  
(1) Results for the range 4-10 µg/m3   

  
Notes:   

• Expert L specified a non-parametric distribution using five percentile points. We 
linearly interpolated the cdf between them. Panel (a) shows q-q plot of the 
expert percentiles and empirical percentiles for the draw. Panel (b) shows 
empirical cdf associated with the draw, the red “X” marks indicate 
corresponding expert percentiles. The distribution was conditional on causality. 
We created a corresponding unconditional distribution by adding extra 25 
percent zeros to the draw. Panels (c) and (d) show the respective distributions.   

• The experts specified distributions for the percent changes in the relative risk. 
The distribution of the corresponding PM2.5 effects was the following 
transformation of the percent change in relative risk Z - log(1+(Z/100)).  
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Figure E-12. Characteristics of the Random Draw from the Approximated Distribution of 
the PM2.5 Effect Specified by Expert L (continued)  

(2) Results for the range >10-30 µg/m3  

  
Notes:   

• Expert L specified a non-parametric distribution using five percentile points. We 
linearly interpolated the cdf between them. Panel (a) shows q-q plot of the 
expert percentiles and empirical percentiles for the draw. Panel (b) shows 
empirical cdf associated with the draw, the red “X” marks indicate 
corresponding expert percentiles. The distribution was conditional on causality. 
We created a corresponding unconditional distribution by adding extra 1 
percent zeros to the draw. Panels (c) and (d) show the respective distributions.   

• The experts specified distributions for the percent changes in the relative risk. 
The distribution of the corresponding PM2.5 effects was the following 
transformation of the percent change in relative risk Z - log(1+(Z/100)).  
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E.1.2 Laden et al. (2006)  

A large body of epidemiologic literature has found an association of increased fine 
particulate air pollution (PM2.5) with acute and chronic mortality. The effect of 
improvements in particle exposure is less clear. Earlier analysis of the Harvard Six 
Cities adult cohort study showed an association between long-term ambient PM2.5 and 
mortality between enrollment in the mid-1970’s and follow-up until 1990. The authors 
extended mortality follow-up for eight years in a period of reduced air pollution 
concentrations. Annual city-specific PM2.5 concentrations were measured between 
1979-1988, and estimated for later years from publicly available data. E xposure was 
defined as (1) city-specific mean PM2.5 during the two follow-up periods, (2) mean PM2.5 
in the first period and change between these periods, (3) overall mean PM2.5 across the 
entire follow-up, and (4) year-specific mean PM2.5. Mortality rate ratios were estimated 
with Cox proportional hazards regression controlling for individual risk factors. The 
authors found an increase in overall mortality associated with each 10 µg/m3 increase 
in PM2.5 modeled either as the overall mean (RR=1.16, 95%CI=1.07-1.26) or as 
exposure in the year of death (RR=1.14, 95%CI=1.06-1.22). PM2.5 exposure was 
associated with lung cancer (RR=1.27, 95%CI=0.96-1.69) and cardiovascular deaths 
(RR=1.28, 95%CI=1.13-1.44). Improved overall mortality was associated with 
decreased mean PM2.5 (10 microg/m(3)) between periods (RR=0.73, 95% CI=0.57-
0.95). Total, cardiovascular, and lung cancer mortality were each positively associated 
with ambient PM2.5 concentrations. Reduced PM2.5 concentrations were associated with 
reduced mortality risk.   

All-Cause Mortality   

The coefficient and standard error for PM2.5 are estimated from the relative risk (1.16) 
and 95% confidence interval of (1.07-1.26) associated with a change in annual mean 
exposure of 10.0 µg/m3 (Laden et al., 2006, p. 667).   

E.1.3  Pope et al. (2002)  

The Pope et al. (2002) analysis is a longitudinal cohort tracking study that uses the 
same American Cancer Society (ACS) cohort as the original Pope et al. (1995) study, and 
the Krewski et al. (2000) reanalysis. Pope et al. (2002) analyzed survival data for the 
cohort from 1982 through 1998, 9 years longer than the original Pope study. Pope et al. 
(2002) also obtained PM2.5 data in 116 metropolitan areas collected in 1999, and the 
first three quarters of 2000. This is more metropolitan areas with PM2.5 data than was 
available in the Krewski reanalysis (61 areas), or the original Pope study (50 areas), 
providing a larger size cohort.   

They used a Cox proportional hazard model to estimate the impact of long-term PM 
exposure using three alternative measures of PM2.5 exposure; metropolitan area-wide 
annual mean PM levels from the beginning of tracking period (1979-1983 PM data, 
conducted for 61 metropolitan areas with 359,000 individuals), annual mean PM from 
the end of the tracking period (1999-2000, for 116 areas with 500,000 individuals), and 
the average annual mean PM levels of the two periods (for 51 metropolitan areas, with 
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319,000 individuals). PM levels were lower in 1999-2000 than in 1979-1983 in most 
cities, with the largest improvements occurring in cities with the highest original levels.   

Pope et al. (2002) followed Krewski et al. (2000) and Pope et al. (1995, Table 2) and 
reported results for all-cause deaths, lung cancer (ICD-9 code: 162), cardiopulmonary 
deaths (ICD-9 codes: 401-440 and 460-519), and “all other” deaths. All-cause mortality 
includes accidents, suicides, homicides and legal interventions. The category “all other” 
deaths is all-cause mortality less lung cancer and cardiopulmonary deaths. Like the 
earlier studies, Pope et al. (2002) found that mean PM2.5 is significantly related to all-
cause and cardiopulmonary mortality. In addition, Pope et al. (2002) found a significant 
relationship with lung cancer mortality, which was not found in the earlier studies. 
None of the three studies found a significant relationship with “all other” deaths.   

Pope et al. (2002) obtained ambient data on gaseous pollutants routinely monitored by 
EPA during the 1982-1998 observation period, including SO2, NO2, CO, and ozone. They 
did not find significant relationships between NO2, CO, and ozone and premature 
mortality, but there were significant relationships between SO4 (as well as SO2), and all-
cause, cardiopulmonary, lung cancer and “all other” mortality.   

All-Cause Mortality, 1979-1983 Exposure   

The coefficient and standard error for PM2.5 using the 1979-1983 PM data are estimated 
from the relative risk (1.04) and 95% confidence interval (1.01-1.08) associated with a 
change in annual mean exposure of 10.0 µg/m3 (Pope et al., 2002, Table 2).   

All-Cause Mortality, Average of 1979-1983 and 1999-2000 Exposure   

The coefficient and standard error for PM2.5 using the average of 1979-1983 and 1999-
2000 PM data are estimated from the relative risk (1.06) and 95% confidence interval 
(1.02-1.11) associated with a change in annual mean exposure of 10.0 µg/m3 (Pope et 
al., 2002, Table 2).   

E.1.4  Woodruff et al. (1997)   

In a study of four million infants in 86 U.S. metropolitan areas conducted from 1989 to 
1991, Woodruff et al. (1997) found a significant link between PM10 exposure in the first 
two months of an infant’s life with the probability of dying between the ages of 28 days 
and 364 days. PM10 exposure was significant for all-cause mortality. PM10 was also 
significant for respiratory mortality in average birth-weight infants, but not low birth-
weight infants.   

Post-Neonatal Mortality   

The coefficient and standard error are based on the odds ratio (1.04) and the 95% 
confidence interval (1.02-1.07) associated with a 10 µg/m3 change in PM10 (Woodruff et 
al., 1997, Table 3).  
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E.1.5 Woodruff et al. (2006)   

Studies suggest that airborne particulate matter (PM) may be associated with 
postneonatal infant mortality, particularly with respiratory causes and sudden infant 
death syndrome (SIDS). To further explore this issue, the authors examined the 
relationship between long-term exposure to fine PM air pollution and postneonatal 
infant mortality in California. They linked monitoring data for PM2.5 to infants born in 
California in 1999 and 2000 using maternal addresses for mothers who lived within 5 
miles of a PM2.5 monitor. They matched each postneonatal infant death to four infants 
surviving to 1 year of age, by birth weight category and date of birth (within 2 weeks). 
For each matched set, they calculated exposure as the average PM2.5 concentration over 
the period of life for the infant who died. They used conditional logistic regression to 
estimate the odds of postneonatal all-cause, respiratory-related, SIDS, and external-
cause (a control category) mortality by exposure to PM2.5, controlling for the matched 
sets and maternal demographic factors. They matched 788 postneonatal infant deaths 
to 3,089 infant survivors, with 51 and 120 postneonatal deaths due to respiratory 
causes and SIDS, respectively. They found an adjusted odds ratio for a 10-microg/m3 
increase in PM2.5 of 1.07 [95% confidence interval (CI), 0.93-1.24] for overall 
postneonatal mortality, 2.13 (95% CI, 1.12-4.05) for respiratory-related postneonatal 
mortality, 0.82 (95% CI, 0.55-1.23) for SIDS, and 0.83 (95% CI, 0.50-1.39) for external 
causes.   

Post-Neonatal Mortality   

The coefficient and standard error for PM2.5 are estimated from the relative risk (1.07) 
and the 95% confidence interval (0.93-1.24) associated with a change in annual mean 
exposure of 10.0 µg/m3 (Woodruff et al., 2006, p. 786).   

E.1.6 Krewski et al. (2009)   

This cohort study consists of approximately 360,000 participants residing in areas of 
the country that have adequate monitoring information on levels of PM2.5 for 1980 and 
about 500,000 participants in areas with adequate information for 2000. The causes of 
death that were analyzed included all causes, cardiopulmonary disease (CPD), ischemic 
heart disease (IHD), lung cancer, and all remaining causes. Data for 44 personal, 
individual-level covariates, based on participants’ answers to a 1982 enrollment 
questionnaire, were also used for the analyses. The authors also collected data for seven 
ecologic (neighborhood-level) covariates, each of which represents local factors known 
or suspected to influence mortality, such as poverty level, level of education, and 
unemployment (at both Zip Code and city levels). Long-term average exposure 
variables were constructed for PM2.5 from monitoring data for two periods: 1979-1983 
and 1999-2000.  Similar variables were constructed for long-term exposure to other 
pollutants of interest from single-year (1980) averages, including total suspended 
particles, ozone, nitrogen dioxide, and sulfur dioxide. Exposure was averaged for all 
monitors within a metropolitan statistical area (MSA) and assigned to participants 
according to their Zip Code area (ZCA) of residence. The authors chose the standard Cox 
proportional-hazards model (and a variation to allow for random effects) to calculate 
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hazard ratios for various cause-of-death categories associated with the levels of air 
pollution exposure in the cohort. They extended the random effects Cox model to 
accommodate two levels of information for clustering and for ecologic covariates. Three 
main analyses were conducted: a Nationwide Analysis, Intra-Urban Analyses in the New 
York City (NYC) and Los Angeles (LA) regions, and an analysis designed to investigate 
whether critical time windows of exposure to pollutants might have affected mortality 
in the cohort.  

Mortality, All-Cause   

In a random effects Cox model, the coefficient and standard error are estimated from 
the relative risks (1.06) and 95% confidence intervals (95% CI: 1.04-1.08) for a 10 
µg/m3 increase in the average of PM2.5 exposure level for 1999-2000 (Krewski, et al., 
2009, Commentary Table 4). The results were adjusted for the 44 individual-level 
covariates and the 7 ecologic covariates at the MSA & DIFF levels.   

Mortality, Lung Cancer (ICD-10 code C30-C39)   

In a random effects Cox model, the coefficient and standard error are estimated from 
the relative risks (1.14) and 95% confidence intervals (95% CI: 1.06-1.23) for a 10 
µg/m3 increase in the average of PM2.5 exposure level for 1999-2000 (Krewski, et al., 
2009, Commentary Table 4). The results were adjusted for the 44 individual-level 
covariates and the 7 ecologic covariates at the MSA & DIFF levels.   

Mortality, Ischemic Heart Disease (ICD-10 code I20-I25)   

In a random effects Cox model, the coefficient and standard error are estimated from 
the relative risks (1.24) and 95% confidence intervals (95% CI: 1.19-1.29) for a 10 
µg/m3 increase in the average of PM2.5 exposure level for 1999-2000 (Krewski, et al., 
2009, Commentary Table 4). The results were adjusted for the 44 individual-level 
covariates and the 7 ecologic covariates at the MSA & DIFF levels.  

E.2 Chronic/Severe Illness  
Table E-6 below summarizes the health impacts functions used to estimate the 
relationship between PM2.5 and chronic / severe health effects. We present a brief 
summary of each of the studies and any items that are unique to the study.    

Table E-6. Health Impact Functions for Particulate Matter and Chronic Illness 

Effect Author Year Location Age Co-Poll Metric Beta Std Err Form Notes 

Chronic 
Bronchitis 

Abbey et al. 1995 SF, SD, South 
Coast Air Basin 

27-99  Annual 0.013185 0.006796 Logistic  

Acute 
Myocardinal 
Infractin, 
Nonfatal 

Peters et al. 2001 Boston, MA 18-99  D24HourMean 0.024121 0.009285 Logistic  

Acute 
Myocardial 

Pope et al.  2006 Greater Salt Lake 
City, UT 

0-99  D24HourMean 0.0048 0.0019 Logistic Index MI 
and 
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Effect Author Year Location Age Co-Poll Metric Beta Std Err Form Notes 

Infraction, 
Nonfatal 

unstable 
angina 

Acute 
Myocardial 
Infraction, 
Nonfatal 

Sullivan et al. 2005 King County, WA 0-99  D24HourMean 0.0019 0.0022 Logistic  

Acute 
Myocardial 
Infraction, 
Nonfatal 

Zanobetti and 
Schwartz 

2006 Greater Boston, 
MA 

0-99  D24HourMean 0.0053 0.0022 Logistic Age range 
adjusted 
Admissions 
through ER 
visits only. 

Acute 
Myocardial 
Infraction, 
Nonfatal 

Zanobetti et al. 2009 26 U.S. Comm 0-99  D24HourMean 0.0022 0.0006 Log-
linear 

Age range 
adjusted. All 
Seasons. 

 

E.2.1 Abbey et al. (1995b)   

Abbey et al. (1995b) examined the relationship between estimated PM2.5 (annual mean 
from 1966 to 1977), PM10 (annual mean from 1973 to 1977) and TSP (annual mean 
from 1973 to 1977) and the same chronic respiratory symptoms in a sample population 
of 1,868 Californian Seventh Day Adventists. The initial survey was conducted in 1977 
and the final survey in 1987. To ensure a better estimate of exposure, the study 
participants had to have been living in the same area for an extended period of time. In 
single-pollutant models, there was a statistically significant PM2.5 relationship with 
development of chronic bronchitis, but not for AOD or asthma; PM10 was significantly 
associated with chronic bronchitis and AOD; and TSP was significantly associated with 
all cases of all three chronic symptoms. Other pollutants were not examined.   

Chronic Bronchitis   

The estimated coefficient (0.0137) is presented for a one µg/m3 change in PM2.5 (Abbey 
et al., 1995b, Table 2). The standard error is calculated from the reported relative risk 
(1.81) and 95% confidence interval (0.98-3.25) for a 45 µg/m3 change in PM2.5.   

Incidence Rate: annual bronchitis incidence rate per person (Abbey et al., 1993, Table 
3) = 0.00378   

Population: population of ages 27 and older without chronic bronchitis = 95.57% of 
population 27+. Using the same data set, Abbey et al. (1995a, p. 140) reported that the 
respondents in 1977 ranged in age from 27 to 95. The American Lung Association 
(2010a, Table 4) reports a chronic bronchitis prevalence rate for ages 18 and over of 
4.37%.  

E.2.2 Peters et al. (2001)   

Peters et al. (2001) studied the relationship between increased particulate air pollution 
and onset of heart attacks in the Boston area from 1995 to 1996. The authors used air 
quality data for PM10, PM10-2.5, PM2.5,”black carbon”, O3, CO, NO2, and SO2 in a case-
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crossover analysis. For each subject, the case period was matched to three control 
periods, each 24 hours apart. In univariate analyses, the authors observed a positive 
association between heart attack occurrence and PM2.5 levels hours before and days 
before onset. The authors estimated multivariate conditional logistic models including 
two-hour and twenty-four hour pollutant concentrations for each pollutant. They found 
significant and independent associations between heart attack occurrence and both 
two-hour and twenty-four hour PM2.5 concentrations before onset. Significant 
associations were observed for PM10 as well. None of the other particle measures or 
gaseous pollutants were significantly associated with acute myocardial infarction for 
the two hour or twenty-four hour period before onset.   

The patient population for this study was selected from health centers across the 
United States. The mean age of participants was 62 years old, with 21% of the study 
population under the age of 50. In order to capture the full magnitude of heart attack 
occurrence potentially associated with air pollution and because age was not listed as 
an inclusion criteria for sample selection, we apply an age range of 18 and over in the C-
R function. According to the National Hospital Discharge Survey, there were no 
hospitalizations for heart attacks among children <15 years of age in 1999 and only 
5.5% of all hospitalizations occurred in 15-44 year olds (Popovic, 2001, Table 10).   

Acute Myocardial Infarction, Nonfatal   

The coefficient and standard error are calculated from an odds ratio of 1.62 (95% CI 
1.13-2.34) for a 20 µg/m3 increase in twenty-four hour average PM2.5 (Peters et al., 
2001, Table 4, p. 2813).   

Incidence Rate: We use the county-specific daily AMI hospitalization rate (ICD-9 code 
410) for the population of individuals aged 18 years and older as the estimate for the 
incidence rate of nonfatal heart attack, assuming all heart attacks that are not instantly 
fatal will result in a hospitalization. We did not adjust for fatal AMIs in the incidence 
rate estimation, due to the way that the epidemiological studies are designed. Those 
studies consider total admissions for AMIs, which includes individuals living at the time 
the studies were conducted. Therefore, we use the definition of AMI that matches the 
definition in the epidemiological studies.   

Population: Population of ages 18 and older   

Adjustment: As some fraction of the admitted individuals die in the hospital, we apply 
a survival rate of 93% in calculating the avoided cases of AMI in order to avoid double 
counting (once in the calculation of AMI cases and once in the calculation of PM-related 
mortality).  

E.2.3  Pope et al. (2006)   

Pope et al. (2006) evaluated the association between short-term exposure to PM2.5 and 
acute ischemic heart disease events, including acute nonfatal myocardial infarction, all 
acute coronary events, and subsequent myocardial infarctions in individuals living in 
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greater Salt Lake City, Utah. In a case-crossover study, these ischemic events were 
assessed in relation to a 10 µg/m3 increase in PM2.5. The researchers determined that a 
10 µg/m3 increase in PM2.5 resulted in a 4.5% increase (95% CI: 1.1-8.0) in unstable 
angina and myocardial infarction.   

Acute Myocardial Infarction, Nonfatal   

Index MI and Unstable Angina   

In a single-pollutant model the coefficient and standard error were estimated from the 
percent increase (4.81%) and 95% confidence interval (95% CI: 0.98-8.79) for a 10 
µg/m3 increase in daily 24-hour mean PM2.5 (Pope et al., 2006, Table 3).   

Incidence Rate: AMI hospital admission rate for all ages. See the incidence rate 
discussion under Peters et al. (2001) in Section E.2.2.   

Population: All ages   

Adjustment: See the adjustment description in Section E.2.2.  

E.2.4  Sullivan et al. (2005)   

Sullivan et al. (2005) studied the relationship between onset time of acute myocardial 
infarction and the preceding hourly PM2.5 concentrations in 5,793 confirmed cased of 
myocardial infarction through King County, Washington. In this case-crossover study 
from 1988-1994, air pollution exposure levels averaged 1 hour, 2 hours, 4 hours, and 24 
hours before onset of myocardial infarction were compared to a set of time-stratified 
referent exposures from the same day of the week in the month of the case event. The 
authors estimated that an associated risk of 1.01 (95% CI: 0.98-1.05) for myocardial 
infarction onset could be attributed to a 10 µg/m3 increase in PM 2.5 the hour before 
the MI onset. No increased risk was found in all cases with preexisting cardiac diseases 
with an odds ratio of 1.05 (95% CI: 0.95-1.16). Furthermore, stratification for 
hypertension, diabetes, and smoking status did not modify the association between 
PM2.5 and onset of myocardial infarction.   

Acute Myocardial Infarction, Nonfatal   

In a single-pollutant model the coefficient and standard error were estimated from the 
odds ratio (1.02) and 95% confidence interval (95% CI: 0.98-1.07) for a 10 µg/m3 
increase in daily 24- hour mean PM2.5 lagged 1 day (Sullivan et al., 2005, Table 3).   

Incidence Rate: AMI hospital admission rate for all ages. See the incidence rate 
discussion under Peters et al. (2001) in Section E.2.2.  

Population: All ages   

Adjustment: See the adjustment description in Section E.2.2.  
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E.2.5 Zanobetti and Schwartz (2006)   

Zanobetti and Schwartz (2006) analyzed hospital admissions through emergency 
department for myocardial infarction (ICD-9 code 410) and pneumonia (ICD-9 codes 
480-487) for associations with fine particulate air pollution, ozone, black carbon, 
nitrogen dioxide, PM not from traffic, and CO in the greater Boston area from 1995-
1999. The authors used a case- crossover analysis with control days matched on 
temperature. Significant associations were detected for NO2 with a 12.7% increase 95% 
CI: 5.8-18.0), PM2.5 with an 8.6% increase (95% CI: 1.2-15.4), and black carbon with an 
8.3% increase (95% CI: 0.2-15.8) in emergency myocardial infarction hospitalizations. 
Similarly, significant associations were identified for PM2.5 with a 6.5% increase (95% 
CI: 1.1-11.4) and CO with a 5.5% increase (95% CI: 1.1-9.5) in pneumonia 
hospitalizations.   

Acute Myocardial Infarction, Nonfatal   

The study looked at hospital admissions of AMI through ER. Under the assumption that 
all heart attacks will end in hospitalization, we consider the endpoint as heart attack 
events to be consistent with other studies. In a single-pollutant model, the coefficient 
and standard error are estimated from the percent change in risk (8.65%) and 95% 
confidence interval (95% CI: 1.22-15.38%) for a 16.32 µg/m3 increase in daily 24-hour 
mean PM2.5 for an average of the 0- and 1-day lag (Zanobetti A. and Schwartz, 2006, 
Table 4).   

Incidence Rate: AMI hospital admission rate for all ages. See the incidence rate 
discussion under Peters et al. (2001) in Section E.2.2.   

Population: All ages. Note that although Zanobetti and Schwartz (2006) reports results 
for the 65-99 year old age range, for comparability to other studies, we apply the results 
to all ages. Since the vast majority of AMIs occur among population 65-99, over-
counting may not be an issue when applying the risk coefficient to all ages.   

Adjustment: See the adjustment description in Section E.2.2.   

E.2.6 Zanobetti et al. (2009)   

Zanobetti et al. (2009) examined the relationship between daily PM2.5 levels and 
emergency hospital admissions for cardiovascular causes, myocardial infarction, 
congestive heart failure, respiratory disease, and diabetes among 26 U.S. communities 
from 2000-2003. The authors used meta-regression to examine how this association 
was modified by season- and community-specific PM2.5 composition while controlling 
for seasonal temperature as a substitute for ventilation. Overall, the authors found that 
PM2.5 mass higher in Ni, As, and Cr as well as Br and organic carbon significantly 
increased its effects on hospital admissions. For a 10 µg/m3 increase in 2-day averaged 
PM2.5, a 1.89% (95% CI: 1.34-2.45) increase in cardiovascular disease admissions, a 
2.25% (95% CI: 1.10-3.42) increase in myocardial infarction admissions, a 1.85% (95% 
CI: 1.19-2.51) increase in congestive heart failure admissions, a 2.74% (95% CI: 1.30-
4.20) increase in diabetes admissions, and a 2.07% (95% CI: 1.20-2.95) increase in 
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respiratory admissions were observed. The relationship between PM2.5 and 
cardiovascular admissions was significantly modified when the mass of PM2.5 was high 
in Br, Cr, Ni, and sodium ions, while mass high in As, Cr, Mn, organic carbon, Ni and 
sodium ions modified the myocardial infarction relationship and mass high in As, 
orgarnic carbon, and sulfate ions modified the diabetes admission rates.  

Acute Myocardial Infarction, Nonfatal   

The study looked at hospital admissions of AMI through ER. Under the assumption that 
all heart attacks will end in hospitalization, we consider the endpoint as heart attack 
events to be consistent with other studies. In a single-pollutant model the coefficient 
and standard error are estimated from the percent change in risk (2.25%) and 95% 
confidence interval (95% CI: 1.10-3.42) for a 10 µg/m3 increase in 2-day averaged PM2.5 
(Zanobetti et al., 2009, Table 3).   

Incidence Rate: AMI hospital admission rate for all ages. See the incidence rate 
discussion under Peters et al. (2001) in Section E.2.2.   

Population: All ages. Note that although Zanobetti et al. (2009) reports results for the 
65-99 year old age range, for comparability to other studies, we apply the results to all 
ages. Since the vast majority of AMIs occur among population 65-99, over-counting may 
not be an issue when applying the risk coefficient to all ages.   

Adjustment: See the adjustment description in Section E.2.2.   

E.3 Hospitalizations   
Table E-7 summarizes the health impacts functions used to estimate the relationship 
between PM2.5 and hospital admissions. Below, we present a brief summary of each of 
the studies and any items that are unique to the study.  
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 Table E-7. Health Impact Functions for Particulate Matter and Hospital Admissions 

Effect Author Year Location Age Co-Poll Metric Beta Std Err Form Notes 

Asthma Babin et al. 2007 Washington, DC 0-17  D24HourMean 0.0020 0.0043 Log-
linear 

Age range 
adjusted 
Admission 
from 
emergency 
department 
only. 

All 
Cardiovascular 
(less Myocardial 
Infarctions) 

Bell et al.  2008 202 U.S. Counties 65-99  D24HourMean 0.0008 0.0001 Log-
linear 

Urgent 
admission 
only. Yearly 
national 
estimates 

Congestive 
Heart Failure 

Ito 2003 Detroit, MI 65-99  D24HourMean 0.003074 0.001292 Log-
linear 

 

Dysrhythmia Ito 2003 Detroit, MI 65-99  D24HourMean 0.001249 0.002033 Log-
linear 

 

Ischemic Heart 
(less Myocardial 
Infarctions) 

Ito 2003 Detroit, MI 65-99  D24HourMean 0.001435 0.001156 Log-
linear 

 

Chronic Lung Ito 2003 Detroit, MI 65-99  D24HourMean 0.001169 0.002064 Log-
linear 

 

Pneumonia Ito 2003 Detroit, MI 65-99  D24HourMean 0.003979 0.001659 Log-
linear 

 

All 
Cardiovascular 
(less Myocardial 
Infarctions) 

Moolgavkar 2000 Los Angeles, CA 18-64  D24HourMean 0.001400 0.000341 Log-
linear 

 

Chronic Lung 
(less Asthma) 

Moolgavkar 2000 Los Angeles, CA 18-64  D24HourMean 0.002200 0.000733 Log-
linear 

 

All 
Cardiovascular 
(less Myocardial 
Infarctions) 

Moolgavkar 2003 Los Angeles, CA 65-99  D24HourMean 0.001580 0.000344 Log-
linear 

 

Chronic lung Moolgavkar 2003 Los Angeles, CA 65-99  D24HourMean 0.001850 0.000524 Log-
linear 

 

All 
Cardiovascular 
(less Myocardial 
Infarctions) 

Peng et al. 2008 108 U.S. Counties 65-99  D24HourMean 0.0007 0.0001 Log-
linear 

Emergency 
HA  

All 
Cardiovascular 
(less Myocardial 
Infarctions) 

Peng et al. 2009 119 U.S. Counties 65-99  D24HourMean 0.0007 0.0002 Log-
linear 

Urgent or 
emergency 
HA 

Asthma Sheppard 2003 Seattle, WA 0-64  D24HourMean 0.003324 0.001045 Log-
linear 

 

All 
Cardiovascular 
(less Myocardial 
Infarctions) 

Zanobetti et 
al. 

2009 26 U.S. 
Communities 

65-99  D24HourMean 0.00019 0.0003 Log-
linear 

All seasons 

All Respiratory Zanobetti et 
al. 

2009 26 U.S. 
Communities 

65-99  D24HourMean 0.0021 0.0004 Log-
linear 

All seasons 
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E.3.1 Babin et al. (2007)   

Babin et al. (2007) examined pediatric asthma-related emergency room (ER) visits and 
hospital admissions (ICD-9 code 493) in Washington, D.C. from 2001-2004 and their 
short-term associations with ozone, particulate matter, socioeconomic status, and age 
group. The association between PM2.5 and asthma hospitalization was found 
statistically insignificant.   

Hospital Admissions, Asthma (ICD-9 code 493)   

In a single-pollutant model, the coefficient and standard error are estimated from the 
average percent increase in risk (0.2%) and 95% confidence interval (95% CI: -0.6% - 
1.1%) for a 1 µg/m3 increase in same-day daily 24-hour mean PM2.5 (Babin et al., 2007, 
Table 2).   

Note that although Babin et al. (2007) reports results for the 1-17 year old age range, 
for comparability to other studies, we apply the results to the population of ages 0 to 
17.  

E.3.2 Bell et al. (2008)   

Bell et al. (2008) evaluated the association between short-term exposure to PM2.5 and 
the risk of cardiovascular (ICD-9 codes 410-414, 26-427, 428, 429, 430-438, and 440-
449) and respiratory (ICD-9 codes 464-466, 480-487, and 490-492) hospital 
admissions among Medicare enrollees =65 years old varied by season and geographic 
region in 202 U.S. counties with populations greater than 200,000 from 1999-2005. 
Three time-series models were used to provide three key variables: consistent PM 
effects across the year, different PM effects by season, and smoothly varying PM effects 
throughout the year. A two-stage Bayesian hierarchical model was used to estimate the 
association between PM2.5 and hospitalization rates, with the first stage estimating the 
association within a single county and the second stage combining county- specific 
estimates. The authors found statistically significant evidence of seasonal and regional 
variation. Respiratory hospitalizations were highest in winter with a 1.05% increase 
(95%PI: 0.29-1.82) in hospitalizations per 10 µg/m3 increase in same-day PM2.5. A 
1.49% increase (95% PI: 1.09-1.89) in cardiovascular hospital admissions were also 
found for the winter season, and associations were observed in other seasons as well. 
The strongest association was for the northeast for both respiratory and cardiovascular 
admissions.   

Hospital Admissions, Cardio-, Cerebro- and Peripheral Vascular Disease (ICD-9 
codes 426-427, 428, 430-438, 410-414, 429; 440-449)   

For different seasons (i.e., autumn, spring, summer, winter, and all-year) and regions 
(i.e., southwest, northwest, southeast, southwest, and nationwide), the coefficient and 
standard error are estimated from the average percent increase in risk and 95% 
confidence interval for a 10 µg/m3 increase in same-day (lag 0) daily 24-hour mean 
PM2.5 (Bell et al., 2008, Table 2).   
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Note that Bell et al. (2008) considered a broader range of ICD-9 codes and estimated the 
risk of both cardiovascular events and cerebro- and peripheral vascular disease. For 
comparability to other studies, EPA decided to apply a baseline hospitalization rate for 
ICD-9 codes 390-409 and 411-429 when using this C-R function in quantifying impacts.  

E.3.3 Ito (2003)  

Lippmann et al. (2000) studied the association between particulate matter and daily 
mortality and hospitalizations among the elderly in Detroit, MI. Data were analyzed for 
two separate study periods, 1985-1990 and 1992-1994. The 1992-1994 study period 
had a greater variety of data on PM size and was the main focus of the report. The 
authors collected hospitalization data for a variety of cardiovascular and respiratory 
endpoints. They used daily air quality data for PM10, PM2.5, and PM10-2.5 in a Poisson 
regression model with generalized additive models (GAM) to adjust for nonlinear 
relationships and temporal trends. In single pollutant models, all PM metrics were 
statistically significant for pneumonia (ICD codes 480-486), PM10-2.5 and PM10 were 
significant for ischemic heart disease (ICD code 410-414), and PM2.5 and PM10 were 
significant for heart failure (ICD code 428). There were positive, but not statistically 
significant associations, between the PM metrics and COPD (ICD codes 490-496) and 
dysrhythmia (ICD code 427). In separate co-pollutant models with PM and either ozone, 
SO2, NO2, or CO, the results were generally comparable.   

In response to concerns with the Splus issue, Ito (2003) reanalyzed the study by 
Lippmann et al. (2000). The reanalysis by Ito reported that more generalized additive 
models with stringent convergence criteria and generalized linear models resulted in 
smaller relative risk estimates.  

Chronic Lung Disease (ICD-9 codes 490-496)   

The coefficient and standard error are based on the relative risk (1.043) and 95% 
confidence interval (0.902-1.207) for a 36 µg/m3 increase in PM2.5 in the 3-day lag GAM 
stringent model (Ito, 2003, Table 8).   

Pneumonia (ICD-9 codes 480-487)   

The estimated PM2.5 coefficient and standard error are based on a relative risk of 1.154 
(95% CI -1.027, 1.298) due to a PM2.5 change of 36 µg/m3 in the 1-day lag GAM 
stringent model (Ito, 2003, Table 7).   

Dysrhythmia (ICD-9 code 427)   

The co-pollutant coefficient and standard error are calculated from a relative risk of 
1.046 (95% CI 0.906-1.207) for a 36 µg/m3 increase in PM2.5 in the 1-day lag GAM 
stringent model (Ito, 2003, Table 10).   
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Congestive Heart Failure (ICD-9 code 428)   

The co-pollutant coefficient and standard error are calculated from a relative risk of 
1.117 (95% CI 1.020-1.224) for a 36 µg/m3 increase in PM2.5 in the 1-day lag GAM 
stringent model (Ito, 2003, Table 11).   

Ischemic Heart Disease (ICD-9 codes 411-414)   

The co-pollutant coefficient and standard error are calculated from a relative risk of 
1.053 (95% CI 0.971-1.143) for a 36 µg/m3 increase in PM2.5 in the 1-day lag GAM 
stringent model (Ito, 2003, Table 9)  Note that Lippmann et al. (2000) report results for 
ICD codes 410-414. In the benefit analysis, avoided nonfatal heart attacks are estimated 
using the results reported by Peters et al. (2001).  The baseline rate in the Peters et al. 
function is a modified heart attack hospitalization rate (ICD code 410), since most, if not 
all, nonfatal heart attacks will require hospitalization. In order to avoid double counting 
heart attack hospitalizations, we have excluded ICD code 410 from the baseline 
incidence rate used in this function.  

E.3.4 Moolgavkar (2000a), Chronic Lung   

Moolgavkar (2000a) examined the association between air pollution and COPD hospital 
admissions (ICD 490-496) in the Chicago, Los Angeles, and Phoenix metropolitan areas. 
He collected daily air pollution data for ozone, SO2, NO2, CO, and PM10 in all three areas. 
PM2.5 data was available only in Los Angeles. The data were analyzed using a Poisson 
regression model with generalized additive models to adjust for temporal trends. 
Separate models were run for 0 to 5 day lags in each location. Among the 65+ age group 
in Chicago and Phoenix, weak associations were observed between the gaseous 
pollutants and admissions. No consistent associations were observed for PM10. In Los 
Angeles, marginally significant associations were observed for PM2.5, which were 
generally lower than for the gases. In co-pollutant models with CO, the PM2.5 effect was 
reduced. Similar results were observed in the 0-19 and 20-64 year old age groups.   

The PM2.5 C-R functions are based on the single and co-pollutant models (PM2.5 and CO) 
reported for the 20-64 and 65+ age groups. Since the true PM effect is most likely best 
represented by a distributed lag model, then any single lag model should underestimate 
the total PM effect. As a result, we selected the lag models with the greatest effect 
estimates for use in the C-R functions.   

Hospital Admissions, Chronic Lung Disease Less Asthma (ICD-9 codes 490-492, 
494-496)   

In a model with CO, the coefficient and standard error are calculated from an estimated 
percent change of 2.0 and t-statistic of 2.2 for a 10 µg/m3 increase in PM2.5 in the two-
day lag model (Moolgavkar, 2000a, Table 4, p. 81). In a log-linear model, the percent 
change is equal to (RR - 1) * 100.   
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In this study, Moolgavkar defines and reports the “estimated” percent change as (log RR 
* 100). Because the relative risk is close to 1, RR-1 and log RR are essentially the same. 
For example, a true percent change of 2.0 would result in a relative risk of 1.020 and 
coefficient of 0.001980. The “estimated” percent change, as reported by Moolgavkar, of 
2.0 results in a relative risk of 1.020201 and coefficient of 0.002.   

Note that although Moolgavkar (2000a) reports results for the 20-64 year old age 
range, for comparability to other studies, we apply the results to the population of ages 
18 to 64. Note also that in order to avoid double counting non-elderly asthma 
hospitalizations (ICD code 493), which are typically estimated separately in EPA benefit 
analyses, we have excluded ICD code 493 from the baseline incidence rate used in this 
function.  

E.3.5 Moolgavkar (2000b), Cardiovascular   

Moolgavkar (2000b) examined the association between air pollution and 
cardiovascular hospital admissions (ICD 390-429) in the Chicago, Los Angeles, and 
Phoenix metropolitan areas. He collected daily air pollution data for ozone, SO2, NO2, 
CO, and PM10 in all three areas. PM2.5 data was available only in Los Angeles. The data 
were analyzed using a Poisson regression model with generalized additive models to 
adjust for temporal trends. Separate models were run for 0 to 5 day lags in each 
location. Among the 65+ age group, the gaseous pollutants generally exhibited stronger 
effects than PM10 or PM2.5. The strongest overall effects were observed for SO2 and CO. 
In a single pollutant model, PM2.5 was statistically significant for lag 0 and lag 1. In co-
pollutant models with CO, the PM2.5 effect dropped out and CO remained significant. For 
ages 20-64, SO2 and CO exhibited the strongest effect and any PM2.5 effect dropped out 
in co-pollutant models with CO.   

Hospital Admissions, All Cardiovascular (ICD codes 390-409, 411-429)   

The single pollutant coefficient and standard error are calculated from an estimated 
percent change of 1.4 and t-statistic of 4.1 for a 10 µg/m3 increase in PM2.5 in the zero 
lag model (Moolgavkar, 2000b, Table 4, p. 1203).   

Note that (Moolgavkar (2000b) report results that include ICD code 410 (heart attack). 
In a benefit analysis, avoided nonfatal heart attacks are typically estimated separately. 
The baseline rate in the Peters et al. function is a modified heart attack hospitalization 
rate (ICD code 410), since most, if not all, nonfatal heart attacks will require 
hospitalization. In order to avoid double counting heart attack hospitalizations, we have 
excluded ICD code 410 from the baseline incidence rate used in this function.  

E.3.6 Moolgavkar (2003)  

Moolgavkar (2000a) examined the association between air pollution and COPD hospital 
admissions (ICD 490-496) in the Chicago, Los Angeles, and Phoenix metropolitan areas. 
In response to concerns with Splus issue, Moolgavkar (2003) reanalyzed his earlier 
studies. In the reanalysis, he reported that more generalized additive models with 
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stringent convergence criteria and generalized linear models resulted in smaller 
relative risk estimates.   

Hospital Admissions, Chronic Lung (ICD-9 codes 490-496)   

The coefficient and standard error are calculated from an estimated percentage change 
of 1.85 and a t-statistic of 3.53 for a 10 µg/m3 increase in PM2.5 in the 2-day lag GAM-
30df stringent (10-8) model (Moolgavkar, 2003, Table 17). In a log-linear model, the 
percent change is equal to (RR - 1) * 100.   

The PM2.5 C-R functions for the 65+ age group are based on the reanalysis in 
Moolgavkar (2003) of the single and co-pollutant models (PM2.5 and CO). The true PM 
effect is most likely best represented by a distributed lag model, then any single lag 
model should underestimate the total PM effect. As a result, we selected the lag models 
with the greatest effect estimates for use in the C-R functions.   

Hospital Admissions, All Cardiovascular (ICD-9 codes 390-429)   

The single pollutant coefficient and standard error are calculated from an estimated 
percent change of 1.58 and t-statistic of 4.59 for a 10 µg/m3 increase in PM2.5 in the 0-
day lag GAM-30df stringent (10-8) model (Moolgavkar, 2003, Table 12). In a log-linear 
model, the percent change is equal to (RR - 1) * 100.  

E.3.7 Peng et al. (2008)  

Peng et al. (2008) examined the risk of hospital admissions for cardiovascular and 
respiratory  diseases in relation to particulate matter (PM10-2.5 and PM2.5). To 
accomplish this, the authors utilized a database of 108 U.S. counties with daily 
emergency hospital admission rates for cardiovascular and respiratory diseases among 
Medicare enrollees living 9 miles from air  monitors, temperature, and dew-point 
temperature. PM10-2.5 and PM2.5 concentrations were calculated by using monitoring 
data from January 1, 1999 through December 31, 2005. Overall, there were 3.7 million 
cardiovascular disease and 1.4 million respiratory disease-related hospital admissions 
for the time period assessed. The authors found that a 10 µg/m3 increase in PM10-2.5 
was associated with a 0.36% increase (95% PI: 0.05-0.68%) in cardiovascular disease 
admissions on the same day, and a 0.25% increase (95% PI: -0.11-0.60%) after 
adjusting for PM2.5. For respiratory disease admissions, a 10 µg/m3 increase in PM10-2.5 
was found to be associated with an unadjusted 0.33% increase in respiratory disease 
admissions (95% PI: -0.21- 0.86%) and an adjusted 0.26% increase (95% PI: -0.32-
0.84%) in emergency admissions.  Also, unadjusted associations of PM2.5 with 
cardiovascular and respiratory disease admissions were 0.71% (95% PI: 0.45-0.96%) 
for same-day exposure and 0.44% (95% PI: 0.06-0.82%) for exposure lagged by 2 days 
prior to hospital admission.     
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Hospital Admissions, Cardio-, Cerebro-, and Peripheral Vascular Disease (ICD-9 
codes  426-427, 428, 430-438, 410-414, 429, 440-448)   

In a single-pollutant model, the coefficient and standard error are estimated from the 
percent  change in daily admission (0.44%) and 95% posterior interval (95% PI: 0.06-
0.82%) for a 10  µg/m3 increase in daily 24-hour mean PM2.5 concentrations for the 
same day (Peng et al., 2008,  page 2175).   

Note that Peng et al. (2008) considered a broader range of ICD-9 codes and estimated 
the risk of both cardiovascular events and cerebro- and peripheral vascular disease. For 
comparability to other studies, EPA decided to apply a baseline hospitalization rate for 
ICD-9 codes 390-409 and 411-429 when using this C-R function in quantifying impacts.   

E.3.8 Peng et al. (2009)  

Peng et al. (2009) investigated the relationship between hospital admissions for 
cardiovascular and respiratory disease and the chemical components of PM2.5 across 
119 U.S. urban communities for 12 million Medicare enrollees using log-linear Poisson 
regression models. This was achieved using a national database with daily data from 
2000-2006 on emergency hospital admissions of cardiovascular and respiratory 
outcomes, ambient levels of PM2.5 components and weather variables. Bayesian 
hierarchical statistical models were used to estimate the associations. Three scenarios 
for PM2.5 exposure were assessed which were as follows: 1) for the period 2000-2006 
and including only days with available measurements for all 7 PM2.5 components from 
the Speciation Trends network (STN); 2) PM2.5 measured by the STN for the period 
2000-2006 and including only days with available measurements for all 7 PM2.5 
components from the STN and 3) PM2.5 estimated as the sum of the 7 largest 
components of PM2.5 mass for the period 2000-2006. Results of percent increases in 
emergency admissions associated with PM2.5 at lag 0 under these scenarios were 
showed in Figure 2 and the results for the components of PM2.5 from both single and 
multi-pollutant models were showed in Figure 3.  In multi-pollutant models that 
adjusted for the levels of other pollutants, the authors found that an interquartile range 
increase in elemental carbon was associated with a 0.80% increase (95% PI: 0.34-
1.27%) in risk of same-day cardiovascular admissions. Similarly, an interquartile range 
increase in organic carbon matter was associated with a 1.01% increase (95% PI: 0.04-
1.98%) risk of respiratory admissions on the same day.   

Hospital Admissions, Cardio-, Cerebro-, and Peripheral Vascular Disease (ICD-9 
codes 426-427, 428, 430-438, 410-414, 429, 440-448)   

In a single-pollutant model, the coefficient and standard error are estimated from the 
percent change in daily admission (0.68%) and 95% posterior interval (95% PI: 0.26-
1.10%) for a 10 µg/m3 increase in daily 24-hour mean PM2.5 concentrations for the 
same day (Peng et al., 2009, page 960).   

Note that Peng et al. (2009) considered a broader range of ICD-9 codes and estimated 
the risk of both cardiovascular events and cerebro- and peripheral vascular disease. For 



 Appendix E: Particulate Matter Health Impact Functions in U.S. Setup 

BenMAP-CE User’s Manual Appendices March 2015 
100 

comparability to other studies, EPA decided to apply a baseline hospitalization rate for 
ICD-9 codes 390-409 and 411-429 when using this C-R function in quantifying impacts.  

E.3.9 Sheppard (2003)  

Sheppard et al. (1999) studied the relation between air pollution in Seattle and 
nonelderly (<65) hospital admissions for asthma from 1987 to 1994. They used air 
quality data for PM10, PM2.5, coarse PM10-2.5, SO2, ozone, and CO in a Poisson regression 
model with control for time trends, seasonal variations, and temperature-related 
weather effects. PM2.5 levels were estimated from light scattering data. They found 
asthma hospital admissions associated with PM10, PM2.5, PM10-2.5, CO, and ozone. They 
did not observe an association for SO2. They found PM and CO to be jointly associated 
with asthma admissions. The best fitting co-pollutant models were found using ozone. 
However, ozone data was only available April through October, so they did not consider 
ozone further. For the remaining pollutants, the best fitting models included PM2.5 and 
CO. Results for other co-pollutant models were not reported.   

In response to concerns that the work by Sheppard et al. (1999) may be biased because 
of the Splus issue, Sheppard (2003) reanalyzed some of this work, in particular 
Sheppard reanalyzed the original study’s PM2.5 single pollutant model.   

Hospital Admissions, Asthma (ICD-9 code 493)   

The coefficient and standard error are based on the relative risk (1.04) and 95% 
confidence interval (1.01-1.06) for a 11.8 µg/m3 increase in PM2.5 in the 1-day lag GAM 
stringent model (Sheppard, 2003, pp. 228-229).  

E.3.10 Zanobetti et al. (2009)  

Zanobetti et al. (2009) examined the relationship between daily PM2.5 levels and 
emergency hospital admissions for cardiovascular causes, myocardial infarction, 
congestive heart failure, respiratory disease and diabetes among 26 U.S. communities 
from 2000-2003. The authors used meta-regression to examine how this association 
was modified by season- and community-specific PM2.5 composition while controlling 
for seasonal temperature as a substitute for ventilation. Overall, the authors found that 
PM2.5 mass higher in Ni, As, and Cr as well as Br and organic carbon significantly 
increased its effects on hospital admissions. For a 10 µg/m3 increase in 2-day averaged 
PM2.5, the authors found a 1.89% (95% CI: 1.34-2.45) increase in cardiovascular disease 
admissions, a 2.25% (95% CI: 1.10-3.42) increase in myocardial infarction admissions, 
a 1.85% (95% CI: 1.19-2.51) increase in congestive heart failure admissions, a 2.74% 
(95% CI: 1.30-4.20) increase in diabetes admissions, and a 2.07% (95% CI: 1.20-2.95) 
increase in respiratory admissions. The relationship between PM2.5 and cardiovascular 
admissions was significantly modified when the mass of PM2.5 was high in Br, Cr, Ni, and 
sodium ions, while mass high in As, Cr, Mn, organic carbon, Ni and sodium ions modified 
the myocardial infarction relationship and mass high in As, organic carbon, and sulfate 
ions modified the diabetes admission rates.   

Hospital Admissions, All Cardiovascular (ICD-9 codes 390-429)   
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In a single-pollutant model, the coefficient and standard error are estimated from the 
percent change in risk (1.89%) and 95% confidence interval (1.34%-2.45%) for a 10 
µg/m3 increase in 2-day averaged PM2.5 (Zanobetti et al., 2009, Table 3).   

Note that Zanobetti et al. (2009) report results for ICD codes 390-429. In the benefit 
analysis, avoided nonfatal heart attacks are estimated separately. In order to avoid 
double counting heart attack hospitalizations, we have excluded ICD code 410 from the 
baseline incidence rate used in this function.   

Hospital Admissions, All Respiratory (ICD-9 codes 460-519)   

In a single-pollutant model, the coefficient and standard error are estimated from the 
percent change in risk (2.07%) and 95% confidence interval (1.2% - 2.95%) for a 10 
µg/m3 increase in 2-day averaged PM2.5 (Zanobetti et al., 2009, Table 3).  

E.4 Emergency Room Visits  
Table E-8 summarizes the health impacts functions used to estimate the relationship 
between PM2.5 and emergency room visits. Below, we present a brief summary of each 
of the studies and any items that are unique to the study.  

Table E-8.  Health Impact Functions for Particulate Matter and Emergency Room 
Visits 

Effect Author Year Location Age 
Co-
Poll Metric Beta Std Err Form 

Asthma Mar et al. 2010 Greater 
Tacoma, WA 

0-99  D24HourMean 0.0056 0.0021 Log-
linear 

Asthma Norris et al.  1999 Seattle, WA 0-17 NO2, 
SO2 

D24HourMean 0.016527 0.004139 Log-
linear 

Asthma Slaughter 
et al. 

2005 Spokane, 
WA 

0-99  D24HourMean 0.0029 0.0027 Log-
linear 

 

E.4.1 Mar et al. 2010   

Mar et al. (2010) assessed the effect of particulate matter air pollution, including 
emissions from diesel generators, on emergency room visits for asthma in the greater 
Tacoma, Washington area from January 3, 1998, to May 30, 2002, using Poisson 
regression models. Health data were collected for individuals of all ages from 6 Tacoma 
hospitals. The authors also assessed the impacts of diesel generator use on emergency 
room visits for asthma from January 24, 2001, to June 2, 2001. Overall, the researchers 
found an association between daily PM2.5 levels and emergency room visits for asthma 
at lag days 2 and 3, with a relative risk for lag day 2 of 1.04 (95% CI: 1.01-1.07) and a 
relative risk for lag day 3 of 1.03 (95% CI: 1.0-1.06). No significant association between 
emergency room visits for asthma and increased use of the diesel generators was 
observed.   
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Emergency Room Visits, Asthma (ICD-9 code not reported)   

In a single-pollutant model, the coefficient and standard error are estimated from the 
relative risk (1.04) and 95% confidence interval (95% CI: 1.01-1.07) for a 7 µg/m3 
increase in daily 24-hour mean PM2.5 at lag day 2 (Mar et al., 2010, Table 4).   

E.4.2 Norris et al. (1999)   

Norris et al. (1999) examined the relation between air pollution in Seattle and 
childhood (<18) hospital admissions for asthma from 1995 to 1996. The authors used 
air quality data for PM10, light scattering (used to estimate fine PM), CO, SO2, NO2, and 
O3 in a Poisson regression model with adjustments for day of the week, time trends, 
temperature, and dew point. They found significant associations between asthma ER 
visits and light scattering (converted to PM2.5), PM10, and CO. No association was found 
between O3, NO2, or SO2 and asthma ER visits, although O3 had a significant amount of 
missing data. In multipollutant models with either PM metric (light scattering or PM10) 
and NO2 and SO2, the PM coefficients remained significant while the gaseous pollutants 
were not associated with increased asthma ER visits. The PM C-R functions are based 
on results of the single and multipollutant models reported.   

Emergency Room Visits, Asthma   

In a model with NO2 and SO2, the PM2.5 coefficient and standard error are calculated 
from a relative risk of 1.17 (95% CI 1.08-1.26) for a 9.5 µg/m3 increase in PM2.5 (Norris 
et al., 1999, p. 491).   

E.4.3  Slaughter et al. (2005)   

Slaughter et al. (2005) examined the short-term association of particulate matter (PM1, 
PM2.5, PM10, and PM10-2.5) and carbon monoxide with hospital admissions and 
emergency room visits for respiratory and cardiac outcomes and mortality in Spokane, 
Washington, from January 1995 to June 2001 using a log-linear generalized linear 
model. The authors found no association between respiratory emergency room visits 
and any size fraction of PM, but there was a suggestive relationship between fine PM 
and respiratory effects when compared to coarse PM. No association between cardiac 
hospital admissions or mortality and any size fraction of PM or CO was observed at the 
0- to 3-day lag. CO, on the other hand, was found to be associated with all respiratory 
emergency room visits and visits for asthma at the 3-day lag.   

Emergency Room Visits, Asthma (ICD-9 code 493)   

In a single-pollutant model, the coefficient and standard error are estimated from the 
relative risk (1.03) and 95% confidence interval (95% CI: 0.98-1.09) for a 10 µg/m3 
increase in daily 24-hour mean PM2.5 at 1-day lag (Slaughter et al., 2005, Table 4).   
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E.5 Minor Effects   
Table E-9 summarizes the health impacts functions used to estimate the relationship 
between PM2.5 and minor effects. Below, we present a brief summary of each of the 
studies and any items that are unique to the study.   

Table E-9.  Health Impact Functions for Particulate Matter and Minor Effects 

Effect Author Year Location Age 
Co-
Poll Metric Beta Std Err Form 

Acute 
Bronchitis 

Dockery et 
al. 

1996 24 communities 8-12  Annual 0.027212 0.017096 Logistic 

Work Loss 
Days 

Ostro 1987 Nationwide 18-64  D24HourMean 0.004600 0.000360 Log-
linear 

Minor 
Restricted 
Activity 
Days 

Ostro and 
Rothschild 

1989 Nationwide 18-64 Ozone D24HourMean 0.007410 0.000700 Log-
linear 

Lower 
Respiratory 
Symptoms 

Schwartz 
and Neas 

2000 6 U.S. cities 7-14  D24HourMean 0.019012 0.006005 Logistic 

 

E.5.1 Dockery et al. (1996)   

Dockery et al. (1996) examined the relationship between PM and other pollutants on 
the reported rates of asthma, persistent wheeze, chronic cough, and bronchitis, in a 
study of 13,369 children ages 8-12 living in 24 communities in U.S. and Canada. Health 
data were collected in 1988-1991, and single-pollutant models were used in the 
analysis to test a number of measures of particulate air pollution. Dockery et al. found 
that annual level of sulfates and particle acidity were significantly related to bronchitis, 
and PM2.1 and PM10 were marginally significantly related to bronchitis. The original 
study measured PM2.1, however when using the study’s results we use PM2.5. This 
makes only a negligible difference, assuming that the adverse effects of PM2.1 and PM2.5 
are comparable. They also found nitrates were linked to asthma, and sulfates linked to 
chronic phlegm. It is important to note that the study examined annual pollution 
exposures, and the authors did not rule out that acute (daily) exposures could be 
related to asthma attacks and other acute episodes. Earlier work, by Dockery et al. 
(1989), based on six U.S. cities, found acute bronchitis and chronic cough significantly 
related to PM15. Because it is based on a larger sample, the Dockery et al. (1996) study 
is the better study to develop a C-R function linking PM2.5 with bronchitis.   

Bronchitis was counted in the study only if there were “reports of symptoms in the past 
12 months” (Dockery et al., 1996, p. 501). It is unclear, however, if the cases of 
bronchitis are acute and temporary, or if the bronchitis is a chronic condition. Dockery 
et al. found no relationship between PM and chronic cough and chronic phlegm, which 
are important indicators of chronic bronchitis. For this analysis, we assumed that the C-
R function based on Dockery et al. is measuring acute bronchitis. The C-R function is 
based on results of the single pollutant model reported in Table 1.   
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Acute Bronchitis   

The estimated logistic coefficient and standard error are based on the odds ratio (1.50) 
and 95% confidence interval (0.91-2.47) associated with being in the most polluted city 
(PM2.1 = 20.7 µg/m3) versus the least polluted city (PM2.1 = 5.8 µg/m3) (Dockery et al., 
1996, Tables 1 and 4). The original study used PM2.1, however, we use the PM2.1 
coefficient and apply it to PM2.5 data.   

Incidence Rate: annual bronchitis incidence rate per person = 0.043 (American Lung 
Association, 2002a, Table 11)   

Population: population of ages 8-12.  

E.5.2 Ostro (1987)   

Ostro (1987) estimated the impact of PM2.5 on the incidence of work-loss days (WLDs), 
restricted activity days (RADs), and respiratory-related RADs (RRADs) in a national 
sample of the adult working population, ages 18 to 65, living in metropolitan areas. The 
study population is based on the Health Interview Survey (HIS), conducted by the 
National Center for Health Statistics. The annual national survey results used in this 
analysis were conducted in 1976-1981. Ostro reported that two-week average PM2.5 
levels were significantly linked to work-loss days, RADs, and RRADs, however there was 
some year-to-year variability in the results. Separate coefficients were developed for 
each year in the analysis (1976-1981); these coefficients were pooled. The coefficient 
used in the concentration-response function presented here is a weighted average of 
the coefficients in Ostro (1987, Table III) using the inverse of the variance as the weight.   

Work Loss Days   

The coefficient used in the C-R function is a weighted average of the coefficients in 
Ostro (1987, Table III) using the inverse of the variance as the weight:  
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This eventually reduces down to:  

00036.0112 ==⇒=
γ
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γ

σ ββ

.  

Incidence Rate: daily work-loss-day incidence rate per person ages 18 to 64 = 0.00595 
(U.S. Bureau of the Census, 1997, No. 22; Adams et al., 1999, Table 41)   

Population: adult population ages 18 to 64  

E.5.3 Ostro and Rothschild (1989)  

Ostro and Rothschild (1989) estimated the impact of PM2.5 and ozone on the incidence 
of minor restricted activity days (MRADs) and respiratory-related restricted activity 
days (RRADs) in a national sample of the adult working population, ages 18 to 65, living 
in metropolitan areas. The study population is based on the Health Interview Survey 
(HIS), conducted by the National Center for Health Statistics. In publications from this 
ongoing survey, non-elderly adult populations are generally reported as ages 18-64. 
From the study, it is not clear if the age range stops at 65 or includes 65 year olds. We 
apply the C-R function to individuals ages 18-64 for consistency with other studies 
estimating impacts to non-elderly adult populations. The annual national survey results 
used in this analysis were conducted in the period 1976-1981. Controlling for PM2.5, 
two-week average ozone has highly variable association with RRADs and MRADs.  
Controlling for ozone, two-week average PM2.5 was significantly linked to both health 
endpoints in most years.   

Minor Restricted Activity Days   

Using the results of the two-pollutant model, we developed separate coefficients for 
each year in the analysis, which were then combined for use in this analysis. The 
coefficient is a weighted average of the coefficients in Ostro and Rothschild (1989, Table 
4) using the inverse of the variance as the weight:  
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The standard error of the coefficient is calculated as follows, assuming that the 
estimated year-specific coefficients are independent:  
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Incidence Rate: daily incidence rate for minor restricted activity days (MRAD) = 
0.02137 (Ostro and Rothschild, 1989, p. 243)   

Population: adult population ages 18 to 64   

E.5.4  Schwartz and Neas (2000)   

Schwartz et al. (2000) replicated a previous analysis (Schwartz et al., 1994) linking PM 
levels to lower respiratory symptoms in children in six cities in the U.S. The original 
study enrolled 1,844 children into a year-long study that was conducted in different 
years (1984 to 1988) in six cities. The students were in grades two through five at the 
time of enrollment in 1984. By the completion of the final study, the cohort would then 
be in the eighth grade (ages 13-14); this suggests an age range of 7 to 14. The previous 
study focused on PM10, acid aerosols, and gaseous pollutants, although single-pollutant 
PM2.5 results were reported. Schwartz et al. (2000) focused more on the associations 
between PM2.5 and PM10-2.5 and lower respiratory symptoms. In single and co-
pollutant models, PM2.5 was significantly associated with lower respiratory symptoms, 
while PM10-2.5 was not. PM10-2.5 exhibited a stronger association with cough than did 
PM2.5. The PM2.5 C-R functions for lower respiratory symptoms are based on the results 
of the reported single pollutant and co-pollutant model (PM2.5 and PM10-2.5).   

Lower Respiratory Symptoms   

The coefficient and standard error are calculated from the reported odds ratio (1.33) 
and 95% confidence interval (1.11-1.58) associated with a 15 µg/m3 change in PM2.5 
(Schwartz and Neas, 2000, Table 2).   

Incidence Rate: daily lower respiratory symptom incidence rate per person = 0.0012 
(Schwartz et al., 1994, Table 2)   

Population: population of ages 7 to 14   
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E.6 Asthma-Related Effects   
Table E-10 summarizes the health impacts functions used to estimate the relationship 
between PM2.5 and asthma exacerbation. Below, we present a brief summary of each of 
the studies and any items that are unique to the study.  

Table E-10. Health Impact Functions for Particulate Matter and Asthma-Related 
Effects 

Effect Author Year Location Age 
Co-
Poll Metric Beta Std Err Form 

Notes 

Cough Mar et al. 2004 Spokane, WA 6-18  D24HourMean 0.0191 0.0098 Logistic Uses 
incidence 
rate from 
Ostro et al. 
(2001). 
Age range 
adjusted. 

Shortness of 
Breath 

Mar eta al. 2004 Spokane, WA 6-18  D24HourMean 0.0122 0.0138 Logistic Uses 
incidence 
rate from 
Ostro et al. 
(2001). 
Age range 
adjusted. 

Cough Ostro et al. 2001 Los Angeles, CA 6-18  D24HourMean 0.000985 0.000747 Logistic  

Shortness of 
Breath 

Ostro et al. 2001 Los Angeles, CA 6-18  D24HourMean 0.002565 0.001335 Logistic  

Wheeze Ostro et al. 2001 Los Angeles, CA 6-18  D24HourMean 0.001942 0.000803 Logistic  

Upper 
Respiratory 
Symptoms 

Pope et al. 1991 Utah Valley 9-11  D24HourMean 0.003600 0.001500 Logistic  

 

E.6.1 Mar et al. (2004)   

Mar et al. (2004) studied the effects of various size fractions of particulate matter on 
respiratory symptoms of adults and children with asthma, monitored over many 
months. The study was conducted in Spokane, Washington, a semiarid city with diverse 
sources of particulate matter. Data on respiratory symptoms and medication use were 
recorded daily by the study’s subjects, while air pollution data was collected by the local 
air agency and Washington State University. Subjects in the study consisted of 16 
adults—the majority of whom participated for over a year—and nine children, all of 
whom were studied for over eight months. Among the children, the authors found a 
strong association between cough symptoms and several metrics of particulate matter, 
including PM2.5. However, the authors found no association between respiratory 
symptoms and PM of any metric in adults. Mar et al. therefore concluded that the 
discrepancy in results between children and adults was due either to the way in which 
air quality was monitored, or a greater sensitivity of children than adults to increased 
levels of PM air pollution.   



 Appendix E: Particulate Matter Health Impact Functions in U.S. Setup 

BenMAP-CE User’s Manual Appendices March 2015 
108 

Asthma Exacerbation, Cough   

In a single-pollutant model, the coefficient and standard error are estimated from the 
odds ratio (1.21) and 95% confidence interval (1.00-1.47) for a 10.0 µg/m3 increase in 
1-day lagged concentration of PM2.5 (Mar et al., 2004, Table 7).   

Incidence Rate: Daily cough rate per person = 14.5%. Mar et al. (2004) did not report 
the incidence rate for each type of asthma exacerbation. The daily cough rate from 
Ostro et al. (2001, p.202) is applied here.   

Population: The study reported results for population ages 7-12. For comparability to 
other studies, we apply the results to the population of ages 6 to 18. We treat this as 
two groups based on the available information from American Lung Association 
(2010b, Table 7). Asthmatic population ages 6 to 17 = 10.70% of population ages 6 to 
17 and asthmatic population age 18 = 7.19% of population age 18. The American Lung 
Association (2010b, Table 7) estimates asthma prevalence for children 5- 17 and adults 
18-44 at 10.70% and 7.19% respectively (based on data from the 2008 National Health 
Interview Survey).   

Asthma Exacerbation, Shortness of Breath   

In a single-pollutant model, the coefficient and standard error are estimated from the 
odds ratio (1.13) and 95% confidence interval (0.86-1.48) for a 10.0 µg/m3 increase in 
current-day concentration of PM2.5 (Mar et al., 2004, Table 7).   

Incidence Rate: Daily shortness of breath rate per person = 7.4%. Mar et al. (2004) did 
not report the incidence rate for each type of asthma exacerbation. The daily rate of 
shortness of breath from Ostro et al. (2001, p.202) is applied here.   

Population: See the population description for “Asthma Exacerbation, Cough” from 
Mar et al. (2004).   

E.6.2 Ostro et al. (2001)   

Ostro et al. (2001) studied the relation between air pollution in Los Angeles and asthma 
exacerbation in African-American children (8 to 13 years old) from August to 
November 1993. They used air quality data for PM10, PM2.5, NO2, and O3 in a logistic 
regression model with control for age, income, time trends, and temperature-related 
weather effects. The authors note that there were 26 days in which PM2.5 
concentrations were reported higher than PM10 concentrations. The majority of results 
the authors reported were based on the full dataset. These results were used for the 
basis for the C-R functions. Asthma symptom endpoints were defined in two ways: 
“probability of a day with symptoms” and “onset of symptom episodes”. New onset of a 
symptom episode was defined as a day with symptoms followed by a symptom- free 
day.   
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The authors found cough prevalence associated with PM10 and PM2.5 and cough 
incidence associated with PM2.5, PM10, and NO2. Ozone was not significantly associated 
with cough among asthmatics. The authors found that both the prevalent and incident 
episodes of shortness of breath were associated with PM2.5 and PM10. Neither ozone nor 
NO2 were significantly associated with shortness of breath among asthmatics. The 
authors found both the prevalence and incidence of wheeze associated with PM2.5, PM10, 
and NO2. Ozone was not significantly associated with wheeze among asthmatics.   

The derived health impact functions are based on the results of single pollutant models 
looking at the probability of symptoms.   

Asthma Exacerbation, Cough   

The coefficient and standard error are based on an odds ratio of 1.03 (95% CI 0.98-
1.07) for a 30 µg/m3 increase in 12-hour average PM2.5 concentration (Ostro et al., 
2001, Table 4, p.204).   

Incidence Rate: daily cough rate per person (Ostro et al., 2001, p.202) = 0.145   

Population: The study reported results for African-American population ages 8-13. For 
comparability to other studies, we apply the results to the African-American population 
of ages 6 to 18. We treat this as two groups based on the available information from 
American Lung Association (2010b, Table 9). Asthmatic African-American population 
ages 6 to 17 = 17.76% of African-American population ages 6 to 17 and asthmatic 
African-American population age 18 = 7.52% of African-American population age 18. 
The American Lung Association (2010b, Table 9) estimates asthma prevalence for 
children 5- 17 and adults 18-44 at 17.76% and 7.52% respectively (based on data from 
the 2008 National Health Interview Survey).   

Asthma Exacerbation, Shortness of Breath   

The coefficient and standard error are based on an odds ratio of 1.08 (95% CI 1.00-
1.17) for a 30 µg/m3 increase in 12-hour average PM2.5 concentration (Ostro et al., 
2001, Table 4, p.204).   

Incidence Rate: daily shortness of breath rate per person (Ostro et al., 2001, p.202) = 
0.074   

Population: The study reported results for African-American population ages 8-13. For 
comparability to other studies, we apply the results to the African-American population 
of ages 6 to 18. We treat this as two groups based on the available information from 
American Lung Association (2010b, Table 9). Asthmatic African-American population 
ages 6 to 17 = 17.76% of African-American population ages 6 to 17 and asthmatic 
African-American population age 18 = 7.52% of African-American population age 18. 
The American Lung Association (2010b, Table 9) estimates asthma prevalence for 
children 5- 17 and adults 18-44 at 17.76% and 7.52% respectively (based on data from 
the 2008 National Health Interview Survey).  



 Appendix E: Particulate Matter Health Impact Functions in U.S. Setup 

BenMAP-CE User’s Manual Appendices March 2015 
110 

Asthma Exacerbation, Wheeze   

The coefficient and standard error are based on an odds ratio of 1.06 (95% CI 1.01-
1.11) for a 30 µg/m3 increase in 12-hour average PM2.5 concentration (Ostro et al., 
2001, Table 4, p.204).   

Incidence Rate: daily wheeze rate per person (Ostro et al., 2001, p.202) = 0.173   

Population: asthmatic African-American population ages 8 to 13 = 17.76% of African-
American population ages 8 to 13. (Described above.)   

E.6.3  Pope et al. (1991)  

Using logistic regression, Pope et al. (1991) estimated the impact of PM10 on the 
incidence of a variety of minor symptoms in 55 subjects (34 “school-based” and 21 
“patient-based”) living in the Utah Valley from December 1989 through March 1990. 
The children in the Pope et al. study were asked to record respiratory symptoms in a 
daily diary. With this information, the daily occurrences of upper respiratory symptoms 
(URS) and lower respiratory symptoms (LRS) were related to daily PM10 
concentrations. Pope et al. describe URS as consisting of one or more of the following 
symptoms: runny or stuffy nose; wet cough; and burning, aching, or red eyes. Levels of 
ozone, NO2, and SO2 were reported low during this period, and were not included in the 
analysis. The sample in this study is relatively small and is most representative of the 
asthmatic population, rather than the general population. The school-based subjects 
(ranging in age from 9 to 11) were chosen based on “a positive response to one or more 
of three questions: ever wheezed without a cold, wheezed for 3 days or more out of the 
week for a month or longer, and/or had a doctor say the ‘child has asthma’ (Pope et al., 
1991, p. 669).” The patient-based subjects (ranging in age from 8 to 72) were receiving 
treatment for asthma and were referred by local physicians. Regression results for the 
school-based sample (Pope et al., 1991, Table 5) show PM10 significantly associated 
with both upper and lower respiratory symptoms. The patient-based sample did not 
find a significant PM10 effect. The results from the school-based sample are used here.  

Upper Respiratory Symptoms   

The coefficient and standard error for a one µg/m3 change in PM10 is reported in 
Table 5.   

Incidence Rate: daily upper respiratory symptom incidence rate per person = 0.3419 
(Pope et al., 1991, Table 2)   

Population: asthmatic population ages 9 to 11 = 10.70% of population ages 9 to 11. 
(The American Lung Association (2010b, Table 7) estimates asthma prevalence for 
children ages 5 to 17 at 10.70%, based on data from the 2008 National Health Interview 
Survey.)  
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Appendix F: Ozone Health Impact Functions in U.S. 
Setup   

In this Appendix, we present the health impact functions used to estimate ozone-related 
adverse health effects. Each sub-section has a table with a brief description of each 
health impact function and the underlying parameters. Following each table, we present 
a brief summary of each of the studies and any items that are unique to the study.   

Note that Appendix C mathematically derives the standard types of health impact 
functions encountered in the epidemiological literature, such as, log-linear, logistic and 
linear, so we simply note here the type of functional form. And Appendix D presents a 
description of the sources for the incidence and prevalence data used in the health 
impact functions.   

F.1 Short-term Mortality   
Table F-1 summarizes the health impacts functions used to estimate the relationship 
between ozone and short-term mortality. Below, we present a brief summary of each of 
the studies and any items that are unique to the study.  

Table F-1. Health Impact Functions for Ozone and Short-Term Mortality 

Effect Author Year Location Age 
Co-
Poll Metric Beta Std Err Form Notes 

Non-
Accidental 

Bell et al. 2004 95 US cities 0-99  D24HourMean 0.000390 0.000133 Log-
linear 

Warm 
season 

Non-
Accidental 

Bell et al. 2004 95 US cities 0-99  D24HourMean 0.000520 0.000128 Log-
linear 

All year 

Non-
Accidental 

Bell et al. 2004 95 US cities 0-99  D8HourMean 0.000261 0.000089 Log-
linear 

Warm 
season. 8-
hour max 
from24-
hour 
mean 

All Cause Bell et al. 2005 US & non-US 0-99  D24HourMean 0.001500 0.000401 Log-
linear 

Warm 
season 

All Cause Bell et al. 2005 US & non-US 0-99  D8HourMean 0.000795 0.000212 Log-
linear 

Warm 
season. 8-
hour max 
from 24-
hour 
mean 

Cardio-
pulmonary 

Huang et al. 2005 19 US cities 0-99  D24HourMean 0.001250 0.000398 Log-
linear 

Warm 
season 

Cardio-
pulmonary 

Huang et al. 2005 19 US cities 0-99  D8HourMean 0.000813 0.000259 Log-
linear 

Warm 
season. 8-
hour max 
from 24-
hour 
mean. 
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Effect Author Year Location Age 
Co-
Poll Metric Beta Std Err Form Notes 

Non-
Accidental 

Ito and 
Thurston 

1996 Chicago, IL 18-
99 

PM 10 D1HourMax 0.000634 0.000251 Log-
linear 

 

Non-
Accidental 

Ito et al. 2005  0-99  D1HourMax 0.000400 0.000066 Log-
linear 

1-hour 
max 

Non-
Accidental 

Ito et al. 2005  0-99  M24HourMean 0.001750 0.000357 Log-
linear 

Warm 
season. 
24-hour 
mean 

Non-
Accidental 

Ito et al. 2005  0-99  D8HourMax 0.001173 0.000239 Log-
linear 

Warm 
season. 8-
hour max 
from 24-
hour 
mean. 

Non- 
Accidental 

Ito et al. 2005  0-99  D8HourMax 0.000532 0.000088 Log-
linear 

8-hour 
max from 
1-hour 
max 

All Cause Levy et al. 2005 US and non-US 0-99  D1HourMax 0.000841 0.000134 Log-
linear 

Warm 
season. 

All Cause Levy et al. 2005 US and non-US 0-99  D8HourMax 0.001119 0.000179 Log-
linear 

Warm 
season. 8-
hour max 
from 1-
hour max. 

Non-
Accidental 

Moolgavkar 
et al. 

1995 Phila, PA 0-99  D24HourMean 0.001398 0.000266 Log-
linear 

Warm 
season. 

Non-
Accidental 

Moolgavkar 
et al. 

1995 Phila, PA 0-99 TSP, 
SO2 

D24HourMean 0.001389 0.000373 Log-
linear 

Warm 
season. 

Non-
Accidental 

Moolgavkar 
et al. 

1995 Phila, PA 18-
99 

TSP, 
SO2 

D24HourMean 0.000611 0.000216 Log-
linear 

 

Non-
Accidental 

Samet et al. 1997 Phila, PA 18-
99 

CO, 
NO2, 
SO2, 
TSP 

D24HourMean 0.000936 0.000312 Log-
linear 

 

Non-
Accidental 

Schwartz 2005 14 US cities 0-99  D1HourMax 0.000370 0.000130 Logistic Warm 
season 

Non-
Accidental 

Schwartz 2005 14 US cities 0-99  D8HourMax 0.000426 0.000150 Logistic Warm 
season. 8-
hour max 
from 1-
hour max. 

 

F.1.1 Bell et al. (2004)   

Ozone has been associated with various adverse health effects, including increased 
rates of hospital admissions and exacerbation of respiratory illnesses. Although 
numerous time-series studies have estimated associations between day-to-day 
variation in ozone levels and mortality counts, results have been inconclusive. The 
authors investigated whether short-term (daily and weekly) exposure to ambient ozone 
is associated with mortality in the United States. Using analytical methods and 
databases developed for the National Morbidity, Mortality, and Air Pollution Study, they 
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estimated a national average relative rate of mortality associated with short- term 
exposure to ambient ozone for 95 large US urban communities from 1987-2000. The 
authors used distributed-lag models for estimating community-specific relative rates of 
mortality adjusted for time-varying confounders (particulate matter, weather, 
seasonality, and long-term trends) and hierarchical models for combining relative rates 
across communities to estimate a national average relative rate, taking into account 
spatial heterogeneity. A 10-ppb increase in the previous week’s ozone was associated 
with a 0.52% increase in daily mortality (95% posterior interval [PI], 0.27%-0.77%) 
and a 0.64% increase in cardiovascular and respiratory mortality (95% PI, 0.31%-
0.98%). Effect estimates for aggregate ozone during the previous week were larger than 
for models considering only a single day’s exposure. Results were robust to adjustment 
for particulate matter, weather, seasonality, and long-term trends. These results 
indicate a statistically significant association between short-term changes in ozone and 
mortality on average for 95 large US urban communities, which include about 40% of 
the total US population.  

Non-Accidental Mortality   

The coefficient and standard error are based on the relative risk (1.003908) and 95% 
confidence interval (1.0013-1.0065) associated with a 10 ppb increase in daily average 
ozone (Bell et al., 2004, p. 2376).  

F.1.2 Bell et al. (2005)   

Although many time-series studies of ozone and mortality have identified positive 
associations, others have yielded null or inconclusive results, making the results of 
these studies difficult to interpret. The authors performed a meta-analysis of 144 effect 
estimates from 39 time-series studies, and estimated pooled effects by lags, age groups, 
cause-specific mortality, and concentration metrics. They compared results with pooled 
estimates from the National Morbidity, Mortality, and Air Pollution Study (NMMAPS), a 
time-series study of 95 large U.S. urban centers from 1987 to 2000. Both meta-analysis 
and NMMAPS results provided strong evidence of a short-term association between 
ozone and mortality, with larger effects for cardiovascular and respiratory mortality, 
the elderly, and current-day ozone exposure. In both analyses, results were insensitive 
to adjustment for particulate matter and model specifications. In the meta-analysis, a 
10-ppb increase in daily ozone at single-day or 2-day average of lags 0, 1, or 2 days was 
associated with an 0.87% increase in total mortality (95% posterior interval = 0.55% to 
1.18%), whereas the lag 0 NMMAPS estimate is 0.25% (0.12% to 0.39%). Several 
findings indicate possible publication bias: meta-analysis results were consistently 
larger than those from NMMAPS; meta-analysis pooled estimates at lags 0 or 1 were 
larger when only a single lag was reported than when estimates for multiple lags were 
reported; and heterogeneity of city-specific estimates in the meta-analysis were larger 
than with NMMAPS.   
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All-Cause Mortality   

The coefficient and standard error are based on the relative risk (1.008738) and 95% 
confidence interval (1.0055-1.0119) associated with a 10 ppb increase in daily average 
ozone (Bell et al., 2005, Table 6).  

F.1.3 Huang et al. (2005)   

The authors developed Bayesian hierarchical distributed lag models for estimating 
associations between daily variations in summer ozone levels and daily variations in 
cardiovascular and respiratory (CVDRESP) mortality counts for 19 large U.S. cities 
included in the National Morbidity, Mortality and Air Pollution Study (NMMAPS) for the 
summers of 1987-1994. In the first stage, they defined a semi-parametric distributed 
lag Poisson regression model to estimate city-specific relative rates of CVDRESP 
mortality associated with short-term exposure to summer ozone. In the second stage, 
they specified a class of distributions for the true city-specific relative rates to estimate 
an overall effect by taking into account the variability within and across cities. They 
performed the calculations with respect to several random effects distributions 
(normal, t-student, and mixture of normal), thus relaxing the common assumption of a 
two-stage normal-normal hierarchical model. They assessed the sensitivity of the 
results to: (i) lag structure for ozone exposure; (ii) degree of adjustment for long-term 
trends; (iii) inclusion of other pollutants in the model; (iv) heat waves; (v) random 
effects distributions; and (vi) prior hyperparameters. On average across cities, the 
authors found that a 10 ppb increase in summer ozone level over the previous week is 
associated with a 1.25 per cent increase in CVDRESP mortality (95 per cent posterior 
regions: 0.47, 2.03). The relative rate estimates are also positive and statistically 
significant at lags 0, 1 and 2. They found that associations between summer ozone and 
CVDRESP mortality are sensitive to the confounding adjustment for PM10, but are 
robust to: (i) the adjustment for long-term trends, other gaseous pollutants (NO2, SO2 
and CO); (ii) the distributional assumptions at the second stage of the hierarchical 
model; and (iii) the prior distributions on all unknown parameters.  

Cardiopulmonary Mortality   

Assuming a 10 ppb change in ozone, Huang et al. (2005, Table 1) reported a 1.25% 
change in CVDRESP mortality with a 95% confidence interval of 0.47% to 2.03%.  

Note that Huang et al. (2005, p. 549) define CVDRESP as including ICD-9 codes: 390-
448, 480-487, 490-496, and 507. This differs somewhat from the the definition of 
“cardiopulmonary” mortality in BenMAP -- defined as ICD-9 codes 401-440 and 460-
519.  

F.1.4 Levy et al. (2005)   

The authors conducted an empiric Bayes metaregression to estimate the ozone effect on 
mortality, and to assess whether this effect varies as a function of hypothesized 
confounders or effect modifiers. They gathered 71 time-series studies relating ozone to 
all-cause mortality, and tjey selected 48 estimates from 28 studies for the 
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metaregression. Metaregression covariates included the relationship between ozone 
concentrations and concentrations of other air pollutants, proxies for personal 
exposure-ambient concentration relationships, and the statistical methods used in the 
studies. For the metaregression, they applied a hierarchical linear model with known 
level-1 variances. The authors estimated a grand mean of a 0.21% increase (95% 
confidence interval = 0.16-0.26%) in mortality per 10-microg/m increase of 1-hour 
maximum ozone (0.41% increase per 10 ppb) without controlling for other air 
pollutants. In the metaregression, air- conditioning prevalence and lag time were the 
strongest predictors of between-study variability. Air pollution covariates yielded 
inconsistent findings in regression models, although correlation analyses indicated a 
potential influence of summertime PM2.5.   

All-Cause Mortality   

Levy et al. (2005, Table 1) reported a 0.43% change in all-cause mortality with a 95% 
confidence interval of 0.29% to 0.56% associated with a 10 µg/m3 change in ozone. We 
converted µg/m3 to ppb with an assumed relationship of 1.96 µg/m3 per 1.0 ppb.  

F.1.5 Ito and Thurston (1996)  

In this study, race, gender, and cause-specific counts of daily mortality in Cook County, 
Illinois (which encompasses the city of Chicago) during 1985-1990 were analyzed to 
determine if there was any heterogeneity in air pollution/weather/mortality 
associations across these various population subcategories. Seasonal cross-correlations 
between mortality and environmental variables first were examined to identify 
appropriate lag structures. Of the pollution variables considered -- PM10, ozone, CO, SO2, 
and visual range-derived extinction coefficient -- both PM10 and ozone showed 
significant associations with same-day and next-day mortality. The Poisson regression 
models employed included seasonal cycles (sine/cosine series), square and linear terms 
of lagged temperature, trend line, day-of-week dummy variables, and the average of the 
same day’s and previous day’s PM10 or ozone.   

The authors reported a significant relationship for ozone and PM10 with both pollutants 
in the model; no significant effects were found for SO2 and CO. In single pollutant 
models the effects were slightly larger. The health impact function for ozone is based on 
results from the co-pollutant models.   

Non-Accidental Mortality   

For a co-pollutant model with PM10, the ozone coefficient (0.000634) and standard 
error (0.000251) were obtained directly from the author because the published paper 
reported incorrect information.  

F.1.6 Ito et al. (2005)  

The authors conducted a review and meta-analysis of short-term ozone mortality 
studies, identified unresolved issues, and conducted an additional time-series analysis 
for 7 U.S. cities (Chicago, Detroit, Houston, Minneapolis-St. Paul, New York City, 
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Philadelphia, and St. Louis). They found a combined estimate of 0.39% (95% confidence 
interval = 0.26-0.51%) per 10-ppb increase in 1-hour daily maximum ozone for the all-
age nonaccidental cause/single pollutant model (43 studies). Adjusting for the funnel 
plot asymmetry resulted in a slightly reduced estimate (0.35%; 0.23-0.47%). In a subset 
for which particulate matter (PM) data were available (15 studies), the corresponding 
estimates were 0.40% (0.27-0.53%) for ozone alone and 0.37% (0.20-0.54%) with PM 
in model. The estimates for warm seasons were generally larger than those for cold 
seasons. The additional time-series analysis found that including PM in the model did 
not substantially reduce the ozone risk estimates. However, the difference in the 
weather adjustment model could result in a 2-fold difference in risk estimates (eg, 
0.24% to 0.49% in multicity combined estimates across alternative weather models for 
the ozone-only all-year case). The authors concluded that the results suggest short-term 
associations between ozone and daily mortality in the majority of the cities, although 
the estimates appear to be heterogeneous across cities.  

Non-Accidental Mortality   

Ito et al. (2005) reported results for functions with both 1-hour daily maximum and 24-
hour daily average metrics. We present both below.   

One-hour Max Function   

Assuming a 10 ppb change in the daily 1-hour maximum, Ito et al. (2005, p. 446) 
reported a 0.40% change in non-accidental mortality with a 95% confidence interval of 
0.27% to 0.53%.   

Daily Average Function   

Assuming a 20 ppb change in the daily 24-hour average, Ito et al. (2005, p. 448) 
reported a 3.5% change in non-accidental mortality with a 95% confidence interval of 
2.1% to 4.9%.  

F.1.7 Moolgavkar et al. (1995)   

Moolgavkar et al. (1995) examined the relationship between daily non-accidental 
mortality and air pollution levels in Philadelphia, Pennsylvania from 1973 to 1988. 
They examined ozone, TSP, and SO2 in a three-pollutant model, and found a significant 
relationship for ozone and SO2; TSP was not significant. In season-specific models, 
ozone was significantly associated with mortality only in the summer months.   

Mortality, Non-Accidental   

The health impact function for ozone is based on the full-year three-pollutant model 
reported in Table 5 (Moolgavkar et al., 1995, p. 482). The coefficient and standard error 
are based on the relative risk (1.063) and 95% confidence interval (1.018-1.108) 
associated with a 100 ppb increase in daily average ozone.   
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F.1.8 Samet et al. (1997)   

Samet et al. (1997) examined the relationship between daily non-accidental mortality 
and air pollution levels in Philadelphia, Pennsylvania from 1974 to 1988. They 
examined ozone, TSP, SO2, NO2, and CO in a Poisson regression model. In single 
pollutant models, ozone, SO2, TSP, and CO were significantly associated with mortality. 
In a five-pollutant model, they found a positive statistically significant relationship for 
each pollutant except NO2.  

Mortality, Non-Accidental   

The health impact function for ozone is based on the five-pollutant model (ozone, CO, 
NO2, SO2 and TSP) reported in Table 9 (Samet et al., 1997, p. 20). The ozone coefficient 
and standard error are based on the percent increase (1.91) and t-statistic (3) 
associated with a 20.219 ppb increase in two-day average ozone.   

F.1.9  Schwartz (2005)   

The author used the case-crossover approach, where the control for each person is the 
same person on a day near in time, when he or she did not die. This method controls for 
season and individual risk factors by matching. One can also choose the control day to 
have the same temperature as the event day. The author applied this approach to a 
study of more than 1 million deaths in 14 U.S. cities. He found that, with matching on 
temperature, a 10-ppb increase in maximum hourly ozone concentrations was 
associated with a 0.23% (95% confidence interval [CI] 0.01%, 0.44%) increase in the 
risk of dying. This finding was indistinguishable from the risk when only matching on 
season and controlling for temperature with regression splines (0.19%; 95% CI 03%, 
0.35%). Control for suspended particulate matter with an aerodynamic diameter of 10 
mum or less (PM(10)) did not change this risk. However, the association was restricted 
to the warm months (0.37% increase; 95% CI 0.11%, 0.62%), with no effect in the cold 
months. The author concluded that the association between ozone and mortality risk is 
unlikely to be caused by confounding by temperature.   

Non-Accidental Mortality   

Assuming a 10 ppb change in the daily 1-hour maximum, Schwartz (2005, Table 2) 
reported a 0.37% change in non-accidental mortality with a 95% confidence interval of 
0.11% to 0.62%.   

F.2 Long-Term Mortality   
Table F-2 summarizes the health impacts functions used to estimate the relationship 
between ozone and long-term mortality. Below, we present a brief summary of each of 
the studies and any items that are unique to the study.  
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Table F-2. Health Impact Functions for Ozone and Long-Term Mortality 

Effect Author Year Location Age Co-Poll Metric Beta Std Err 
Fun. 

Form 

Mortality, 
Respiratory 

Jerrett et al. 2009 86 urban areas 30-99 PM2.5 Annual 0.003922 0.001325 Log-
linear 

Mortality, 
Respiratory 

Jerrett et al. 2009 Northeast 30-99  Annual -0.001005 0.003853 Log-
linear 

Mortality, 
Respiratory 

Jerrett et al. 2009 Industrial 
Midwest 

30-99  Annual 0.000000 0.004604 Log-
linear 

Mortality, 
Respiratory 

Jerrett et al. 2009 Southeast 30-99  Annual 0.011333 0.003193 Log-
linear 

Mortality, 
Respiratory 

Jerrett et al. 2009 Upper Midwest 30-99  Annual 0.013103 0.026212 Log-
linear 

Mortality, 
Respiratory 

Jerrett et al. 2009 Northwest 30-99  Annual 0.005827 0.003118 Log-
linear 

Mortality, 
Respiratory 

Jerrett et al. 2009 Southwest 30-99  Annual 0.019062 0.007583 Log-
linear 

Mortality, 
Respiratory 

Jerrett et al. 2009 Southern 
California 

30-99  Annual 0.000995 0.002767 Log-
linear 

Mortality, 
Respiratory 

Jerrett et al. 2009 86 urban areas 30-99 PM2.5 Annual 0.004471 0.001510 Log-
linear 

 

F.2.1 Jerret et al. (2009)   

Jerrett et al. (2009) examined the potential contribution of long-term ozone exposure to 
the risk of death from cardiopulmonary causes and specifically to death from 
respiratory causes. Data from the study cohort of the American Cancer Society Cancer 
Prevention Study II were correlated with air-pollution data from 96 metropolitan 
statistical areas in the United States. Associations between ozone concentrations and 
the risk of death were evaluated with the use of standard and multilevel Cox regression 
models. In single-pollutant models, increased concentrations of either PM2.5 or ozone 
were significantly associated with an increased risk of death from cardiopulmonary 
causes. In two-pollutant models, PM2.5 was associated with the risk of death from 
cardiovascular causes, whereas ozone was associated with the risk of death from 
respiratory causes. The estimated relative risk of death from respiratory causes that 
was associated with an increment in ozone concentration of 10 ppb was 1.040 (95% 
confidence interval, 1.010 to 1.067). The association of ozone with the risk of death 
from respiratory causes was insensitive to adjustment for confounders and to the type 
of statistical model used. The authors concluded that they were not able to detect an 
effect of ozone on the risk of death from cardiovascular causes when the concentration 
of PM2.5 was taken into account. But they did demonstrate a significant increase in the 
risk of death from respiratory causes in association with an increase in ozone 
concentration.  

Mortality, Respiratory (ICD-9 code 460-519) --- 86 U.S. urban areas   
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In a two-pollutant model the coefficient and standard error are estimated from the 
relative risk (1.040) and 95% confidence interval (95% CI: 1.013-1.067) for a 10 ppb 
increase in ambient ozone concentration measured from April to September during the 
years from 1977 to 2000 in 86 MSAs (Jerrett, et al., 2009, Table 3).   

Mortality, Respiratory (ICD-9 code 460-519) --- by region   

In single-pollutant models the coefficient and standard error for different regions are 
estimated from the relative risks and 95% confidence intervals for a 10 ppb increase in 
ambient ozone concentration measured from April to September during the years from 
1977 to 2000 (Jerrett, et al., 2009, Table 4).   

Mortality, Respiratory (ICD-9 code 460-519) --- adjusted daily metric   

Based on the coefficients estimated from the two-pollutant model in the 86 urban areas 
using daily 1-hour max metric, the coefficients were adjusted for daily 8-hour max 
metric using a ratio of 1.14 (Anderson & Bell table 2).   

F.3  Hospital Admissions   
Table F-3 summarizes the health impacts functions used to estimate the relationship 
between ozone and hospital admissions. Below, we present a brief summary of each of 
the studies and any items that are unique to the study.  

Table F-3. Health Impact Functions for Ozone and Hospital Admissions 

Effect Author Year Location Age Co-Poll Metric Beta Std Err Form Notes 

All 
Respiratory 

Burnett et al. 2001 Toronto, CAN 0-1 PM2.5 D1HourMax 0.007301 0.002122 Log-
linear 

Warm 
season 

All 
Respiratory 

Burnett et al. 2001 Toronto, CAN 0-1 PM2.5 D8HourMax 0.008177 0.002377 Log-
linear 

Warm 
season. 8-
hour max 
from 1-
hour max. 

Chronic Lung Moolgavkar 
et al. 

1997 Minneapolis, 
MN 

65-
99 

PM10, 
CO 

D24HourMean 0.002800 0.001769 Log-
linear 

 

Chronic Lung Moolgavkar 
et al. 

1997 Minneapolis, 
MN 

65-
99 

PM10, 
CO 

D8HourMax 0.001960 0.001238 Log-
linear 

All year. 8-
hour max 
from 24-
hour mean 

Pneumonia Moolgavkar 
et al 

1997 Minneapolis, 
MN 

65-
99 

PM10, 
SO2, 
NO2 

D24HourMean 0.003800 0.001088 Log-
linear 

 

Pneumonia Moolgavkar 
et al. 

1997 Minneapolis, 
MN 

65-
99 

PM10, 
SO2, 
NO2 

D8HourMax 0.002660 0.000762 Log-
linear 

All year. 8-
hour max 
from 24-
hour mean 

Chronic Lung 
(less Asthma) 

Schwartz 1994 Detroit, MI 65-
99 

PM10 D24HourMean 0.005523 0.002085 Log-
linear 

All year 
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Effect Author Year Location Age Co-Poll Metric Beta Std Err Form Notes 

Chronic Lung 
(less Asthma) 

Schwartz 1994 Detroit, MI 65-
99 

PM10 D8HourMax 0.003424 0.001293 Log-
linear 

All year. 8-
hour max 
from 24-
hour 
mean. 

Pneumonia Schwartz 1994 Detroit, MI 65-
99 

PM10 D24HourMean 0.005210 0.001300 Log-
linear 

All year. 

Pneumonia Schwartz 1994 Minneapolis, 
MN 

65-
99 

PM10 D24HourMean 0.003977 0.001865 Log-
linear 

All year. 

Pneumonia Schwartz 1994 Detroit, MI 65-
99 

PM10 D8HourMax 0.003230 0.000806 Log-
linear 

All year. 8-
hour max 
from 24-
hour mean 

Pneumonia Schwartz 1994 Minneapolis, 
MN 

65-
99 

PM10 D8HourMax 0.002784 0.001305 Log-
linear 

All year. 8-
hour max 
from 24-
hour 
mean. 

All 
Respiratory 

Schwartz 1995 New Haven, 
CT 

65-
99 

PM10 D24HourMean 0.002652 0.001398 Log-
linear 

Warm 
season 

All 
Respiratory 

Schwartz 1995 Tacoma, WA 65-
99 

PM10 D24HourMean 0.007147 0.002565 Log-
linear 

Warm 
season 

All 
Respiratory 

Schwartz 1995 New Haven, 
CT 

65-
99 

PM10 D8HourMax 0.001777 0.000936 Log-
linear 

Warm 
season. 8-
hour max 
from 24-
hour mean 

All 
Respiratory 

Schwartz 1995 Tacoma, WA 65-
99 

PM10 D8HourMax 0.004931 0.001770 Log-
linear 

Warm 
season. 8-
hour max 
from 24-
hour mean 

F.3.1 Burnett et al. (2001)  

Burnett et al. (2001) studied the association between air pollution and acute 
respiratory hospital admissions (ICD codes 493, 466, 464.4, 480-486) in Toronto from 
1980-1994, among children less than 2 years of age. They collected hourly 
concentrations of the gaseous pollutants, CO, NO2, SO2, and ozone. Daily measures of 
particulate matter were estimated for the May to August period of 1992-1994 using 
TSP, sulfates, and coefficient of haze data. The authors report a positive association 
between ozone in the May through August months and respiratory hospital admissions, 
for several single days after elevated ozone levels.   

The strongest association was found using a five-day moving average of ozone. No 
association was found in the September through April months. In co-pollutant models 
with a particulate matter or another gaseous pollutant, the ozone effect was only 
slightly diminished. The effects for PM and gaseous pollutants were generally 
significant in single pollutant models but diminished in co-pollutant models with ozone, 
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with the exception of CO. The C-R functions for ozone are based on a single pollutant 
and two co-pollutant models, using the five-day moving average of one-hour max ozone.   

Hospital Admissions, All Respiratory (ICD-9 codes 464, 466, 480-487, 493)   

In a model with PM2.5, the coefficient and standard error are based on the percent 
increase (33.0) and t-statistic (3.44) associated with a 45.2 ppb increase in the five-day 
moving average of one-hour max ozone (Burnett et al., 2001, Table 3).  

F.3.2 Moolgavkar et al. (1997)  

Moolgavkar et al. (1997) examined the relationship between air pollution and hospital 
admissions (ICD codes 490-496) for individuals 65 and older in Minneapolis-St. Paul, 
Minnesota, from January 1986 to December 1991. In a Poisson regression, they found 
no significant effect for any of the pollutants (PM10, ozone, or CO). The effect for ozone 
was marginally significant. The model with a 100 df smoother was reported to be 
optimal (p. 368). The health impact function for chronic lung disease is based on the 
results from a three-pollutant model (ozone, CO, PM10) using the 100 df smoother; the 
function for Pneumonia uses the 130 df smoother.   

Hospital Admissions, Chronic Lung Disease (ICD-9 codes 490-496)   

In a model with CO and PM10, the estimated coefficient and standard error are based on 
the percent increase (4.2) and 95% confidence interval of the percent increase (-1.0-
9.4) associated with a change in daily average ozone levels of 15 ppb (Moolgavkar et al., 
1997, Table 4).   

Hospital Admissions, Pneumonia (ICD-9 codes 480-487)   

In a model with NO2, PM10,and SO2, the estimated coefficient and standard error are 
based on the percent increase (5.7) and 95% confidence interval of the percent increase 
(2.5-8.9) associated with an increase in daily average ozone levels of 15 ppb 
(Moolgavkar et al., 1997, Table 4).  

F.3.3 Schwartz (1994a)  

Schwartz (1994a) examined the relationship between air pollution and hospital 
admissions for individuals 65 and older in Minneapolis-St. Paul, Minnesota, from 
January 1986 to December 1989. In single-pollutant Poisson regression models, both 
ozone and PM10 were significantly associated with pneumonia admissions. In a two-
pollutant model, Schwartz found PM10 significantly related to pneumonia; ozone was 
weakly linked to pneumonia. The results were not sensitive to the methods used to 
control for seasonal patterns and weather. The ozone C-R functions are based on the 
results of the single pollutant model and the two-pollutant model (PM10 and ozone) 
with spline smoothing for temporal patterns and weather.  
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Hospital Admissions, Pneumonia (ICD-9 codes 480-487)   

In a model with PM10 and spline functions to adjust for time and weather, the coefficient 
and standard error are based on the relative risk (1.22) and 95% confidence interval 
(1.02, 1.47) for a 50 ppb increase in daily average ozone levels (Schwartz, 1994a, 
Table 4).  

F.3.4 Schwartz (1994b)  

Schwartz (1994b) examined the relationship between air pollution and hospital 
admissions (ICD codes 491-492, 494-496) for individuals 65 and older in Detroit, 
Michigan, from January 1986 to December 1989. In a two-pollutant Poisson regression 
model, Schwartz found both PM10 and ozone significantly linked to pneumonia and 
COPD. The authors state that effect estimates were relatively unchanged compared to 
the unreported single pollutant models. No significant associations were found between 
either pollutant and asthma admissions. The C-R function for chronic lung disease 
incidence is based on the results of the “basic” co-pollutant model (ozone and PM10) 
presented in Table 4 (p. 651). The study also reports results using generalized additive 
models to fit time and temperature variables, however no standard error or confidence 
intervals were reported.   

Hospital Admissions, Chronic Lung Disease less Asthma (ICD-9 codes 490-492, 
494-496)   

The coefficient and standard error for the “basic” model are reported in Table 4 
(Schwartz, 1994b, p.651) for a one ppb change in daily average ozone.   

Hospital Admissions, Pneumonia (ICD-9 codes 480-487)   

The ozone C-R function for pneumonia incidence is based on the coefficient and 
standard error for the “basic” co-pollutant model presented in Table 4 (Schwartz, 
1994b, p. 651).  

F.3.5 Schwartz (1995)  

Studies have reported associations between short term changes in air pollution and 
respiratory hospital admissions. This relationship was examined in two cities with 
substantially different levels of sulphur dioxide (SO2) but similar levels of airborne 
particles in an attempt to separate the effects of the two pollutants. Significant 
differences in weather between the two cities allowed the evaluation of that potential 
confounder also. Daily counts of admissions to all hospitals for respiratory disease (ICD 
9 460-519) were constructed for persons aged 65 years and older in two cities - New 
Haven, Connecticut and Tacoma, Washington.   

Each city was analysed separately. Average daily concentrations of SO2, inhalable 
particles (PM10), and ozone were computed from all monitors in each city, and daily 
average temperature and humidity were obtained from the US weather service. Daily 
respiratory admission counts were regressed on temperature, humidity, day of the 
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week indicators, and air pollution. A 19 day weighted moving regression filter was used 
to remove all seasonal and subseasonal patterns from the data. Possible U- shaped 
dependence of admissions on temperature was dealt with using indicator variables for 
eight categories each of temperature and humidity.  Each pollutant was first examined 
individually and then multiple pollutant models were fitted. All three pollutants were 
associated with respiratory hospital admissions of the elderly. The PM10 associations 
were little changed by control for either ozone or SO2. The ozone association was 
likewise independent of the other pollutants. The SO2 association was substantially 
attenuated by control for ozone in both cities, and by control for PM10 in Tacoma. The 
magnitude of the effect was small (relative risk 1.06 in New Haven and 1.10 in Tacoma 
for a 50 micrograms/m3 increase in PM10, for example) but, given the ubiquitous 
exposure, this has some public health significance. The authors concluded that air 
pollution concentrations within current guidelines were associated with increased 
respiratory hospital admissions of the elderly. The strongest evidence for an 
independent association was for PM10, followed by ozone.  

Hospital Admissions, All Respiratory (ICD-9 codes 460-519) -- Tacoma   

In a model with PM10, the coefficient and standard error are estimated from the relative 
risk (1.20) and 95% confidence interval (1.06-1.37) for a 50 µg/m3 increase in average 
daily ozone levels (Schwartz, 1995, Table 6, p. 535).To calculate the coefficient, a 
conversion of 1.96 µg/m3 per ppb was used, based on a density of ozone of 1.96 grams 
per liter (at 25 degrees Celsius).   

Hospital Admissions, All Respiratory (ICD-9 codes 460-519) -- New Haven   

In a model with PM10, the coefficient and standard error are estimated from the relative 
risk (1.07) and 95% confidence interval (1.00-1.15) for a 50 µg/m3 increase in average 
daily ozone levels (Schwartz, 1995, Table 3, p. 534).To calculate the coefficient, a 
conversion of 1.96 µg/m3 per ppb was used, based on a density of ozone of 1.96 grams 
per liter (at 25 degrees Celsius).   

F.4  Emergency Room Visits   
Table F-4 summarizes the health impacts functions used to estimate the relationship 
between ozone and emergency room (ER) visits. Below, we present a brief summary of 
each of the studies and any items that are unique to the study.  

Table F-4. Health Impact Functions for Ozone and Emergency Room Visits  

Effect Author Year Location Age 
Co-
Poll Metric Beta Std Err Form 

Asthma Peel et al. 2005 Atlanta, GA 0-99  D8HourMax 0.000870 0.000529 Log-linear 

Asthma Wilson et al. 2005 Portland, ME 0.99  D8HourMax 0.003000 0.001000 Log-linear 

Asthma Wilson et al. 2005 Manchester, 
NH 

0-99  D8HourMax -0.001000 0.002000 Log-linear 
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F.4.1 Peel et al. (2005)   

A number of emergency department studies have corroborated findings from mortality 
and hospital admission studies regarding an association of ambient air pollution and 
respiratory outcomes. More refined assessment has been limited by study size and 
available air quality data. Measurements of 5 pollutants PM10, ozone, NO2, CO, and SO2 
were available for the entire study period (1 January 1993 to 31 August 2000); detailed 
measurements of particulate matter were available for 25 months. The authors 
obtained data on 4 million emergency department visits from 31 hospitals in Atlanta. 
Visits for asthma, chronic obstructive pulmonary disease, upper respiratory infection, 
and pneumonia were assessed in relation to air pollutants using Poisson generalized 
estimating equations. In single-pollutant models examining 3-day moving averages of 
pollutants (lags 0, 1, and 2): standard deviation increases of ozone, NO2, CO, and PM10 
were associated with 1-3% increases in URI visits; a 2 microg/m increase of PM2.5 
organic carbon was associated with a 3% increase in pneumonia visits; and standard 
deviation increases of NO2 and CO were associated with 2-3% increases in chronic 
obstructive pulmonary disease visits. Positive associations persisted beyond 3 days for 
several of the outcomes, and over a week for asthma. The results of this study 
contribute to the evidence of an association of several correlated gaseous and 
particulate pollutants, including ozone, NO2, CO, PM, and organic carbon, with specific 
respiratory conditions.   

Emergency Room Visits, Asthma 

The ozone coefficient and standard error are reported per 25 ppb increment of the 
maximum daily 8-hour average ozone level (Peel et al., 2003, Table 4). We used the 
results from the three cities combined. The relative risk is 1.022, with a 95 percent 
confidence interval of 0.996 to 1.049.  

F.4.2 Wilson et al. (2005)   

Daily emergency room (ER) visits for all respiratory (ICD-9 460-519) and asthma (ICD-
9 493) were compared with daily SO2, ozone, and weather variables over the period 
1998-2000 in Portland, Maine (population 248,000), and 1996-2000 in Manchester, 
New Hampshire (population 176,000). Seasonal variability was removed from all 
variables using nonparametric smoothed function (LOESS) of day of study. Generalized 
additive models were used to estimate the effect of elevated levels of pollutants on ER 
visits. Relative risks of pollutants were reported over their interquartile range (IQR, the 
75th -25th percentile pollutant values). I n Portland, an IQR increase in SO2 was 
associated with a 5% (95% CI 2-7%) increase in all respiratory ER visits and a 6% 
(95% CI 1-12%) increase in asthma visits. An IQR increase in O3 was associated with a 
5% (95% CI 1-10%) increase in Portland asthmatic ER visits. No significant associations 
were found in Manchester, New Hampshire, possibly due to statistical limitations of 
analyzing a smaller population. The absence of statistical evidence for a relationship 
should not be used as evidence of no relationship. This analysis reveals that, on a daily 
basis, elevated SO2 and O3 have a significant impact on public health in Portland, Maine.  



 Appendix F: Ozone Health Impact Functions in U.S. Setup 

BenMAP-CE User’s Manual Appendices March 2015 
125 

Emergency Room Visits, Asthma  

The coefficient and standard error are taken from Wilson et al. (2005, Table 5). 

F.5 Minor Effects 
Table F-5 summarizes the health impacts functions used to estimate the relationship 
between ozone and minor effects. Below, we present a brief summary of each of the 
studies and any items that are unique to the study. 

Table F-5. Health Impact Functions for Ozone and Minor Effects 

Effect Author Year Location Age Co-Poll Metric Beta Std Err Form Notes 

School Loss 
Days, All 
Cause 

Chen et al. 2000 Washoe Co, 
NV 

5-17 PM10,CO D1HourMax 0.013247 0.004985 Linear  

School Loss 
Days, All 
Cause 

Chen et al. 2000 Washoe Co, 
NV 

5-17 PM10, CO D8HourMax 0.015763 0.004985 Linear All year, 
8-hour 
max from 
1-hour 
max. 

School Loss 
Days, All 
Cause 

Gilliland et 
al. 

2001 Southern 
California 

5-17  D8HourMax 0.007824 0.004445 Log-
linear 

All year, 
8-hour 
max from 
8-hour 
mean. 

School Loss 
Days, All 
Cause 

Gilliland et 
al. 

2001 Southern 
California 

5-17  D8HourMean 0.008150 0.004630 Log-
linear 

 

Minor 
Restricted 
Activity Days 

Ostro and 
Rothschild 

1989 Nationwide 18-
64 

PM2.5 D1HourMax 0.002200 0.000658 Log-
linear 

 

Minor 
Restricted 
Activity Days 

Ostro and 
Rothschild 

1989 Nationwide 18-
64 

PM2.5 D8HourMax 0.002596 0.000776 Log-
linear 

8-hour 
max from 
1-hour 
max. 

 

F.5.1 Chen et al. (2000) 

Chen et al. (2000) studied the association between air pollution and elementary school 
absenteeism (grades 1-6) in Washoe County, Nevada. Assuming that most children start 
kindergarten at age 5, the corresponding ages for grades 1 through 6 would be 6 
through 11. Daily absence data were available for all elementary schools in the Washoe 
County School District. The authors regressed daily total absence rate on the three air 
pollutants, meteorological variables, and indicators for day of the week, month, and 
holidays. They reported statistically significant associations between both ozone and 
CO and daily total absence rate for grades one through six. PM10 was negatively 
associated with absence rate, after adjustment for ozone, CO, and meteorological and 
temporal variables. The C-R function for ozone is based on the results from a multiple 
linear regression model with CO, ozone, and PM10. 

School Loss Days, All Cause  
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The coefficient and standard error are presented in Table 3 (Chen et al., 2000, p. 1008) 
for a unit ppm increase in the two-week average of daily one-hour maximum ozone 
concentration. This is converted to unit ppb increase by dividing by 1,000. The reported 
coefficient represents an absolute increase in absenteeism rate for a unit increase in 
ozone. If we apply this study to other locations, we assume that the same absolute 
increase will occur for a unit increase in ozone, regardless of the baseline rate. If the 
study location has a particularly high baseline rate, we may be overestimating 
decreases in absenteeism nationally, and vice-versa. As an example, consider if the 
baseline absenteeism rate were 10% in the study and 5% nationally. An absolute 
increase in absence rate of 2% associated with a given increase in ozone reflects a 
relative increase in absence rate of 20% for the study population. However, in the 
national estimate, we would assume the same absolute increase of 2%, but this would 
reflect a relative increase in the absenteeism rate of 40%.  

An alternative approach is to estimate apply the relative increase in absenteeism rate in 
the C-R function by adjusting the results by the ratio of the national absenteeism rate to 
the study-specific rate. As a result, the percent increase in absenteeism rate associated 
with an increase in ozone is extrapolated nationally rather than the absolute increase in 
absenteeism rate. The incidence derivation section above describes the data used to 
estimate national and study-specific absence rates.  

In addition to this scaling factor, there are two other scaling factors which are applied 
to the function. A scaling factor of 0.01 is used to convert the beta from a percentage (x 
100) per unit increase of ozone to a proportion per unit increase of ozone. As a result it 
can be applied directly to the national population of school children ages 6 through 11 
to estimate the number of absences avoided.  

The final scaling factor adjusts for the number of school days in the ozone season. In the 
modeling program, the function is applied to every day in the ozone season (May 1 - 
September 30), however, in reality, school absences will be avoided only on school 
days. We assume that children are in school during weekdays for all of May, two weeks 
in June, one week in August, and all of September. This corresponds to approximately 
2.75 months out of the 5 month season, resulting in an estimate of 39.3% of days 
(2.75/5*5/7). The C-R function parameters are shown below. 

Population: population of children ages 6-11  

Scaling Factor 1: Ratio of national school absence rate to study-specific school absence 
rate = 1.081. (National school absence rate of 5.5% obtained from the U.S. Department 
of Education (1996, Table 42-1). Study-specific school absence rate of 5.09% obtained 
from Chen et al. (2000, Table 1).)  

Scaling Factor 2: Convert beta in percentage terms to a proportion = 0.01  

Scaling Factor 3: Proportion of days that are school days in the ozone season = 0.393. 
(Ozone is modeled for the 5 months from May 1 through September 30. We assume that 
children are in school during weekdays for all of May, 2 weeks in June, 1 week in 
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August, and all of September. This corresponds to approximately 2.75 months out of the 
5 month season, resulting in an estimate of 39.3% of days (2.75/5*5/7).) 

F.5.2 Gilliland et al. (2001) 

Gilliland et al. (2001) examined the association between air pollution and school 
absenteeism among 4th grade school children (ages 9-10) in 12 southern Californian 
communities. The study was conducted from January through June 1996. The authors used 
school records to collect daily absence data and parental telephone interviews to identify 
causes. They defined illness- related absences as respiratory or non-respiratory. A 
respiratory illness was defined as an illness that included at least one of the following: 
runny nose/sneezing, sore throat, cough, earache, wheezing, or asthma attack. The 
authors used 15 and 30 day distributed lag models to quantify the association between ozone, 
PM10, and NO2 and incident school absences. Ozone levels were positively associated with 
all school absence measures and significantly associated with all illness-related school 
absences (non-respiratory illness, respiratory illness, URI and LRI). Neither PM10 nor NO2 was 
significantly associated with illness-related school absences, but PM10 was associated with 
non-illness related absences. The health impact function for ozone is based on the results of the 
single pollutant model.  

School Loss Days  

Gilliland et al. (2001) defines an incident absence as an absence that followed 
attendance on the previous day and the incidence rate as the number of incident 
absences on a given day over the population at risk for an absence on a given day (i.e. 
those children who were not absent on the previous day). Since school absences due to 
air pollution may last longer than one day, an estimate of the average duration of school 
absences could be used to calculate the total avoided school loss days from an estimate of 
avoided new absences. A simple ratio of the total absence rate divided by the new absence 
rate would provide an estimate of the average duration of school absences, which could 
be applied to the estimate of avoided new absences as follows:  

snewAbsence
cestotalAbsenDuration =  

( )[ ] popdurationeincidencecesTotalAbsen O ××−×−=∆ ∆•− 13β  

Since the function is log-linear, the baseline incidence rate (in this case, the rate of new 
absences) is multiplied by duration, which reduces to the total school absence rate. 
Therefore, the same result would be obtained by using a single estimate of the total 
school absence rate in the C-R function. Using this approach, we assume that the same 
relationship observed between pollutant and new school absences in the study would be 
observed for total absences on a given day. As a result, the total school absence rate is used 
in the function below. The derivation of this rate is described in the section on baseline 
incidence rate estimation.  
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For all absences, the coefficient and standard error are based on a percent increase of 
16.3 percent (95% CI -2.6 percent, 38.9 percent) associated with a 20 ppb increase in 8-hour 
average ozone concentration (2001, Table 6, p. 52).  

A scaling factor is used to adjust for the number of school days in the ozone season. In 
the modeling program, the function is applied to every day in the ozone season (May 1 - 
September 30), however, in reality, school absences will be avoided only on school days. 
We assume that children are in school during weekdays for all of May, two weeks in June, one 
week in August, and all of September. This corresponds to approximately 2.75 months 
out of the 5 month season, resulting in an estimate of 39.3% of days (2.75/5*5/7).  

In addition, not all children are at-risk for a new school absence, as defined by the 
study. On average, 5.5% of school children are absent from school on a given day (U.S. 
Department of Education, 1996, Table 42-1). Only those who are in school on the previous 
day are at risk for a new absence (1-0.055 = 94.5%). As a result, a factor of 94.5% is used in 
the function to estimate the population of school children at-risk for a new absence.  

Incidence Rate: daily school absence rate = 0.055 (U.S. Department of Education, 1996, 
Table 42-1)  

Population: population of children ages 9-10 not absent from school on a given day = 
94.5% of children ages 9-10 (The proportion of children not absent from school on a 
given day (5.5%) is based on 1996 data from the U.S. Department of Education (1996, 
Table 42-1).)  

Scaling Factor: Proportion of days that are school days in the ozone season = 0.393.  

(Ozone is modeled for the 5 months from May 1 through September 30. We assume that 
children are in school during weekdays for all of May, 2 weeks in June, 1 week in August, 
and all of September. This corresponds to approximately 2.75 months out of the 5 
month season, resulting in an estimate of 39.3% of days (2.75/5*5/7). ) 

F.5.3 Ostro and Rothschild (1989) 

Ostro and Rothschild (1989) estimated the impact of PM2.5 and ozone on the incidence 
of minor restricted activity days (MRADs) and respiratory-related restricted activity 
days (RRADs) in a national sample of the adult working population, ages 18 to 65, living in 
metropolitan areas. The study population is based on the Health Interview Survey (HIS), 
conducted by the National Center for Health Statistics. In publications from this ongoing 
survey, non-elderly adult populations are generally reported as ages 18-64. From the study, it 
is not clear if the age range stops at 65 or includes 65 year olds. We apply the C-R function to 
individuals ages 18-64 for consistency with other studies estimating impacts to non-elderly 
adult populations. The annual national survey results used in this analysis were conducted 
in 1976-1981. Controlling for PM2.5, two-week average ozone had a highly variable 
association with RRADs and MRADs. Controlling for ozone, two-week average PM2.5 was 
significantly linked to both health endpoints in most years. The C-R function for ozone is based 
on the co-pollutant model with PM2.5.  
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The study is based on a “convenience” sample of non-elderly individuals. Applying the C-R 
function to this age group is likely a slight underestimate, as it seems likely that elderly 
are at least as susceptible to ozone as individuals under 65. A number of studies have found 
that hospital admissions for the elderly are related to ozone exposures (e.g., Schwartz, 1994b; 
Schwartz, 1995).  

Minor Restricted Activity Days  

The coefficient and standard error used in the C-R function are based on a weighted average of 
the coefficients in Ostro and Rothschild (1989, Table 4). The derivation of these estimates is 
described below.  

Incidence Rate: daily incidence rate for minor restricted activity days (MRAD) = 0.02137 
(Ostro and Rothschild, 1989, p. 243)  

Population: adult population ages 18 to 64  

The coefficient used in the C-R function is a weighted average of the coefficients in 
Ostro and Rothschild (1989, Table 4) using the inverse of the variance as the weight. 
The calculation of the MRAD coefficient and its standard error is exactly analogous to 
the calculation done for the work-loss days coefficient based on Ostro (1987).  
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The standard error of the coefficient is calculated as follows, assuming that the 
estimated year-specific coefficients are independent:   
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F.6 Converting Functions to 8-Hour Daily Maximum Metric 
A number of health impact functions were converted from 1-hour maximum, 24-hour 
average, and 8-hour average to the 8-hour maximum metric. To convert, say, a 1-hour 
maximum function, we multiplied the 1-hour maximum coefficient with the ratio of the typical 1-
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hour maximum value to the typical 8-hour maximum value. We calculated ozone metric 
ratios for each quarter and year in the period 2000-2007. We calculated ratios by monitor, 
and by county, core business statistical area (CBSA), state, and nation.  

For each monitor, a day was considered valid if it had at least 18 hourly values out of 
24. A quarter was considered valid if it had at least 85 percent valid days. Ratios are 
calculated for the year, only if that year had four quarterly values. The CBSA codes, which 
were defined by OMB on 6-6-03, were obtained from: 
http://www.census.gov/population/estimates/metro-city/03msa. txt.  We chose the time 
period for the ratio calculation (e.g., spring and summer quarters) and the locations based on 
the data used in each epidemiological study. Table F-6 presents the 8-hour adjustment 
used for each study. Tables G-7 through G-9 present supporting documentation for 
some of the multi-city 8-hour adjustments.  

Table F-6. Eight-Hour Adjustments by Study 

Effect Author Year Location 
Adjustment Factor 

Location Quarters Metric 
8-Hour 

Adj Notes 

Mortality, Non-
Accidental 

Bell et al.  2004 95 US cities Nation 2-3 24HourMean 0.67  

Mortality, All 
Cause 

Bell et al. 2005 Meta-analysis From study. See 
comment 

-- 24HourMean 0.53  

HA, All 
Respiratory 

Burnett et al. 2001 Toronto, CAN Buffalo-
Checktowaga-
Tonawanda, NY 
MSA 

2-3 1HourMax 1.12  

School Loss 
Days, All Cause 

Chen et al.  2000 Washoe Co, NV Washoe County 1-4 1HourMax 1.19  

School Loss 
Days, All Cause 

Gilliland et al. 2001 Southern 
California 

Los Angeles-Long 
Beach-Santa Ana, 
CA MSA 

1-4 8HourMean 0.96 The 
statewide 
avg is 0.96 

Mortality, 
Cardiopulmona
ry 

Huang et al. 2005 19 US cities See below See 
below 

24HourMean 0.66  

Mortality, Non-
Accidental 

Ito et al. 2005 6 US cities See below See 
below 

24HourMean 0.65  

Mortality, Non-
Accidental 

Ito et al. 2005 Meta-analysis From study. See 
comment. 

-- 24HourMean 0.67  

Mortality, Non-
Accidental 

Ito et al. 2006 Meta-analysis From study. See 
comment. 

-- 1HourMax 1.33  

Mortality, Non-
Accidental 

Levy et al. 2005 Meta-analysis From study. See 
comment. 

-- 1HourMax 1.33  

HA, chronic 
Lung Disease 

Moolgavkar 
et al. 

1997 Minneapolis, 
MN 

Minneapolis-St. 
Paul-Bloomington, 
MN-WI MSA 

1-4 24HourMean 0.70 Data 
2004-
2007 only 

HA, Pneumonia Moolgavkar 
et al. 

1997 Minneapolis, 
MN 

Minneapolis-St. 
Paul-Bloomington, 
MN-WI MSA 

1-4 24HourMean 0.70 Data 
2004-
2007 only 

Minor 
Restricted 
Activity Days 

Ostro and 
Rothschild 

1989 Nationwide Nation 1-4 1HourMax 1.18  
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Effect Author Year Location 
Adjustment Factor 

Location Quarters Metric 
8-Hour 

Adj Notes 

HA, Chronic 
Lung Disease 
(less Asthma) 

Schwartz 1994 Detroit, MI Detroit-Warren-
Livonia, MI MSA 

1-4 24HourMean 0.62 Data 2006 
only 

HA, Pneumonia Schwartz 1994 Detroit, MI Detroit-Warren-
Livonia, MI MSA 

1-4 24HourMean 0.62 Data 2006 
only 

HA, Pneumonia Schwartz 1994 Minneapolis, 
MN 

Minneapolis-St. 
Paul-Bloomington, 
MN-WI MSA 

1-4 24HourMean 0.70 Data 
2004-
2007 only 

HA, All 
Respiratory 

Schwartz 1995 New Haven, CT New Haven-
Milford, CT MSA 

2-3 24HourMean 0.67  

HA, All 
Respiratory 

Schwartz 1995 Tacoma, WA Seattle-Tacoma-
Bellevue, WA MSA 

2-3 24HourMean 0.69  

Mortality, Non-
Accidental 

Schwartz 2004 14 US cities See below See 
below 

1HourMax 0.67  
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Table F-7.  Eight-Hour Adjustment Details – 6-City Study 

City/County CBS As or Counties Used in Ratio Average 
Quarters 

Used Study Metric 
8-Hour 

Adj 
Detroit Detroit-Warren-Livonia, MI MSA 2-3 24HourMean 0.63 
Cook County Cook County 2-3 24HourMean 0.65 
Houston Houston-Baytown-Sugar Land, TX MSA 2-3 24HourMean 0.59 
Minneapolis Minneapolis-St. Paul-Bloomington, MN-WI 

MSA 
2-3 24HourMean 0.70 

Philadelphia Philadelphia-Camden-Wilmington, PA-NJ-
DE-MD MSA 

2-3 24HourMean 0.65 

St. Louis St. Louis, MO-IL MSA 2-3 24HourMean 0.64 
 Average   0.64 
 

Table F-8.  Eight-Hour Adjustment Details – 14-City Study 

City/County 
CBS As or Counties Used in 

Ratio Average 
Quarters 

Used Study Metric 
8-Hour 

Adj Notes 
Birmingham Birmingham-Hoover, AL MSA 2-3 1HourMax 1.15  
Boulder Boulder, CO MSA 2-3 1HourMax 1.15  
Canton Canton-Massillon, OH MSA 2-3 1HourMax 1.12  
Chicago Chicago-Naperville-Joliet, IL-IN-

WI MSA 
2-3 1HourMax 1.16  

Cincinnati Cincinnati-Middletown, OH-KY-
IN MSA 

2-3 1HourMax 1.15  

Colorado 
Springs 

Colorado Springs, CO MSA 2-3 1HourMax 1.11  

Columbus Columbus, OH MSA 2-3 1HourMax 1.13  
Detroit Detroit-Warren-Livonia, MI MSA 2-3 1HourMax 1.17  
Houston Houston-Baytown-Sugar Land, 

TX MSA 
2-3 1HourMax 1.22  

New Haven New Haven-Milford, CT MSA 2-3 1HourMax 1.17  
Pittsburgh Pittsburgh, PA MSA 2-3 1HourMax 1.15  
Provo Provo-Orem, UT MSA 3 1HourMax 1.13 Only 

quarter 3 
available 

Seattle Seattle-Tacoma-Bellevue, WA 
MSA 

2-3 1HourMax 1.15  

Spokane Spokane, WA MSA 3 1HourMax 1.08 Only 
quarter 3 
available 

 Average   1.15  
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Table F-9. Eight-Hour Adjustment Details – 19-City Study 

City/County 
CBS As or Counties Used in 

Ratio Average 
Quarters 

Used Study Metric 
8-Hour 

Adj Notes 
Atlanta Atlanta-Sandy Springs-

Marietta, GA MSA 
2-3 24HourMean 0.59  

Chicago Chicago-Naperville-Joliet, 
IL-IN-WI MSA 

2-3 24HourMean 0.65  

Cleveland Cleveland-Elyria-Mentor, 
OH MSA 

2-3 24HourMean 0.69  

Dallas/Ft. 
Worth 

Dallas-Fort Worth-
Arlington, TX MSA 

2-3 24HourMean 0.67  

Detroit Detroit-Warren-Livonia, MI 
MSA 

2-3 24HourMean 0.63  

Houston Houston-Baytown-Sugar 
Land, TX MSA 

2-3 24HourMean 0.59  

Los Angeles Los Angeles-Long Beach-
Santa Ana, CA MSA 

2-3 24HourMean 0.59 Los Angeles 
and Santa 
Ana/Anaheim 
have same 
CBSA 

Santa 
Ana/Anaheim 

Los Angeles-Long Beach-
Santa Ana, CA MSA 

2-3 24HourMean 0.59  

Miami Miami-Fort Lauderdale-
Miami Beach, FL MSA 

2-3 24HourMean 0.71  

New York New York-Newark-Edison, 
NY-NJ-PA MSA 

2-3 24HourMean 0.66  

Philadelphia Philadelphia-Camden-
Wilmington, PA-NJ-DE-MD 
MSA 

2-3 24HourMean 0.65  

Phoenix Phoenix-Mesa-Scottsdale, 
AZ MSA 

2-3 24HourMean 0.66  

Pittsburgh Pittsburgh, PA MSA 2-3 24HourMean 0.61  
San 
Bernardino 

Riverside-San Bernardino-
Ontario, CA MSA 

2-3 24HourMean 0.65  

San Antonio San Antonio, TX MSA 2-3 24HourMean 0.66  
San Diego Sand Diego-Carlsbad-San 

Marcos, CA MSA 
2-3 24HourMean 0.70  

Oakland San Francisco-Oakland-
Fremont, CA MSA 

2-3 24HourMean 0.70  

San Jose San Jose-Sunny vale-Santa 
Clara, CA MSA 

2-3 24HourMean 0.64  

Seattle Seattle-Tacoma-Bellevue, 
WA MSA 

2-3 24HourMean 0.69  

 Average   0.65 

Keeping 1 Los 
Angeles keeps 
8-hour adj at 
0.65 
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Appendix G: Nitrogen Dioxide Health Impact 
Functions in U.S. Setup  

In this Appendix, we present the health impact functions used to estimate NO2-related adverse 
health effects. Each sub-section has a table with a brief description of each health 
impact function and the underlying parameters. Following each table, we present a 
brief summary of each of the studies and any items that are unique to the study.  

Note that Appendix C mathematically derives the standard types of health impact 
functions encountered in the epidemiological literature, such as, log-linear, logistic and 
linear, so we simply note here the type of functional form. And Appendix D presents a 
description of the sources for the incidence and prevalence data used in the health impact 
functions.  

G.1 Hospital Admissions  
Table G-1 summarizes the health impacts functions used to estimate the relationship between 
nitrogen dioxide and hospital admissions. Below, we present a brief summary of each of 
the studies and any items that are unique to the study.  

Table G-1. Health Impact Functions for Nitrogen Dioxide and Hospital Admissions 

Effect Author Year Location Age Co-Poll Metric Beta Std Err Form Notes 

All 
Respiratory 

Fung et al.  2006 Vancouver, 
Canada 

65-99  D24HourMean 0.003285 0.001707 Log-
linear 

 

Asthma Linn et al. 2000 Metropolitan 
Los Angeles 

0-29  D24HourMean 0.002400 0.000800 Log-
linear 

 

Asthma Linn et al. 2000 Metropolitan 
Los Angeles 

30-99  D24HourMean 0.001400 0.000500 Log-
linear 

 

All 
Respiratory 

Luginaah et 
al. 

2005 Windsor, 
Ontario 

0-14  D1HourMax 0.006747 0.003628 Log-
linear 

Female 

All 
Respiratory 

Luginaah et 
al. 

2005 Windsor, 
Ontario 

0-14  D1HourMax -0.002878 0.003231 Log-
linear 

Male 

All 
Respiratory 

Luginaah et 
al. 

2005 Windsor, 
Ontario 

15-64  D1HourMax 0.007139 0.004353 Log-
linear 

Female 

All 
Respiratory 

Luginaah et 
al. 

2005 Windsor, 
Ontario 

15-64  D1HourMax 0.000746 0.005879 Log-
linear 

Male 

All 
Respiratory 

Luginaah et 
al. 

2005 Windsor, 
Ontario 

65-99  D1HourMax 0.001238 0.002961 Log-
linear 

Female 

All 
Respiratory 

Luginaah et 
al. 

2005 Windsor, 
Ontario 

65-99  D1HourMax -0.001435 0.004295 Log-
linear 

Male 

Chronic Lung 
Disease 

Moolgavkar 
S.H. 

2003 Los Angeles 
County, CA 

65-99  D24HourMean 0.001800 0.000188 Log-
linear 

 

Chronic Lung 
Disease 

Moolgavkar 
S.H. 

2003 Cook County, 
CA 

65-99  D24HourMean 0.002400 0.000803 Log-
linear 

 

All 
Respiratory 

Yang et al. 2003 Vancouver, 
Canada 

65-99 SO2, O3, 
CO, 
COH 

D24HourMean 0.008759 0.003069 Logist
ic 
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Effect Author Year Location Age Co-Poll Metric Beta Std Err Form Notes 

Chronic Lung 
Disease (less 
Asthma) 

Yang et al. 2005 Vancouver, 
Canada 

65-99 O3 D24HourMean 0.020605 0.006637 Log-
linear 

 

 

G.1.1 Fung et al. (2006) 

Fung et al. (2006) assessed the impact of ambient gaseous pollutants (SO2, NO2, CO, and O3) 
and particulate matters (PM10, PM2.5, and PM10-2.5) as well as the coefficient of haze 
(COH) on recurrent respiratory hospital admissions (ICD-9 codes 460-519) among the elderly 
in Vancouver, Canada, for the period of June 1, 1995, to March 31, 1999, using a new method 
proposed by Dewanji and Moolgavkar(2000; 2002). The associations were conducted at 
current day, 3-day, 5-day, and 7-day moving averages. The strongest association between NO2 

and hospital admissions was observed at 3-day lag (RR = 1.018, 95% CI: 1.000-1.037). 
For SO2, significant associations were found between admissions and 3-day, 5-day, and 7-day 
moving averages of the ambient SO2 concentrations, with the strongest association observed at 
the 7-day lag (RR = 1.044, 95% CI: 1.018-1.070). The authors found PM10-2.5 for 3-day and 5-
day lag to be significant, with the strongest association at 5-day lag (RR = 1.020, 95% CI: 1.001-
1.039). No significant associations with admission were found with current day exposure.  

Hospital Admissions, All Respiratory (ICD-9 codes 460-519)  

In a single-pollutant model the coefficient and standard error are estimated from the 
relative risk (1.018) and 95% confidence interval (95% CI: 1.000-1.037) for a 5.431 ppb 
increase in 3-day moving average of NO2 (Fung, et al., 2006, Table 4).  

G.1.2 Linn et al. (2000) 

Linn et al. (2000) evaluated associations between air pollution and hospital admissions 
for cardiopulmonary illnesses in metropolitan Los Angeles during 1992-1995. In a 
single-pollutant Poisson regression model, daily average of NO2 (year-round) was found 
significantly associated with same-day asthma hospital admissions for both age groups (i.e., 
0-29 and 30-99). The results for winter and autumn were also reported but insignificant.  

Hospital Admissions, Asthma (ICD-9 code 493)  

Linn et al. (2000, Table 9) reported the coefficients and standard error for patients = 30 
years of age and Linn et al. (2000, p.432) reported the coefficients and standard error 
for patients <30 years of age. 

G.1.3 Luginaah et al. (2005) 

Luginaah et al. (2005) assessed the association between air pollution and daily respiratory 
hospitalization (ICD-9 codes 460-519) for different age and sex groups from 1995 to 
2000. The pollutants included were NO2, SO2, CO, O3, PM10, coefficient of haze (COH), and 
total reduced sulfur (TRS). The authors estimated relative risks (RR) using both time-series 
and case- crossover methods after controlling for appropriate confounders (temperature, 
humidity, and change in barometric pressure). The results of both analyses were consistent. 
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They found associations between NO2, SO2, CO, COH, or PM10 and daily hospital admission of 
respiratory diseases especially among females. For females 0-14 years of age, there was 
1-day delayed effect of NO2 (RR = 1.19, case-crossover method), a current-day SO2 (RR = 
1.11, time series), and current-day and 1- and 2-day delayed effects for CO by case crossover 
(RR = 1.15, 1.19, 1.22, respectively). Time-series analysis showed that 1-day delayed 
effect of PM10 on respiratory admissions of adult males (15-64 years of age), with an RR 
of 1.18. COH had significant effects on female respiratory hospitalization, especially for 2-day 
delayed effects on adult females, with RRs of 1.15 and 1.29 using time-series and case-
crossover analysis, respectively. There were no significant associations between O3 and TRS 
with respiratory admissions.  

Hospital Admissions, All Respiratory (ICD-9 codes 460-519)  

For different age and sex groups, the coefficient and standard error are estimated from the 
relative risks and 95% confidence interval reported for single-pollutant models using 
time-series method for a 16 ppb increase in daily 1-hour max NO2 levels (Luginaah, et al., 
2005, Table 3). The time-series method is chosen based on the discussion in Fung et al. (2003).  

G.1.4 Moolgavkar (2003) 

Moolgavkar (2003) presented re-analyses of Moolgavkar (2000c; 2000a; 2000b) about 
the associations between air pollution and daily deaths and hospital admissions in Los 
Angeles and Cook counties in the United States. The principal reason for conducting 
these re-analyses was to assess the impact of using convergence criteria that are more 
stringent than the default criteria used in the S-Plus software package. The author also 
reported the results of generalized linear model (GLM) analyses using natural splines 
with the same degree of freedom as the smoothing splines he used in the generalized 
additive model (GAM) analyses. In single-pollutant Poisson regression models, hospital 
admissions for COPD (ICD-9 code 490-496) were associated with daily average of NO2 
levels at lags of 0, 1, 2, 3, 4 and 5 days for individuals 65 and older. The association was 
strongest at lag 0 using both GAM (stringent convergence) and GLM.  

Hospital Admissions, Chronic Lung Disease (ICD-9 code 490-496) --- Los Angeles 
County  

Moolgavkar (2003, Table 18 ) shows the estimated percentage change (log RR x100) in 
daily COPD admissions associated with increases of 10 ppb NO2 from single-pollutant 
models in Los Angeles County. The coefficients can be calculated based on the reported 
percentage changes, that is, βNO2 = log(RR)/10ppb. Along with the t-statistics reported 
in the same table, standard errors (SE) are calculated. For Los Angeles County βNO2 = 
0.0018 and SE = 0.00019. 

Hospital Admissions, Chronic Lung Disease (ICD-9 code 490-496) — Cook County  

Moolgavkar (2003, Table 20) shows the estimated percentage change (log RR x100) in 
daily COPD admissions associated with increases of 10 ppb NO2 from single-pollutant 
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models in Cook County. The coefficient and standard error are calculated in the same 
way as described above. For Cook County βNO2 = 0.0024 and SE = 0.00080. 

G.1.5 Yang et al. (2003) 

Yang et al.(2003) examined the impact of ozone, nitrogen dioxide, sulfur dioxide, 
carbon monoxide, and coefficient of haze on daily respiratory admissions (ICD-9 codes 
460-519) in both young children (<3 years of age) and the elderly (65-99 years of age) 
in greater Vancouver, British Columbia during the 13-yr period 1986-1998. 
Bidirectional case-crossover analysis was used to investigate associations and odds 
ratios were reported for single-pollutant, two-pollutants and multiple pollutants 
models. NO2 was found significantly associated with respiratory admissions in all 
models for elderly. For children NO2 effect was found significant in single- pollutant 
model and two pollutants model with O3.  

Hospital Admissions, All Respiratory (ICD-9 codes 460-519)  

In a multi-pollutant model with SO2, O3, CO, and COH, the coefficient for NO2 and 
standard error are estimated for age 65-99 from the relative risks (1.05) and 95% 
confidence interval (1.01-1.08) for a 5.57 ppb increase in daily average of NO2 at lag 1 
day (Yang, et al., 2003, Table 3). 

G.1.6 Yang et al. (2005) 

Yang et al. (2005) examined the associations between gaseous pollutants and 
hospitalization for chronic lung disease less asthma (ICD-9 codes 490-492, 494, and 496) 
among elderly people living in Vancouver, Canada. The authors regressed the logarithm 
of daily counts of acute COPD hospitalization during the 5-year period from 1994 to 1998 on 
the daily mean levels of each pollutant, after accounting for seasonal and subseasonal 
fluctuations, non-Poisson dispersion, and weather variables. They found that nitrogen 
dioxide and carbon monoxide were significantly associated with hospitalization for COPD, 
and the magnitude of effects was increased slightly with increasing days of exposure 
averaging, with the relative risk for a 7-day average being 1.12 (95% CI: 1.04, 1.20) for 
nitrogen dioxide in a two-pollutant model with O3. There was no significant association 
between either sulfur dioxide or ozone and COPD hospitalization. The combined relative 
risk for all four gaseous pollutants (CO, O3, NO2, and SO2) on COPD hospitalization was 1.21. 
The effects of gaseous pollutants on COPD hospitalization were not significant after 
adjustment for PM10, although its inclusion did not have a marked effect on the point estimates 
for relative risks.  

Hospital Admissions, Chronic Lung Disease less Asthma (ICD-9 codes 490-492, 
494, and 496)  

In a two-pollutant model with O3, the coefficient and standard error are estimated from the 
relative risk (1.12) and 95% confidence interval (1.04-1.20) for a 5.5 ppb increase in 7-day 
average NO2 levels (Yang, et al., 2005, Table 5). 
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G.2 Emergency Room Visits 
Table G-2 summarizes the health impacts functions used to estimate the relationship 
between nitrogen dioxide and emergency room visits. Below, we present a brief summary 
of each of the studies and any items that are unique to the study.  
 

Table G-2. Health Impact Functions for Nitrogen Dioxide and Emergency Room 
Visits 

Effect Author Year Location Age Co-Poll Metric Beta Std Err 
Functional 

Form 

Asthma Ito et al. 2007 NYC 0-99  D24HourMean 0.005460 0.000933 Log-linear 

Asthma NYDOH 2006 Bronx, NYC 0-99 O3 D24HourMean 0.002264 0.001178 Log-linear 

Asthma Peel et al. 2005 Atlanta, GA 0-99  D1HourMax 0.002296 0.000901 Log-linear 

Asthma Villeneuve 
et al. 

2007 Edmonton, 
Canada 

75-99  D24HourMean 0.013505 0.005345 Logistic 

 

G.2.1 Ito et al. (2007) 

Ito et al. (2007) assessed associations between air pollution and asthma emergency 
department visits in New York City for all ages. Specifically they examined the temporal 
relationships among air pollution and weather variables in the context of air pollution 
health effects models. The authors compiled daily data for PM2.5, O3, NO2, SO2, CO, 
temperature, dew point, relative humidity, wind speed, and barometric pressure for 
New York City for the years 1999-2002.The authors evaluated the relationship between 
the various pollutants’ risk estimates and their respective concurvities, and discuss the 
limitations that the results imply about the interpretability of multi-pollutant health 
effects models.  

Emergency Room Visits, Asthma (ICD-9 code 493)  

In a single-pollutant model, the coefficient and standard error are estimated from the 
relative risk (1.14) and 95% confidence interval (1.09-1.19) for a 24 ppb increase in the 
average of 0- and 1-day lag of NO2 (Ito, et al., 2007, p. S52). 

G.2.2 NYDOH (2006)  

New York State Department of Health (NYDOH) investigated whether day-to-day variations in 
air pollution were associated with asthma emergency department (ED) visits in 
Manhattan and Bronx, NYC and compared the magnitude of the air pollution effect 
between the two communities. NYDOH(2006) used Poisson regression to test for effects of 
14 key air contaminants on daily ED visits, with control for temporal cycles, 
temperature, and day-of-week effects. The core analysis utilized the average exposure for 
the zero- to four-day lags. Mean daily NO2 was found significantly associated with asthma ED 
visits in Bronx but not Manhattan. Their findings of more significant air pollution effects in the 
Bronx are likely to relate in part to greater statistical power for identifying effects in the 
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Bronx where baseline ED visits were greater, but they may also reflect greater sensitivity to 
air pollution effects in the Bronx.  

Emergency Room Visits, Asthma (ICD-9 code 493)  

In a two-pollutant model with O3, the coefficient and standard error are estimated from the 
relative risk (1.08) and 95% confidence interval (1.00-1.17) for a 34 ppb increase in the 
average of 0- to 4-day lags of NO2 (NYDOH, 2006, Table 9).  

G.2.3  Peel et al. (2005)  

Peel et al. (2005) examined the associations between air pollution and respiratory 
emergency department visits (i.e., asthma (ICD-9 code 493, 786.09), COPD (491,492,496), 
URI (460- 466, 477), pneumonia (480-486), and an all respiratory-disease group) in Atlanta, 
GA from 1 January 1993 to 31 August 2000. They used 3-Day Moving Average (Lags of 0, 1, 
and 2 Days) and unconstrained distributed lag (Lags of 0 to 13 Days) in the Poisson 
regression analyses. In single-pollutant models, the authors found that positive 
associations persisted beyond 3 days for several outcomes, and over a week for asthma. 
Standard deviation increases of O3, NO2, CO, and PM10 were associated with 1-3% increases in 
URI visits; a 2 µg/m3 increase of PM2.5 organic carbon was associated with a 3% increase 
in pneumonia visits; and standard deviation increases of NO2 and CO were associated 
with 2-3% increases in chronic obstructive pulmonary disease visits.  

Emergency Room Visits, Asthma (ICD-9 code 493)  

In the single-pollutant model using unconstrained distributed lag, the coefficient and standard 
error are estimated from the relative risk (1.047) and 95% confidence interval (1.011-1.085) 
for a 20 ppb increase in NO2 (Peel, et al., 2005, Table 4).  

G.2.4 Villeneuve et al. (2007)  

Villeneuve et al.(2007) examined the associations between air pollution and emergency 
department (ED) visits for asthma among individuals two years of age and older in the census 
metropolitan area of Edmonton, Canada between April 1, 1992 and March 31, 2002 using a 
time stratified case-crossover design. Daily air pollution levels for the entire region were 
estimated from three fixed-site monitoring stations. Odds ratios and their corresponding 
95% confidence intervals were estimated using conditional logistic regression with adjustment 
for temperature, relative humidity and seasonal epidemic of viral related respiratory 
disease. Villeneuve et al. (2007) found positive associations for asthma ED visits with 
outdoor air pollution levels between April and September, but such associations were 
absent during the remainder of the year. Effects were strongest among young children (2-4 
years of age) and elderly (>75 years of age). Air pollution risk estimates were largely unchanged 
after adjustment for aeroallergen levels.  
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Emergency Room Visits, Asthma (ICD-9 code 493)  

In a single-pollutant model for all seasons, the coefficient and standard error are 
estimated from the relative risk (1.20) and 95% confidence interval (1.04-1.38) for a 13.5 
ppb increase in 5-day average of NO2 (Villeneuve, et al., 2007, Table 9).  

G.3 Asthma Exacerbation 
Table G-3 summarizes the health impacts functions used to estimate the relationship 
between nitrogen dioxide and asthma exacerbation. Below, we present a brief summary 
of each of the studies and any items that are unique to the study. 

Table G-3. Health Impact Functions for Nitrogen Dioxide and Asthma Exacerbation 

Effect Author Year Location Age Co-Poll Metric Beta Std Err 
Function
al Form Notes 

One or 
More 
Symptoms 

Delfino et al. 2002 Southern 
California 

9-18  D8Hour
Max 

0.01993
9 

0.01144
3 

Logistic  

One or 
More 
Symptoms 

Delfino et al. 2003 Los 
Angeles 

10-16  D8Hour
Max 

0.24033
7 

0.11525
6 

Logistic Hispanic 
asthmatic
s 

One or 
More 
Symptoms 

Mortimer et 
al. 

2002 7 urban 
areas (US) 

4-12 O3, SO2 D4Hour
Mean 

0.01350
1 

0.01117
9 

Logistic Warm 
season; 
Adjusted 
age 

One or 
More 
Symptoms 

O’Connor et 
al. 

2008 7 inner 
cities 

4-12 PM2.5, 
O3 

D24Hour
Mean 

0.01054
5 

0.00498
8 

Log-
linear* 

Adjusted 
age 

Nightime 
asthma 

O’Connor et 
al. 

2008 7 inner 
cities 

4-12 PM2.5, 
O3 

D24Hour
Mean 

0.01248
2 

0.00648
8 

Log-
linear* 

Adjusted 
age 

Slow play O’Connor et 
al. 

2008 7 inner 
cities 

4-12 PM2.5, 
O3 

D24Hour
Mean 

0.01397
9 

0.00560
9 

Log-
linear* 

Adjusted 
age 

Missed 
school 
days 

O’Connor et 
al. 

2008 7 inner 
cities 

4-12 PM2.5, 
O3 

D24Hour
Mean 

0.01397
9 

0.01053
4 

Logistic Adjusted 
age 

Cough Ostro et a. 2001 Central Los 
Angeles, 
CA 

4-12  D1Hour
Max 

0.00059
1 

0.00059
5 

Logistic African-
Americans
; Adjusted 
age 

Cough 
(New 
Cases) 

Ostro et al. 2001 Central Los 
Angeles, 
CA 

4-12  D1Hour 
Max 

0.00226
7 

0.00109
8 

Logistic African-
Americans
; Adjusted 
age 

Shortness 
of Breath 

Ostro et al. 2001 Central Los 
Angeles, 
CA 

4-12  D1Hour
Max 

0.00153
9 

0.00089
6 

Logistic African-
Americans
; Adjusted 
age 

Shortness 
of Breath 
(New 
Cases) 

Ostro et al. 2001 Central Los 
Angeles, 
CA 

4-12  D1Hour
Max 

0.00262
1 

0.00142
9 

Logistic African-
Americans
; Adjusted 
age 
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Effect Author Year Location Age Co-Poll Metric Beta Std Err 
Function
al Form Notes 

Wheeze Ostro et al. 2001 Central Los 
Angeles, 
CA 

4-12  D1Hour
Max 

0.00153
9 

0.00061
2 

Logistic African-
Americans
; Adjusted 
age 

Wheeze 
(New 
Cases) 

Ostro et al. 2001 Central Los 
Angeles, 
CA  

4-12  D1Hour
Max 

0.00244
4 

0.00089
7 

Logistic African-
Americans
; Adjusted 
age 

One or 
More 
Symptoms 

Schildcro ut 
et al. 

2006 Eight U.S. 
cities 

4-12  D24Hour
Mean 

0.00430
9 

0.00140
6 

Logistic Adjusted 
age 

*O’Connor et al. (2008) did not specify the functional form. Log-linear assumption is made based on the 
reported results (Table IV on page 1137). 

G.3.1 Delfino et al. (2002) 

Delfino et al., (2002) examined the association between air pollution and asthma symptoms 
among 22 asthmatic children (9-19 years of age) followed March through April 1996 
(1,248 person-days) in Southern California. Air quality data for PM10, NO2, O3, fungi and 
pollen were used in a logistic model with control for temperature, relative humidity, day-of-
week trends and linear time trends. The odds ratio (95% confidence interval) for asthma 
episodes in relation to lag0 20 ppb changes in 8-hr max NO2 is 1.49 (0.95-2.33). The 
authors also considered subgroups of asthmatic children who were on versus not on regularly 
scheduled anti-inflammatory medications and found that pollutant associations were stronger 
during respiratory infections in subjects not on anti-inflammatory medications.  

Asthma Exacerbation, One or More Symptoms  

In a single-pollutant model, the coefficient and standard error are estimated from the odds 
ratio (1.49) and the 95% confidence interval (0.95-2.33) for a 20 ppb increase in 8-hr max 
NO2 (Delfino, et al., 2002, Table 4).  

Incidence Rate: Delfino et al., (2002, Table 1) reported asthma episodes in the 22 
asthmatic children. Asthma episodes are defined as having asthma symptoms that 
interfered with daily activities (symptom sore >2). The incidence rate is calculated as the 
ratio of number of person-days that symptom sore >2 and the total number of person-
days, i.e., daily asthma episodes incidence rate = 196/1248=0.157  

Population: The study population includes asthmatics from 9 to 18 years of age. We treat 
these as two groups based on the available information from American Lung 
Association (2010b, Table 7). Asthmatic population ages 9 to 17 = 10.70% of population 
ages 9 to 17 and asthmatic population age 18 = 7.19% of population age 18. The 
American Lung Association (2010b, Table 7) estimates asthma prevalence for children 5- 
17 and adults 18-44 at 10.70% and 7.19% respectively (based on data from the 2008 
National Health Interview Survey). 
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G.3.2 Delfino et al. (2003) 

Delfino et al. (2003) conducted a panel study of 22 Hispanic children with asthma who 
were 10-16 years old and living in a Los Angeles community with high traffic density. Subjects 
filled out symptom diaries daily for up to 3 months (November 1999 through January 
2000). Pollutants included ambient hourly values of ozone (O3), nitrogen dioxide (NO2), sulfur 
dioxide (SO2), and carbon monoxide (CO) and 24-hr values of volatile organic compounds 
(VOCs), particulate matter with aerodynamic diameter < 10 microm (PM10), and 
elemental carbon (EC) and organic carbon (OC) PM10 fractions. Asthma symptom severity 
was regressed on pollutants using logistic models. The authors found positive associations of 
symptoms with criteria air pollutants (NO2, SO2, O3, and PM10). Selected adjusted odds ratio 
for more severe asthma symptoms from interquartile range increases in pollutants was, for 
1.4 ppb 8-hr max NO2, 1.40 [95% confidence interval (CI), 1.02-1.92]. Their findings support 
the view that air toxins in the pollutant mix from traffic and industrial sources may have adverse 
effects on asthma in children.  

Asthma Exacerbation, One or More Symptoms  

In a single-pollutant model the coefficient and standard error are based on the odds ratio (95% 
CI) for more severe asthma symptoms, i.e., odds ratio of 1.40 [95% confidence interval 
(CI), 1.02-1.92] for a 1.4 ppb increase in 8-hr max NO2 (Delfino, et al., 2003, Table 4).  

Incidence Rate: Daily asthma symptoms incidence rate = 2.3% (Delfino, et al., 2003, 
Table 1)  

Population: Delfino et al. (2003) examined Hispanic asthmatic population, whose 
prevalence is not available. We use the prevalence of asthmatic population from the 
American Lung Association (2010b, Table 7) as a proxy. Asthmatic population ages 10 to 16 
= 10.70% of population ages 10 to 16. The American Lung Association (2010b, Table 7) 
estimates asthma prevalence for children 5- 17 at 10.70% (based on data from the 2008 
National Health Interview Survey).  

G.3.3 Mortimer et al. (2002) 

Mortimer et al. (2002) examined the effect of daily ambient air pollution within a cohort 
of 846 asthmatic children residing in eight urban areas of the USA between June 1 to 
August 31, 1993, using data from the National Cooperative Inner-City Asthma Study. 
Daily air pollution concentrations were extracted from the Aerometric Information Retrieval 
System database from the Environment Protection Agency in the USA. Logistic models 
were used to evaluate the effects of several air pollutants (O3, NO2, SO2 and PM10) on peak 
expiratory flow rate (PEFR) and symptoms in 846 children (ages 4-9 yrs) with a history 
of asthma. In single pollutant models, each pollutant was associated with an increased 
incidence of morning symptoms: (odds ratio(OR) =1.16 (95% CI 1.02-1.30) per IQR 
increase in 4-day average O3, OR=1.32 (95% CI 1.03- 1.70) per IQR increase in 2-day 
average SO2, OR=1.48 (95% CI 1.02-2.16) per IQR increase in 6-day average NO2 and 
OR=1.26 (95% CI 1.0-1.59) per IQR increase in two-day average PM10. This longitudinal 
analysis supports previous time-series findings that at levels below current USA air-quality 
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standards, summer-air pollution is significantly related to symptoms and decreased pulmonary 
function among children with asthma.  

Asthma Exacerbation, One or More Symptoms  

In a three-pollutant model with O3 and SO2, the coefficient for NO2 and standard error 
are based on the odds ratio (95% CI) for morning asthma symptoms, i.e., odds ratio of 
1.31 [95% confidence interval (CI), 0.87-2.09] for a 20 ppb increase in 1-6 day average 
of NO2 (Delfino, et al., 2003, Table 4).  

Incidence Rate: Daily incidence rate for “any morning symptom” is 11.6% (Mortimer, 
et al., 2002, Table 1).  

Population: Asthmatic population ages 4 to 12 = 10.70% of population ages 4 to 12. 
The American Lung Association (2010b, Table 7) estimates asthma prevalence for 
children 5- 17 at 10.70% (based on data from the 2008 National Health Interview 
Survey). Based on the American Lung Association (2010b, Table 7), the estimated 
asthma prevalence for children under 5 years old at 6.14% (based on data from the 
2008 National Health Interview Survey), which is close to the rate of ages 5-17. 
Therefore we use the rate of population 5-17 as an estimate for asthma prevalence in 
population ages 4-9 for simplicity. 

G.3.4 O’Connor et al. (2008) 

O’Connor et al. (2008) investigated the association between fluctuations in outdoor air 
pollution and asthma exacerbation among 861 inner-city children (5-12 years of age) 
with asthma in 7 US urban communities. Asthma symptom data were collected every 2 
months during the 2-year study period. Daily pollution measurements were obtained from the 
Aerometric Information Retrieval System between August 1998 and July 2001. The relationship 
of symptoms to fluctuations in pollutant concentrations was examined by using logistic models. 
In single-pollutant models, significant or nearly significant positive associations were observed 
between higher NO2   concentrations and each of the health outcomes. Significant positive 
associations with symptoms but not school absence were observed in the single-pollutant 
model for CO. The O3, PM2.5, and SO2 concentrations did not appear significantly 
associated with symptoms or school absence except for a significant association 
between PM2.5 and school absence. The authors concluded that the associations with NO2 
suggest that motor vehicle emissions may be causing excess morbidity in this population.  

Asthma Exacerbation, Missed school  

In a three-pollutant model with O3 and PM2.5, the coefficient and standard error are 
estimated from the odds ratio (1.33) and 95% confidence interval (0.87-2.02) for a 20.4 
ppb increase in 19-day average of NO2 (O’Connor, et al., 2008, Table IV). The 
independent pollution variable was the mean concentration during the 19 days 
preceding the interview, that is, the 14 days of the symptom recall period plus a 5-day 
lag period preceding the symptom recall period.  
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Incidence Rate: Daily incidence rate for missed school = 5.7% (O’Connor, et al., 2008, 
Table I).  

Population: Same as population used in Mortimer et al. (2002). See description above.  

Asthma Exacerbation, One or More Symptoms  

O’Connor et al. (2008, Table IV) reported a 24% increase in symptom frequency with a 
95% confidence interval of 2% to 52% associated with a 20.4 ppb increase in the 19-
day average of NO2.  

Incidence Rate: Daily incidence rate for one or more symptoms = 20.7% (O’Connor, et al., 
2008, Table I).  

Population: See population description above.  

Asthma Exacerbation, Nighttime Asthma  

O’Connor et al. (2008, Table IV) reported a 29% increase in symptom frequency with a 95% 
confidence interval of 0% to 68% associated with a 20.4 ppb increase in the 19-day average of 
NO2. Incidence Rate: Daily incidence rate for nighttime asthma = 12.1% (O’Connor, et al., 2008, 
Table I).  

Population: See population description above.  

Asthma Exacerbation, Slow Play  

O’Connor et al. (2008, Table IV) reported a 33% increase in symptom frequency with a 95% 
confidence interval of 6% to 66% associated with a 20.4 ppb increase in the 19-day average of NO2.  

Incidence Rate: Daily incidence rate for slow play = 15.7% (O’Connor, et al., 2008, Table I).  

Population: See population description above. 

G.3.5 Ostro et al. (2001) 

Ostro et al. (2001) examined relations between several air pollutants and asthma 
exacerbation in African-Americans children (8 to 13 years old) in central Los Angeles 
from August to November 1993. Air quality data for PM10, PM2.5, NO2, and O3 were used 
in a logistic regression model with control for age, income, time trends, and 
temperature-related weather effects. Asthma symptom endpoints were defined in two 
ways: “probability of a day with symptoms” and “onset of symptom episodes”. New 
onset of a symptom episode was defined as a day with symptoms followed by a 
symptom-free day. The authors found cough prevalence associated with PM10 and PM2.5 
and cough incidence associated with PM2.5, PM10, and NO2. Ozone was not significantly 
associated with cough among asthmatics. The authors found that both the prevalent 
and incident episodes of shortness of breath were associated with PM2.5 and PM10. 
Neither ozone nor NO2 were significantly associated with shortness of breath among 
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asthmatics. The authors found both the prevalence and incidence of wheeze associated 
with PM2.5, PM10, and NO2. Ozone was not significantly associated with wheeze among 
asthmatics. 

Asthma Exacerbation, Cough  

The coefficient and standard error are based on an odds ratio of 1.03 (95% CI 0.97-
1.09) for a 50 ppb increase in 1-h max NO2 concentration (Ostro, et al., 2001, Table 4, 
p.204).  

Incidence Rate: Use daily prevalence of cough reported on p.202 of Ostro et al. (2001) 
and then take weighted average with weight being the population in the two study 
locations, i.e., daily cough rate per person = (0.151*115+0.115*23)/ (115+23) = 0.145  

Population: Asthmatic African-American population ages 4 to 12 = 17.76% of African-
American population ages 4 to 12. The American Lung Association (2010b, Table 9) 
estimates asthma prevalence for African-American children ages 5 to 17 at 17.76% 
(based on data from the 2008 National Health Interview Survey). Based on the 
American Lung Association (2010b, Table 9), the estimated asthma prevalence for 
African children under 5 years old is 9.98% (based on data from the 2008 National 
Health Interview Survey), which is close to the rate of ages 5-17. Therefore we use the 
rate of population 5-17 as an estimate for asthma prevalence in population ages 4-9 for 
simplicity. 

Asthma Exacerbation, Cough (New Cases)  

The coefficient and standard error are based on an odds ratio of 1.12 (95% CI 1.00-
1.24) for a 50 ppb increase in 1-h max NO2 concentration (Ostro, et al., 2001, Table 5, 
p.204).  

Incidence Rate: daily cough incidence rate = 0.067 (Ostro, et al., 2001, p.202).  

Population: Asthmatic African-American population ages 4 to 12 = 7.26% of African-
American population ages 4 to 12 (described above).  

Asthma Exacerbation, Shortness of Breath  

The coefficient and standard error are based on an odds ratio of 1.08 (95% CI 0.99-
1.18) for a 50 ppb increase in 1-h max NO2 concentration (Ostro, et al., 2001, Table 4, 
p.204).  

Incidence Rate: Use daily prevalence of shortness of breath reported on p.202 of Ostro 
et al. (2001) and then take weighted average with weight being the population in the 
two study locations, i.e., daily shortness of breath rate per person = 
(0.075*115+0.081*23)/ (115+23) = 0.074  
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Population: Asthmatic African-American population ages 4 to 12 = 7.26% of African-
American population ages 4 to 12 (described above).  

Asthma Exacerbation, Shortness of Breath (New Cases)  

The coefficient and standard error are based on an odds ratio of 1.14 (95% CI 0.99-
1.31) for a 50 ppb increase in 1-h max NO2 concentration (Ostro, et al., 2001, Table 5, 
p.204).  

Incidence Rate: daily shortness of breath incidence rate = 0.037 (Ostro, et al., 2001, 
p.202)  

Population: Asthmatic African-American population ages 4 to 12 = 7.26% of African-
American population ages 4 to 12 (described above).  

Asthma Exacerbation, Wheeze  

The coefficient and standard error are based on an odds ratio of 1.08 (95% CI 1.02-
1.15) for a 50 ppb increase in 1-h max NO2 concentration (Ostro, et al., 2001, Table 4, 
p.204).  

Incidence Rate: Use daily prevalence of wheeze reported on p.202 of Ostro et al. 
(2001) and then take weighted average with weight being the population in the two 
study locations, i.e., daily wheeze rate per person = (0.173*115+0.172*23)/ (115+23) = 
0.173  

Population: Asthmatic African-American population ages 4 to 12 = 7.26% of African-
American population ages 4 to 12 (described above).  

Asthma Exacerbation, Wheeze (New Cases)  

The coefficient and standard error are based on an odds ratio of 1.13 (95% CI 1.04-
1.24) for a 50 ppb increase in 1-h max NO2 concentration (Ostro, et al., 2001, Table 5, 
p.204).  

Incidence Rate: daily wheeze incidence rate = 0.076 (Ostro, et al., 2001, p.202)  

Population: Asthmatic African-American population ages 4 to 12 = 7.26% of African-
American population ages 4 to 12 (described above). 

G.3.6 Schildcrout et al. (2006) 

Schildcrout et al.(2006) investigated the relation between ambient concentrations of 
the five criteria pollutants (PM10, O3, NO2, SO2, and CO) and asthma exacerbations (daily 
symptoms and use of rescue inhalers) among 990 children in eight North American 
cities during the 22-month prerandomization phase (November 1993-September 1995) 
of the Childhood Asthma Management Program. Short-term effects of CO, NO2, PM10, 
SO2, and warm-season O3 were examined in both one-pollutant and two-pollutant 
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models, using lags of up to 2 days in logistic and Poisson regressions. Lags in CO and 
NO2 were positively associated with both measures of asthma exacerbation, and the 3-
day moving sum of SO2 levels was marginally related to asthma symptoms. PM10 and O3 
were unrelated to exacerbations. The strongest effects tended to be seen with 2-day 
lags, where a 1-parts-per-million change in CO and a 20-parts-per-billion change in NO2 
were associated with symptom odds ratios of 1.08 (95% confidence interval (CI): 1.02, 
1.15) and 1.09 (95% CI: 1.03, 1.15), respectively.  

Asthma Excerbation, One or More Symptoms  

In a single-pollutant model, Schildcrout et al.(2006, Figure 1) reported an odds ratio of 
1.09 (95% CI: 1.03, 1.15) for daily asthma symptoms associated with 20 ppb change in 
24-hr mean of NO2 at lag 2.  

Incidence Rate: Daily incidence rate for one or more symptoms (symptom score>0) = 
52% (Schildcrout, et al., 2006, Table 1)  

Population: Asthmatic population ages 4 to 12 = 10.70% of population ages 4 to 12. 
The American Lung Association (2010b, Table 7) estimates asthma prevalence for 
children 5-17 at 10.70% (based on data from the 2008 National Health Interview 
Survey). 

G.4 Minor Effects 
Table G-4 summarizes the health impacts function used to estimate the relationship 
between nitrogen dioxide and minor effects. Below, we present a brief summary of the study 
and any items that are unique to the study.  

Table G-4. Health Impact Functions for Nitrogen Dioxide and Minor Effects 

Effect Author Year Location Age Co-Poll Metric Beta Std Err 
Function
al Form Notes 

Cough Schwartz et al. 1994 Six U.S. 
cities 

7-14 PM10 D24Hour
Mean 

0.015700 0.011232 Logistic Warm 
season 

 

G.4.1 Schwartz et al. (1994) 

Schwartz et al. (1994) studied the association between ambient air pollution exposures 
and respiratory illness among 1,844 school children (7-14 years of age) in six U.S. cities 
during five warm seasons months between April and August. Daily measurements of 
ambient sulfur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3), inhalable particles 
(PM10), respirable particles (PM2.5), light scattering, and sulfate particles were made, 
along with integrated 24-h measures of aerosol strong acidity. Significant associations 
in single pollutant models were found between SO2, NO2, or PM2.5 and incidence of 
cough, and between sulfur dioxide and incidence of lower respiratory symptoms. 
Significant associations were also found between incidence of coughing symptoms and 
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incidence of lower respiratory symptoms and PM10, and a marginally significant 
association between upper respiratory symptoms and PM10.  

Acute Respiratory Symptoms, Cough  

In a two-pollutant model with PM10, the coefficient and standard error are based on an 
odds ratio of 1.17 (95% CI 0.94-1.46) for a 10 ppb increase in the lag 1-4 days average 
of NO2 concentration (Schwartz, et al., 1994, Table 4).  

Incidence Rate: The proposed incidence rate, 0.416 percent, is based on the percentiles 
in Schwartz et al. (1994, Table 2). The authors did not report the mean incidence rate, 
but rather reported various percentiles from the incidence rate distribution. The 
percentiles and associated per person per day values are 10th = 0 percent, 25th = 0 
percent, 50th = 0.31 percent, 75th = 0.58 percent, and 90th = 0.86 percent. The most 
conservative estimate consistent with the data is to assume the incidence is zero up to 
the 50th percentile, a constant 0.31 percent between the 50th and 75th percentiles, and 
a constant 0.58 percent between the 75th and 90th percentiles, a constant 0.86 percent 
between the 90th and 100th percentiles. Alternatively, assuming a linear slope between the 
50th and 75th, 75th and 90th, and 90th to 100th percentiles, the estimated mean incidence 
rate is 0.461 percent, which is used in this analysis.  

Population: Population of ages 7 to 14 
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Appendix H: Sulfur Dioxide Health Impact 
Functions in U.S. Setup  

In this Appendix, we present the health impact functions used to estimate SO2-related 
adverse health effects. Each sub-section has a table with a brief description of each 
health impact function and the underlying parameters. Following each table, we present 
a brief summary of each of the studies and any items that are unique to the study.  

Note that Appendix C mathematically derives the standard types of health impact 
functions encountered in the epidemiological literature, such as, log-linear, logistic and 
linear, so we simply note here the type of functional form. And Appendix D presents a 
description of the sources for the incidence and prevalence data used in the health 
impact functions. 

H.1 Hospital Admissions 
Table H-1 summarizes the health impacts functions used to estimate the relationship 
between sulfur dioxide and hospital admissions. Below, we present a brief summary of 
each of the studies and any items that are unique to the study. 

Table H-1. Health Impact Functions for Sulfur Dioxide and Hospital Admissions  

Effect Author Year Location Age Co-Poll Metric Beta Std Err 
Functional 

Form Notes 

All 
Respiratory 

Fung et al. 2006 Vancouver, 
Canada 

65-99  D24Hour
Mean 

0.017224 0.005084 Log-linear  

All 
Respiratory 

Luginaah et al. 2005 Windsor, 
Ontario 

0-99  D1HourM
ax 

0.002336 0.001671 Log-linear Female 

All 
Respiratory 

Luginaah et al. 2005 Windsor, 
Ontario 

0-99  D1HourM
ax 

-0.000670 0.001718  Male 

All 
Respiratory 

Luginaah et al. 2005 Windsor, 
Ontario 

0-14  D1HourM
ax 

0.005468 0.002501 Log-linear Female 

All 
Respiratory 

Luginaah et al. 2005 Windsor, 
Ontario 

0-14  D1HourM
ax 

-0.000260 0.002552 Log-linear Male 

All 
Respiratory 

Luginaah et al. 2005 Windsor, 
Ontario 

15-64  D1HourM
ax 

0.003418 0.003118 Log-linear Female 

All 
Respiratory 

Luginaah et al. 2005 Windsor, 
Ontario 

15-64  D1HourM
ax 

0.002336 0.004039 Log-linear Male 

All 
Respiratory 

Luginaah et al. 2005 Windsor, 
Ontario 

65-99  D1HourM
ax 

0.003709 0.003274 Log-linear Female 

All 
Respiratory 

Luginaah et al.  2005 Windsor, 
Ontario 

65-99  D1HourM
ax 

-0.002332 0.003620 Log-linear Male 

All 
Respiratory 

Schwartz et al. 1996 Cleveland, 
Ohio 

65-99  D24Hour
Mean 

0.000769 0.000453 Log-linear  

Asthma Sheppard, L. 2003 Seattle, WA 0-64  D24Hour
Mean 

0.002031 0.002591 Log-linear  

All 
Respiratory 

Yag et al.  2003 Vancouver, 
Canada 

65-99 NO2, 
O3, CO, 
COH 

D24Hour
Mean 

0.002843 0.003627 Logistic  
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Effect Author Year Location Age Co-Poll Metric Beta Std Err 
Functional 

Form Notes 

Chronic 
Lung 
Disease (less 
Asthma) 

Yang et al. 2005 Vancouver, 
Canada 

65-99 O3 D24Hour
Mean 

0.024164 0.011938 Log-linear  

 

H.1.1 Fung et al. (2006) 

Fung et al. (2006) assessed the impact of ambient gaseous pollutants (SO2, NO2, CO, and 
O3) and particulate matters (PM10, PM2.5, and PM10-2.5) as well as the coefficient of haze 
(COH) on recurrent respiratory hospital admissions (ICD-9 codes 460-519) among the 
elderly in Vancouver, Canada, for the period of June 1, 1995, to March 31, 1999, using a 
new method proposed by Dewanji and Moolgavkar(2000; 2002). The authors found 
significant associations between respiratory hospital admissions and 3-day, 5-day, and 
7-day moving averages of the ambient SO2 concentrations, with the strongest 
association observed at the 7-day lag (RR = 1.044, 95% CI: 1.018-1.070). The authors 
also found PM10-2.5 for 3-day and 5-day lag to be significant, with the strongest 
association at 5-day lag (RR = 1.020, 95% CI: 1.001-1.039). No significant associations 
with admission were found with current day exposure. 

Hospital Admissions, All Respiratory (ICD-9 codes 460-519) 

In a single-pollutant model the coefficient and standard error are estimated from the 
relative risk (1.044) and 95% confidence interval (95% CI: 1.018-1.070) for a 2.5 ppb 
increase in 7-day moving average of SO2 (Fung, et al., 2006, Table 4). 

H.1.2 Luginaah et al. (2005) 

Luginaah et al. (2005) assessed the association between air pollution and daily 
respiratory hospitalization (ICD-9 codes 460-519) for different age and sex groups from 
1995 to 2000. The pollutants included were NO2, SO2, CO, O3, PM10, coefficient of haze 
(COH), and total reduced sulfur (TRS). The authors estimated relative risks (RR) using 
both time-series and case-crossover methods after controlling for appropriate 
confounders (temperature, humidity, and change in barometric pressure). The results 
of both analyses were consistent. They found associations between NO2, SO2, CO, COH, 
or PM10 and daily hospital admission of respiratory diseases especially among females. 
For females 0-14 years of age, there was 1-day delayed effect of NO2 (RR = 1.19, case-
crossover method), a current-day SO2 (RR = 1.11, time series), and current-day and 1- 
and 2-day delayed effects for CO by case crossover (RR = 1.15, 1.19, 1.22, respectively). 
Time-series analysis showed that 1-day delayed effect of PM10 on respiratory 
admissions of adult males (15-64 years of age), with an RR of 1.18. COH had significant 
effects on female respiratory hospitalization, especially for 2-day delayed effects on 
adult females, with RRs of 1.15 and 1.29 using time-series and case-crossover analysis, 
respectively. There were no significant associations between O3 and TRS with 
respiratory admissions. 
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Hospital Admissions, All Respiratory (ICD-9 codes 460-519)  

For different age and sex groups, the coefficient and standard error are estimated from 
the relative risks and 95% confidence interval reported for single-pollutant models 
using time-series method for a 19.25 ppb increase in daily 1-hour max SO2 levels 
(Luginaah, et al., 2005, Table 3). The time-series method is chosen based on the 
discussion in Fung et al. (2003) 

H.1.3 Schwartz et al. (1996) 

Schwartz et al. (1996) is a review paper with an example drawn from hospital 
admissions of the elderly in Cleveland, Ohio from 1988-1990. The authors argued that 
the central issue is control for seasonality. They illustrated the use of categorical 
variables for weather and sinusoidal terms for filtering season in the Cleveland 
example. After controlling for season, weather, and day of the week effects, hospital 
admissions of persons aged 65 and older in Cleveland for respiratory illness was 
associated with ozone (RR = 1.09, 95% CI 1.02, 1.16) and PM10 (RR = 1.12, 95% CI 1.01, 
1.24), and marginally associated with SO2 (RR = 1.03, 95% CI = 0.99, 1.06). All of the 
relative risks are for a 100 micrograms/m3 increase in the pollutant. 

Hospital Admissions, All Respiratory (ICD-9 codes 460-519)  

Schwartz et al.(1996, Table 2) reported the relative risk (1.03) with the 95% confidence 
interval (0.99-1.06) from Poisson regression models for a 100µg/ m3 increase in 
average of lag0-1 day of SO2. In order to obtain the coefficient and standard error, a 
conversion of 0.3846 ppb per µg/m3 was used, based on 
http://www.epa.gov/air/criteria.html. 

H.1.4 Sheppard (2003) 

Sheppard (2003) reanalyzed data from Sheppard et al.(1999) on nonelderly (0-64 years 
of age) hospital admissions for asthma in Seattle, Washington, to evaluate the effect of 
the fitting procedure (GAM/Splus issue). The author found that the effect estimates 
were slightly lower when more stringent convergence criteria were used in the GAM 
and an additional small reduction in the estimates was found when generalized linear 
models (GLMs) with natural splines were used instead.  

Hospital Admissions, Asthma (ICD-9 code 493)  

Sheppard (2003, p. 229) reported the re-calculated relative risk (1.01) and 95% 
confidence interval (0.98-1.03) for a 4.9 ppb increase in the daily average of same day 
SO2 (lag 0). 

H.1.5 Yang et al. (2003) 

Yang et al. (2003) examined the impact of ozone, nitrogen dioxide, sulfur dioxide, 
carbon monoxide, and coefficient of haze on daily respiratory admissions (ICD-9 codes 
460-519) in both young children (<3 years of age) and the elderly (65-99 years of age) 

http://www.epa.gov/air/criteria.html
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in greater Vancouver, British Columbia during the 13-yr period 1986-1998. 
Bidirectional case-crossover analysis was used to investigate associations and odds 
ratios were reported for single-pollutant, two-pollutant and multiple-pollutant models. 
Sulfur dioxide was found marginally significant in all models for elderly. 

Hospital Admissions, All Respiratory (ICD-9 codes 460-519)  

In a multi-pollutant model with NO2, O3, CO, and COH, the coefficient for SO2 and 
standard error are estimated for age 65-99 from the relative risk (1.01) and 95% 
confidence interval (0.98-1.03) for a 5.57 ppb increase in daily average of same day SO2 
(Yang, et al., 2003, Table 3). 

H.1.6 Yang et al. (2005) 

Yang et al. (2005) examined the associations between gaseous pollutants and 
hospitalization for chronic lung disease less asthma (ICD-9 codes 490-492, 494, and 
496) among elderly people living in Vancouver, Canada. The authors regressed the 
logarithm of daily counts of acute COPD hospitalization during the 5-year period from 
1994 to 1998 on the daily mean levels of each pollutant, after accounting for seasonal 
and subseasonal fluctuations, non-Poisson dispersion, and weather variables. They 
found that nitrogen dioxide and carbon monoxide were significantly associated with 
hospitalization for COPD, and the magnitude of effects was increased slightly with 
increasing days of exposure averaging, with the relative risk for a 7-day average being 
1.12 (95%CI: 1.04, 1.20) for nitrogen dioxide in a two-pollutant model with O3. Sulfur 
dioxide was found marginally significant in a two-pollutant model with ozone. The 
combined relative risk for all four gaseous pollutants (CO, O3, NO2, and SO2) on COPD 
hospitalization was 1.21. The effects of gaseous pollutants on COPD hospitalization 
were not significant after adjustment for PM10, although its inclusion did not have a 
marked effect on the point estimates for relative risks. 

Hospital Admissions, Chronic Lung Disease less Asthma (ICD-9 codes 490-492, 
494, and 496)  

In a two-pollutant model with O3, the coefficient and standard error are estimated from 
the relative risk (1.07) and 95% confidence interval (1.00-1.14) for a 2.8 ppb increase 
in 7-day average of SO2 (Yang, et al., 2005, Table 5).  

H.2 Emergency Room Visits  
Table H-2 summarizes the health impacts functions used to estimate the relationship 
between sulfur dioxide and emergency room visits. Below, we present a brief summary 
of each of the studies and any items that are unique to the study. 
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Table H-2.  Health Impact Functions for Sulfur Dioxide and Emergency Room Visits 

Effect Author Year Location Age Co-Poll Metric Beta Std Err 
Functional 

Form 
Notes 

Asthma Ito et al. 2007 NYC 0-99  D24Hour
Mean 

0.030692 0.005439 Log-linear Warm 
season 

Asthma Ito et al. 2007 NYC 0-99  D24Hour
Mean 

0.004372 0.001702 Log-linear Allyear 

Asthma Michaud et al. 2004 Hilo, Hawaii 0-99  D24Hour
Mean 

0.002956 0.002386 Log-linear  

Asthma NYDOH 2006 Bronx, NYC 0-4  D24Hour
Mean 

0.011111 0.005129 Log-linear  

Asthma NYDOH 2006 Bronx, NYC 0-99  D24Hour
Mean 

0.006996 0.003641 Log-linear Male 

Asthma NYDOH 2006 Bronx, NYC 0-99  D24Hour
Mean 

0.011912 0.003450 Log-linear Female 

Asthma NYDOH 2006 Bronx, NYC 0-99 PM2.5 D24Hour
Mean 

0.009487 0.002929 Log-linear  

Asthma NYDOH 2006 Bronx, NYC 0-99 NO2 D24Hour
Mean 

0.009487 0.002732 Log-linear  

Asthma NYDOH 2006 Bronx, NYC 0-99 O3 D24Hour
Mean 

0.009487 0.002510 Log-linear  

Asthma NYDOH 2006 Bronx, NYC 35-64  D24Hour
Mean 

0.015047 0.004515 Log-linear  

Asthma Peel et al. 2005 Atlanta, GA 0-99  D1HourM
ax 

0.000744 0.001030 Log-linear  

Asthma Villeneuve et 
al. 

2007 Edmonton, 
Canada 

2-99  D24Hour
Mean 

-0.006734 0.002617 Logistic 1-day lag 

Asthma Villeneuve et 
al. 

2007 Edmonton, 
Canada 

2-4  D24Hour
Mean 

0.000000 0.008510 Logistic 0-day lag 

Asthma Villeneuve et 
al. 

2007 Edmonton, 
Canada 

5-14  D24Hour
Mean 

-0.006734 0.006945 Logistic 1-day lag 

Asthma Villeneuve et 
al. 

2007 Edmonton, 
Canada 

15-44  D24Hour
Mean 

-0.006734 0.004317 Logistic 1-day lag 

Asthma Villeneuve et 
al. 

2007 Edmonton, 
Canada 

45-64  D24Hour
Mean 

-0.003350 0.007697 Logistic 1-day lag 

Asthma Villeneuve et 
al. 

2007 Edmonton, 
Canada 

65-74  D24Hour
Mean 

0.003317 0.012590 Logistic 0-day lag 

Asthma Villeneuve et 
al. 

2007 Edmonton, 
Canada 

75-99  D24Hour
Mean 

0.019423 0.027751 Logistic 5-day 
average 

Asthma Wilson et al. 2005 Portland, ME 0-14  D24Hour
Mean 

0.005000 0.009000 Log-linear  

Asthma Wilson et al. 2005 Manchester, 
NH 

0-14  D24Hour
Mean 

0.018000 0.011000 Log-linear  

Asthma Wilson et al. 2005 Portland, ME 15-64  D24Hour
Mean 

0.011000 0.005000 Log-linear  

Asthma Wilson et al. 2005 Manchester, 
NH 

15-64  D24Hour
Mean 

0.003000 0.006000 Log-linear  

Asthma Wilson et al. 2005 Portland, ME 65-99  D24Hour
Mean 

0.011000 0.014000 Log-linear  
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Effect Author Year Location Age Co-Poll Metric Beta Std Err 
Functional 

Form 
Notes 

Asthma Wilson et al. 2005 Manchester, 
NH 

65-99  D24Hour
Mean 

0.011000 0.023000 Log-linear  

Asthma Wilson et al. 2005 Portland, ME 0-99  D24Hour
Mean 

0.010000 0.009000 Log-linear  

Asthma Wilson et al. 2005 Manchester, 
NH 

0-99  D24Hour
Mean 

0.006000 0.011000 Log-linear  

 

H.2.1 Ito et al. (2007) 

Ito et al. (2007) assessed associations between air pollution and asthma emergency 
department visits in New York City for all ages. Specifically they examined the temporal 
relationships among air pollution and weather variables in the context of air pollution 
health effects models. The authors compiled daily data for PM2.5, O3, NO2, SO2, CO, 
temperature, dew point, relative humidity, wind speed, and barometric pressure for 
New York City for the years 1999-2002.The authors evaluated the relationship between 
the various pollutants’ risk estimates and their respective concurvities, and discuss the 
limitations that the results imply about the interpretability of multi-pollutant health 
effects models.  

Emergency Room Visits, Asthma (ICD-9 code 493)  

In a single-pollutant model for warm season, the coefficient and standard error are 
estimated from the relative risk (1.20) and 95% confidence interval (1.13-1.28) for a 6 
ppb increase in the average of 0- and 1-day lag of SO2 (Ito, et al., 2007, through 
contacting the author). 

H.2.2 Michaud et al. (2004) 

Michaud et al. (2004) examined the association of emergency department (ED) visits in 
Hilo, Hawai’i, from January 1997 to May 2001 with volcanic fog, or “vog”, measured as 
sulfur dioxide (SO2) and submicrometer particulate matter (PM1). Log-linear 
regression models were used with robust standard errors. The authors studied four 
diagnostic groups: asthma/COPD; cardiac; flu, cold, and pneumonia; and gastroenteritis. 
Before adjustments, highly significant associations with vog-related air quality were 
seen for all diagnostic groups except gastroenteritis. After adjusting for month, year, 
and day of the week, only asthma/COPD had consistently positive associations with air 
quality. They found that the strongest associations were for SO2 with a 3-day lag (6.8% 
per 10 ppb; P=0.001) and PM1, with a 1-day lag (13.8% per 10 µg/m3; P=0.011).  

Emergency Room Visits, Asthma (ICD-9 codes 493 and 495)  

In a single-pollutant model adjusted for month, year and day of the week, the coefficient 
and standard error are estimated from the relative risks (1.03) and 95% confidence 
interval (1.02- 1.12) for a 10 ppb increase in daily average of SO2 at lag 3-day (Michaud, 
et al., 2004, Table 3). 
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H.2.3 NYDOH (2006) 

New York State Department of Health (NYDOH) investigated whether day-to-day 
variations in air pollution were associated with asthma emergency department (ED) 
visits in Manhattan and Bronx, NYC and compared the magnitude of the air pollution 
effect between the two communities. NYDOH (2006) used Poisson regression to test for 
effects of 14 key air contaminants on daily ED visits, with control for temporal cycles, 
temperature, and day-of-week effects. The core analysis utilized the average exposure 
for the 0- to 4-day lags. Mean daily SO2 was found significantly associated with asthma 
ED visits in Bronx but not Manhattan. Their findings of more significant air pollution 
effects in the Bronx are likely to relate in part to greater statistical power for identifying 
effects in the Bronx where baseline ED visits were greater, but they may also reflect 
greater sensitivity to air pollution effects in the Bronx.  

Emergency Room Visits, Asthma (ICD-9 code 493) ---Bronx  

Function for Children (0-4 years of age)  

In a single pollutant model, the coefficient and standard error are estimated from the 
relative risk (1.13) and 95% confidence interval (1.01-1.26) for a 11 ppb increase in the 
average of 0- to 4-day lags of SO2 (NYDOH, 2006, Table 13).  

Function for Adults (35-64 years of age)  

In a single pollutant model, the coefficient and standard error are estimated from the 
relative risk (1.18) and 95% confidence interval (1.07-1.30) for a 11 ppb increase in the 
average of 0- to 4- day lags of SO2 (NYDOH, 2006, Table 13).  

Function for Females (All ages)  

In a single pollutant model, the coefficient and standard error are estimated from the 
relative risk (1.14) and 95% confidence interval (1.06-1.23) for a 11 ppb increase in the 
average of 0- to 4- day lags of SO2 (NYDOH, 2006, Table 12).  

Function for Males (All ages)  

In a single pollutant model, the coefficient and standard error are estimated from the 
relative risk (1.08) and 95% confidence interval (1.00-1.17) for a 11 ppb increase in the 
average of 0- to 4-day lags of SO2 (NYDOH, 2006, Table 12).  

Functions for All Population  

We use results from three different two-pollutant models for all population.  

In a two-pollutant model with O3, the coefficient and standard error are estimated from 
the relative risk (1.11) and 95% confidence interval (1.05-1.17) for a 11 ppb increase in 
the average of 0- to 4-day lags of SO2 (NYDOH, 2006, Table 9).  
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In a two-pollutant model with PM2.5, the coefficient and standard error are estimated 
from the relative risk (1.11) and 95% confidence interval (1.04-1.18) for a 11 ppb 
increase in the average of 0- to 4-day lags of SO2 (NYDOH, 2006, Table 9).  

In a two-pollutant model with NO2, the coefficient and standard error are estimated 
from the relative risk (1.11) and 95% confidence interval (1.04-1.17) for a 11 ppb 
increase in the average of 0- to 4-day lags of SO2 (NYDOH, 2006, Table 9). 

H.2.4 Peel et al. (2005) 

Peel et al. (2005) examined the associations between air pollution and respiratory 
emergency department visits (i.e., asthma (ICD-9 code 493, 786.09), COPD 
(491,492,496), URI (460- 466, 477), pneumonia (480-486), and an all respiratory-
disease group) in Atlanta, GA from 1 January 1993 to 31 August 2000. They used 3-Day 
Moving Average (Lags of 0, 1, and 2 Days) and unconstrained distributed lag (Lags of 0 
to 13 Days) in the Poisson regression analyses. In single-pollutant models, positive 
associations persisted beyond 3 days for several outcomes, and over a week for asthma. 
The effects of NO2, CO or PM10 on asthma ED visits were found significant but SO2 or O3 
were not significantly associated with asthma ED visits.  

Emergency Room Visits, Asthma (ICD-9 code 493)  

In the single-pollutant model using unconstrained distributed lag, the coefficient and 
standard error are estimated from the relative risk (1.015) and 95% confidence interval 
(0.975-1.057) for a 20 ppb increase in 1-hour max SO2 (Peel, et al., 2005, Table 4). 

H.2.5 Villeneuve et al. (2007) 

Villeneuve et al.(2007) examined the associations between air pollution and emergency 
department (ED) visits for asthma among individuals two years of age and older in the 
census metropolitan area of Edmonton, Canada between April 1, 1992 and March 31, 
2002 using a time stratified case-crossover design. Daily air pollution levels for the 
entire region were estimated from three fixed-site monitoring stations. Odds ratios and 
their corresponding 95% confidence intervals were estimated using conditional logistic 
regression with adjustment for temperature, relative humidity and seasonal epidemic 
of viral related respiratory disease. Villeneuve et al. (2007) found positive associations 
for asthma ED visits with outdoor air pollution levels between April and September, but 
such associations were absent during the remainder of the year. Effects were strongest 
among young children (2-4 years of age) and elderly (>75 years of age). Air pollution 
risk estimates were largely unchanged after adjustment for aeroallergen levels.  

Emergency Room Visits, Asthma (ICD-9 code 493)  

In single-pollutant models for all seasons, the coefficients and standard errors for 
different age groups are estimated from the relative risks and 95% confidence intervals 
for a 3 ppb increase in daily average of SO2 (Villeneuve, et al., 2007, Table3-9). 
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H.2.6  Wilson et al. (2005)  

Daily emergency room (ER) visits for all respiratory (ICD-9 codes 460-519) and asthma 
(ICD-9 code 493) were compared with daily SO2, O3, and weather variables over the 
period 1998- 2000 in Portland, Maine and 1996-2000 in Manchester, New Hampshire. 
Seasonal variability was removed from all variables using nonparametric smoothed 
function (LOESS). Wilson et al. (2005) used generalized additive models to estimate the 
effect of elevated levels of pollutants on ER visits. Relative risks of pollutants were 
reported over their inter-quartile range (IQR, the 75th - 25th percentile pollutant 
values). In Portland, an IQR increase in SO2 was associated with a 5% (95% CI 2-7%) 
increase in all respiratory ER visits and a 6% (95% CI 1-12%) increase in asthma visits. 
An IQR increase in O3 was associated with a 5% (95% CI 1-10%) increase in Portland 
asthmatic ER visits. No significant associations were found in Manchester, New 
Hampshire, possibly due to statistical limitations of analyzing a smaller population. The 
absence of statistical evidence for a relationship should not be used as evidence of no 
relationship. This analysis reveals that, on a daily basis, elevated SO2 and O3 have a 
significant impact on public health in Portland, Maine.  

Emergency Room Visits, Asthma  

The coefficients and standard errors for different age groups in the two cities are taken 
from Wilson et al. (2005, Table 5).  

H.3 Asthma Exacerbation  
Table H-3 summarizes the health impacts functions used to estimate the relationship 
between sulfur dioxide and asthma exacerbation. Below, we present a brief summary of 
each of the studies and any items that are unique to the study. 

Table H-3. Health Impact Functions for Sulfur Dioxide and Asthma Exacerbation 

Effect Author Year Location Age Co-Poll Metric Beta Std Err 
Functional 

Form Notes 

One or More 
Symptoms 

Delfino et al. 2003 Los Angeles 10-15  D8Hour 
Max 

0.122994 0.046891 Logistic Hispanic 
children 

One or More 
Symptoms 

Mortimer et al. 2002 7 urban areas 
(US) 

4-12 O3, NO2 D3Hour 
Mean 

0.008698 0.003515 Logistic Warm 
season; 
Adjusted 
age 

Missed 
school days 

O’Connor et al. 2008 7 inner cities 4-12  D24Hour
Mean 

0.009856 0.015289 Logistic Adjusted 
age 

One or More 
Symptoms 

O’Connor et al. 2008 7 inner cities 4-12  D24Hour
Mean 

0.004699 0.008263 Log-linear* Adjusted 
age 

Nighttime 
asthma 

O’Connor et al. 2008 7 inner cities 4-12  D24Hour
Mean 

0.010567 0.010042 Log-linear* Adjusted 
age 

Slow play O’Connor et al. 2008 7 inner cities  4-12  D24Hour
Mean 

0.005456 0.009517 Log-linear* Adjusted 
age 

One or More 
Symptoms 

Schildcrout et 
al. 

2006 Eight U.S. 
cities 

4-12  D24Hour
Mean 

0.003922 0.001963 Logistic Adjusted 
age 

 



 Appendix H: Sulfur Dioxide Health Impact Functions in U.S. Setup 

BenMAP-CE User’s Manual Appendices March 2015 
158 

H.3.1  Delfino et al. (2003)  

Delfino et al.(2003) conducted a panel study of 22 Hispanic children with asthma who 
were 10-16 years old and living in a Los Angeles community with high traffic density. 
Subjects filled out symptom diaries daily for up to 3 months (November 1999 through 
January 2000). Pollutants included ambient hourly values of ozone (O3), nitrogen 
dioxide (NO2), sulfur dioxide (SO2), and carbon monoxide (CO) and 24-hr values of 
volatile organic compounds (VOCs), particulate matter with aerodynamic diameter < 10 
microm (PM10), and elemental carbon (EC) and organic carbon (OC) PM10 fractions. 
Asthma symptom severity was regressed on pollutants using logistic models. The 
authors found positive associations of symptoms with criteria air pollutants (NO2, SO2, 
O3,and PM10). Selected adjusted odds ratio for more severe asthma symptoms from 
interquartile range increases in pollutants was, for 2.5 ppb 8-hr max SO2, 1.36 [95% 
confidence interval (CI), 1.08-1.71]. Their findings support the view that air toxins in 
the pollutant mix from traffic and industrial sources may have adverse effects on 
asthma in children.  

Asthma Exacerbation, One or More Symptoms  

In a single-pollutant model, the coefficient and standard error are based on the odds 
ratio (95% CI) for more severe asthma symptoms, i.e., odds ratio of 1.36 [95% 
confidence interval (CI), 1.08-1.71] for a 2.5 ppb increase in 8-hr max SO2 (Delfino, et 
al., 2003, Table 4).  

Incidence Rate: Daily asthma symptoms incidence rate = 2.3% (Delfino, et al., 2003, 
Table 1)  

Population: Delfino et al.(2003) examined Hispanic asthmatic population, whose 
prevalence is not available. We use the prevalence of asthmatic population from the 
American Lung Association (2010b, Table 7) as a proxy. Asthmatic population ages 10 
to 16 = 10.70% of population ages 10 to 16. The American Lung Association (2010b, 
Table 7) estimates asthma prevalence for children 5- 17 at 10.70% (based on data from 
the 2008 National Health Interview Survey).  

H.3.2 Mortimer et al. (2002)  

Mortimer et al. (2002) examined the effect of daily ambient air pollution within a cohort 
of 846 asthmatic children residing in eight urban areas of the USA between June 1 to 
August 31, 1993, using data from the National Cooperative Inner-City Asthma Study. 
Daily air pollution concentrations were extracted from the Aerometric Information 
Retrieval System database from the Environment Protection Agency in the USA. Logistic 
models were used to evaluate the effects of several air pollutants (O3, NO2, SO2 and 
PM10) on peak expiratory flow rate (PEFR) and symptoms in 846 children (ages 4-9 yrs) 
with a history of asthma. In single pollutant models, each pollutant was associated with 
an increased incidence of morning symptoms: (odds ratio(OR) =1.16 (95% CI 1.02-
1.30) per IQR increase in 4-day average O3, OR=1.32 (95% CI 1.03-1.70) per IQR 
increase in 2-day average SO2, OR=1.48 (95% CI 1.02-2.16) per IQR increase in 6-day 
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average NO2 and OR=1.26 (95% CI 1.0-1.59) per IQR increase in two-day average PM10. 
This longitudinal analysis supports previous time-series findings that at levels below 
current USA air-quality standards, summer-air pollution is significantly related to 
symptoms and decreased pulmonary function among children with asthma. 

Asthma Exacerbation, One or More Symptoms  

In a three-pollutant model with O3 and NO2, the coefficient for SO2 and standard error 
are based on the odds ratio (95% CI) for morning asthma symptoms, i.e., odds ratio of 
1.19 [95% confidence interval (CI), 1.04-1.37] for a 20 ppb increase in the average of 
lag 1-2 day SO2 (Delfino, et al., 2003, Table 4).  

Incidence Rate: Daily incidence rate for “any morning symptom” is 11.6% (Mortimer, 
et al., 2002, Table 1).  

Population: Asthmatic population ages 4 to 12 = 10.70% of population ages 4 to 12. 
The American Lung Association (2010b, Table 7) estimates asthma prevalence for 
children 5- 17 at 10.70% (based on data from the 2008 National Health Interview 
Survey). Based on the American Lung Association (2010b, Table 7), the estimated 
asthma prevalence for children under 5 years old at 6.14% (based on data from the 
2008 National Health Interview Survey), which is close to the rate of ages 5-17. 
Therefore we use the rate of population 5-17 as an estimate for asthma prevalence in 
population ages 4-9 for simplicity. 

H.3.3 O’Connor et al. (2008) 

O’Connor et al. (2008) investigated the association between fluctuations in outdoor air 
pollution and asthma exacerbation (wheeze-cough, nighttime asthma, slow play and school 
absence) among 861 inner-city children (5-12 years of age) with asthma in 7 US urban 
communities. Asthma symptom data were collected every 2 months during the 2-year 
study period. Daily pollution measurements were obtained from the Aerometric Information 
Retrieval System between August 1998 and July 2001. The relationship of symptoms to 
fluctuations in pollutant concentrations was examined by using logistic models. In single-
pollutant models, significant or nearly significant positive associations were observed between 
higher NO2 concentrations and each of the health outcomes. Significant positive associations 
with symptoms but not school absence were observed in the single-pollutant model for CO. 
The O3, PM2.5, and SO2  concentrations did not appear significantly associated with 
symptoms or school absence except for a significant association between PM2.5 and 
school absence. The authors concluded that the associations with NO2 suggest that motor 
vehicle emissions may be causing excess morbidity in this population.  

Asthma Exacerbation, Missed school  

In a single-pollutant model, the coefficient and standard error are estimated from the 
odds ratio (1.13) and 95% confidence interval (0.78-1.64) for a 12.4 ppb increase in 19-
day average of SO2 (O’Connor, et al., 2008, Table IV). The independent pollution variable 
was the mean concentration during the 19 days preceding the interview, that is, the 14 
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days of the symptom recall period plus a 5-day lag period preceding the symptom recall 
period. Incidence Rate: Daily incidence rate for missed school = 5.7% (O’Connor, et al., 
2008, Table I).  

Population: Same as population used in Mortimer et al. (2002). See description above.  

Asthma Exacerbation, One or More Symptoms (Wheeze-cough)  

O’Connor et al. (2008, Table IV) reported a 6% increase in symptom frequency with a 
95% confidence interval of -13% to 30% associated with a 12.4 ppb increase in the 19-
day average of SO2.  

Incidence Rate: Daily incidence rate for one or more symptoms = 20.7% (O’Connor, et 
al., 2008, Table I).  

Population: See population description above.  

Asthma Exacerbation, Nighttime Asthma  

O’Connor et al. (2008, Table IV) reported a 14% increase in symptom frequency with a 
95% confidence interval of -11% to 45% associated with a 12.4 ppb increase in the 19-
day average of SO2.  

Incidence Rate: Daily incidence rate for nighttime asthma = 12.1% (O’Connor, et al., 
2008, Table I).  

Population: See population description above.  

Asthma Exacerbation, Slow Play  

O’Connor et al. (2008, Table IV) reported a 7% increase in symptom frequency with a 
95% confidence interval of -15% to 35% associated with a 12.4 ppb increase in the 19-
day average of SO2.  

Incidence Rate: Daily incidence rate for slow play = 15.7% (O’Connor, et al., 2008, 
Table I).  

Population: See population description above.  

H.3.4 Schildcrout et al. (2006) 

Schildcrout et al. (2006) investigated the relation between ambient concentrations of 
the five criteria pollutants (PM10, O3, NO2, SO2, and CO) and asthma exacerbations (daily 
symptoms and use of rescue inhalers) among 990 children in eight North American 
cities during the 22-month prerandomization phase (November 1993-September 1995) 
of the Childhood Asthma Management Program. Short-term effects of CO, NO2, PM10, 
SO2, and warm-season O3 were examined in both one-pollutant and two-pollutant 
models, using lags of up to 2 days in logistic and Poisson regressions. Lags in CO and 
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NO2 were positively associated with both measures of asthma exacerbation, and the 3-
day moving sum of SO2 levels was marginally related to asthma symptoms. PM10 and O3 
were unrelated to exacerbations. The strongest effects tended to be seen with 2-day 
lags, where a 1-parts-per-million change in CO and a 20-parts-per-billion change in NO2 
were associated with symptom odds ratios of 1.08 (95% confidence interval (CI): 1.02, 
1.15) and 1.09 (95% CI: 1.03, 1.15), respectively.  

Asthma Exacerbation, One or More Symptoms  

In a single-pollutant model, Schildcrout et al., (2006, Figure 1) reported an odds ratio of 
1.04 (95% CI: 1.00, 1.08) for daily asthma symptoms associated with 10 ppb change in 
24-hr mean of SO2.  

Incidence Rate: Daily incidence rate for one or more symptoms (symptom score>0) = 
52% (Schildcrout, et al., 2006, Table 1)  

Population: Asthmatic population ages 4 to 12 = 10.70% of population ages 4 to 12. 
The American Lung Association (2010b, Table 7) estimates asthma prevalence for 
children 5- 17 at 10.70% (based on data from the 2008 National Health Interview 
Survey).  

H.4  Minor Effects  
Table H-4 summarizes the health impacts function used to estimate the relationship 
between sulfur dioxide and minor effects. Below, we present a brief summary of the 
study and any items that are unique to the study. 

Table H-4. Health Impact Functions for Sulfur Dioxide and Minor Effects 

Effect Author Year Location Age Co-Poll Metric Beta Std Err 
Functional 

Form Notes 

Cough Schwartz et al. 1994 Six U.S. cities 7-14 PM10 D24Hour
Mean 

0.008618 0.007429 Logistic Warm 
season 

 

H.4.1 Schwartz et al. (1994)  

Schwartz et al. (1994) studied the association between ambient air pollution exposures 
and respiratory illness among 1,844 school children (7-14 years of age) in six U.S. cities 
during five warm season months between April and August. Daily measurements of 
ambient sulfur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3), respirable particles 
(PM2.5), inhalable particles (PM10), light scattering, and sulfate particles were made, 
along with integrated 24-hour measures of aerosol strong acidity. Significant 
associations in single pollutant models were found between SO2, NO2, or PM2.5 and 
incidence of cough, and between sulfur dioxide and incidence of lower respiratory 
symptoms. Significant associations were also found between incidence of coughing 
symptoms and incidence of lower respiratory symptoms and PM10, and a marginally 
significant association between upper respiratory symptoms and PM10.  
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Acute Respiratory Symptoms, Cough  

In a two-pollutant model with PM10, the coefficient and standard error are based on an 
odds ratio of 1.09 (95% CI 0.94-1.3) for a 10 ppb increase in the lag 1-4 days average of 
SO2 concentration (Schwartz, et al., 1994, Table 4). 

Incidence Rate: The proposed incidence rate, 0.416 percent, is based on the 
percentiles in Schwartz et al. (1994, Table 2). The authors did not report the mean 
incidence rate, but rather reported various percentiles from the incidence rate 
distribution. The percentiles and associated per person per day values are 10th = 0 
percent, 25th = 0 percent, 50th = 0.31 percent, 75th = 0.58 percent, and 90th = 0.86 
percent. The most conservative estimate consistent with the data is to assume the 
incidence is zero up to the 50th percentile, a constant 0.31 percent between the 50th 
and 75th percentiles, and a constant 0.58 percent between the 75th and 90th 
percentiles, a constant 0.86 percent between the 90th and 100th percentiles. 
Alternatively, assuming a linear slope between the 50th and 75th, 75th and 90th, and 
90th to 100th percentiles, the estimated mean incidence rate is 0.461 percent, which is 
used in this analysis.  

Population: Population of ages 7 to 14 
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Appendix I: Health Valuation Functions in U.S. 
Setup  

This appendix presents the unit values that are available in BenMAP for each of the 
health endpoints included in the current suite of health impact functions. Wherever 
possible, we present a distribution of the unit value, characterizing the uncertainty 
surrounding any point estimate. The mean of the distribution is taken as the point 
estimate of the unit value, and the distribution itself is used to characterize the 
uncertainty surrounding the unit value, which feeds into the uncertainty surrounding 
the monetary benefits associated with reducing the incidence of the health endpoint. 
Below we give detailed descriptions of the derivations of unit values and their 
distributions, as well as tables listing the unit values and their distributions, available 
for each health endpoint. The definitions of the distributions and their parameters is 
given in Table I-1. 

Table I-1. Unit Value Uncertainty Distributions and Their Parameters 

Distribution* Parameter 1 (P1) Parameter 2 (P2) 
Normal Standard deviation – 
Triangular Minimum value Maximum value 
Lognormal ** Mean of corresponding normal 

distribution 
Standard deviation of 
corresponding normal 
distribution 

Uniform Minimum value Maximum value 
Weibull *** α β 

*In all cases, BenMAP calculates the mean of the distribution, which is used as the “point estimate” of the unit value. 
** If Y is a normal random variable, and Y = logeX, then X is lognormally distributed. Equivalently, X is lognormmaly 
distributed if X = eY, where Y is noramally distributed. 
*** The Weibull distribution has the following probability density function: 

( )βα
β

αα
β xex −

−
















1

 

I.1 Mortality 
The economics literature concerning the appropriate method for valuing reductions in 
premature mortality risk is still developing. The adoption of a value for the projected 
reduction in the risk of premature mortality is the subject of continuing discussion 
within the economics and public policy analysis communities. Issues such as the 
appropriate discount rate and whether there are factors, such as age or the quality of 
life, that should be taken into consideration when estimating the value of avoided 
premature mortality are still under discussion. BenMAP currently offers a variety of 
options reflecting the uncertainty surrounding the unit value for premature mortality. 
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I.1.1 Value of a Statistical Life Based on 26 Studies 

One unit value available in BenMAP is $6.3 million. This estimate is the mean of a 
distribution fitted to 26 “value of statistical life” (VSL) estimates that appear in the 
economics literature and that have been identified in the Section 812 Reports to 
Congress as “applicable to policy analysis.” This represents an intermediate value from 
a variety of estimates, and it is a value EPA has frequently used in Regulatory Impact 
Analyses (RIAs) as well as in the Section 812 Retrospective and Prospective Analyses of 
the Clean Air Act.  

The VSL approach and the set of selected studies mirrors that of Viscusi (1992) (with 
the addition of two studies), and uses the same criteria as Viscusi in his review of value-
of-life studies. The $6.3 million estimate is consistent with Viscusi’s conclusion 
(updated to 2000$) that “most of the reasonable estimates of the value of life are 
clustered in the $3.8 to $8.9 million range.” Five of the 26 studies are contingent 
valuation (CV) studies, which directly solicit WTP information from subjects; the rest 
are wage-risk studies, which base WTP estimates on estimates of the additional 
compensation demanded in the labor market for riskier jobs. Because this VSL-based 
unit value does not distinguish among people based on the age at their death or the 
quality of their lives, it can be applied to all premature deaths.  

I.1.2 Value of a Statistical Life Based on Selected Studies  

In addition to the value of a statistical life based on the results of 26 studies, we have 
included three alternatives based loosely on the results of recent work by Mrozek and 
Taylor (2002) and Viscusi and Aldy (2003). Each of the four alternatives has a mean 
value of $5.5 million (2000$), but with a different distributions: normal, uniform, 
triangular, and beta. Table I-2 presents the distribution parameters for the suite of 
mortality valuations currently available in BenMAP. 

Table I-2. Unit Values Available for Mortality  

Basis for Estimate * 

Age Range at 
Death 

Unit Value 
(VSL) 

(20005) 

Distributi
on of Unit 

Value 
Parameters of Distribution 

Min Max P1 P2 
VSL, based on 26 value-of-
life studies 

0 99 $6,324,10
1 

Weibull 5.32E-6 1.509588 

VSL, based on range from 
$1 million to $10 million – 
95% CI of assumed normal 
distribution 

0 99 $5,500,00
0 

Normal 2,295,960.54 – 

VSL based on range from 
$1 million to $10 million – 
assumed uniform 
distribution 

0 99 $5,500,00
0 

Uniform 1,000,000 10,000,000 

VSL based on range from 
$1 million to $10 million – 
assumed triangular 
distribution 

0 99 $5,500,00
0 

Triangular 1,000,000 10,000,000 
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* The original value of a statistical life was calculated in 1990 $.  We have used a factor of 1.3175, based 
on the All-Items CPI-U. 

I.2  Chronic Illness  
This sub-section presents the unit values developed for chronic bronchitis, chronic 
asthma, and non-fatal myocardial infarctions.  

I.2.1 Chronic Bronchitis  

PM-related chronic bronchitis is expected to last from the initial onset of the illness 
throughout the rest of the individual’s life. WTP to avoid chronic bronchitis would 
therefore be expected to incorporate the present discounted value of a potentially long 
stream of costs (e.g., medical expenditures and lost earnings) as well as WTP to avoid 
the pain and suffering associated with the illness. Both WTP and COI estimates are 
currently available in BenMAP.  

I.2.1.1 Unit Value Based on Two Studies of WTP  

Two contingent valuation studies, Viscusi et al. (1991) and Krupnick and Cropper 
(1992), provide estimates of WTP to avoid a case of chronic bronchitis. Viscusi et al. 
(1991) and Krupnick and Cropper (1992) were experimental studies intended to 
examine new methodologies for eliciting values for morbidity endpoints. Although 
these studies were not specifically designed for policy analysis, they can be used to 
provide reasonable estimates of WTP to avoid a case of chronic bronchitis. As with 
other contingent valuation studies, the reliability of the WTP estimates depends on the 
methods used to obtain the WTP values. The Viscusi et al. and the Krupnick and 
Cropper studies are broadly consistent with current contingent valuation practices, 
although specific attributes of the studies may not be.  

The study by Viscusi et al. (1991) uses a sample that is larger and more representative 
of the general population than the study by Krupnick and Cropper (1992), which selects 
people who have a relative with the disease. However, the chronic bronchitis described 
to study subjects in the Viscusi study is severe, whereas a pollution-related case may be 
less severe.  

The relationship between the severity of a case of chronic bronchitis and WTP to avoid 
it was estimated by Krupnick and Cropper (1992). We used that estimated relationship 
to derive a relationship between WTP to avoid a severe case of chronic bronchitis, as 
described in the Viscusis study, and WTP to avoid a less severe case. The estimated 
relationship (see Table 4 in Krupnick and Cropper) can be written as: 

( ) sevWTPn ×+= βα1  

where a denotes all the other variables in the regression model and their coefficients, ß 
is the coefficient of sev, estimated to be 0.18, and sev denotes the severity level (a 
number from 1 to 13). Let x (< 13) denote the severity level of a pollution-related case 
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of chronic bronchitis, and 13 denote the highest severity level (as described in Viscusi 
et al., 1991). Then 

13)(1 13 ×+= βαWTPn  

and 

xWTPn x ×+= βα)(1  

Subtracting one equation from the other, 

)13()(1)(1 13 xWTPnWTPn x −×=− β  

or 

)13(1 13 x
WTP
WTPn

x

−×=







β  

Exponentiating and rearranging terms, 

)13(
13

x
x eWTPWTP −•−×= β  

There is uncertainty surrounding the exact values of WTP13; x, and ß, and this 
uncertainty can be incorporated in the equation, if you request that the analysis be 
carried out in “uncertainty mode.” The distribution of WTP to avoid a severe case of 
chronic bronchitis, WTP13, is based on the distribution of WTP responses in the Viscusi 
et al. (1991) study. The distribution of x, the severity level of an average case of 
pollution-related chronic bronchitis, is modeled as a triangular distribution centered at 
6.5, with endpoints at 1.0 and 12.0. And the distribution of ß is normal with mean = 0.18 
and std. dev.= 0.0669 (the estimate of b and standard error reported in Krupnick and 
Cropper, 1992).  

In uncertainty mode, BenMAP uses a Monte Carlo approach. On each Monte Carlo 
iteration, random draws for these three variables are made, and the resulting WTPx is 
calculated from the equation above. Because this function is non-linear, the expected 
value of WTP for a pollution- related case of CB cannot be obtained by using the 
expected values of the three uncertain inputs in the function (doing that will 
substantially understate mean WTP). A Monte Carlo analysis suggests, however, that 
the mean WTP to avoid a case of pollution-related chronic bronchitis is about $340,000 
(in $2000, but not adjusted for the growth of income). Therefore, if you request that the 
analysis be carried out in “point estimate” mode, that is the unit value that is used. 

I.2.1.2 Alternative Cost of Illness Estimates 

Cost of illness estimates for chronic bronchitis were derived from estimates of annual 
medical costs and annual lost earnings by Cropper and Krupnick (1999). This study 
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estimated annual lost earnings resulting from chronic bronchitis as a function of age at 
onset of the illness, for the following age categories: 25-43, 35-44, 45-54, and 55-65 
(see Cropper and Krupnick, Table 8). Annual medical expenses were estimated for 10-
years age groups (0-9, 10-19, 20-29, ..., 80-89). We derived estimates of the present 
discounted value of the stream of medical and opportunity costs for people whose age 
of onset is 30, 40, 50, 60, 70, and 80. Medical costs (which are in 1977$ in the Cropper 
and Krupnick study) were inflated to 2000$ using the CPI-U for medical care; lost 
earnings (opportunity costs) were inflated to 2000$ using the Employment Cost Index 
for Wages and Salaries. Life expectancies were assumed to be unaffected by the illness. 
For example, an individual at age 70 has a life expectancy of 14.3 more years, and we 
assumed that someone whose age of onset of chronic bronchitis is 70 will also live for 
14.3 more years. (Source of life expectancies: National Center for Health Statistics, 
1999, Table 5.) We also assumed that opportunity costs at ages 66 and over were zero. 
Present discounted values were calculated using three and seven percent discount 
rates.  

For each of the two discount rates, there are three cost of illness unit values for chronic 
bronchitis available in BenMAP, for the following age categories: 27-44, 45-64, and 65+. 
These are the age categories that were used in the epidemiological study that estimated 
a concentration-response function for chronic bronchitis (Abbey et al., 1995b). The 
estimate for the 27-44 age group is an average of the present discounted values 
calculated for ages 30 and 40; the estimate for the 45-64 age category is an average of 
the present discounted values calculated for ages 50 and 60; and the estimate for the 
65+ age category is an average of the present discounted values calculated for ages 70 
and 80. The suite of unit values available for use in BenMAP are shown in Table I-3 
below. 

Table I-3. Unit Values Available for Chronic Bronchitis 

Basis for Estimate  

 
Age of Onset 

Present 
Discounte
d Value of 

Medical 
Costs 

Present 
Discounted 

Value of 
Opportunity 

Costs Unit Value 
Distributio

n Min Max 
WTP: average severity 30 99 N/A N/A $340,482 Custom 

COI: med costs + wage loss, 3% 
DR 

27 44 $18,960 $135,463 $154,422 None 
45 64 $23,759 $76,029 $99,788 None 
65 99 $11,088 $0 $11,088 None 

COI: med costs + wage loss, 7% 
DR 

27 44 $7,886 $80,444 $88,331 None 
45 64 $14,390 $59,577 $73,967 None 
65 99 $9,030 $0 $9,030 None 

 

I.2.2  Chronic Bronchitis Reversals  

The unit value for chronic bronchitis reversals assumes that this is chronic bronchitis 
with a severity level of 1. The method for generating a distribution of unit values in 
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BenMAP is therefore the same as the WTP-based unit value method for chronic 
bronchitis (see above), with x =1. The mean of this distribution is $150,221.  

I.2.3  Chronic Asthma  

Two studies have estimated WTP to avoid chronic asthma in adults. Blumenschein and 
Johannesson (1998) used two different contingent valuation (CV) methods, the 
dichotomous choice method and a bidding game, to estimate mean willingness to pay 
for a cure for asthma. The mean WTP elicited from the bidding game was $189 per 
month, or $2,268 per year (in 1996$). The mean WTP elicited from the dichotomous 
choice approach was $343 per month, or $4,116 per year (in 1996$). Using $2,268 per 
year, a three percent discount rate, and 1997 life expectancies for males in the United 
States (National Center for Health Statistics, 1999, Table 5), the present discounted 
value of the stream of annual WTPs is $47,637 (in 2000$).  

O’Conor and Blomquist (1997) estimated WTP to avoid chronic asthma from estimates 
of risk-risk tradeoffs. Combining the risk-risk tradeoffs with a statistical value of life, the 
annual value of avoiding asthma can be derived. Assuming a value of a statistical life of 
$6 million, they derived an annual WTP to avoid asthma of $1500 (O’Connor and 
Blomquist, 1997, p. 677). For a value of a statistical life of $5,894,400 (in 1997 $), the 
corresponding implied annual value of avoiding chronic asthma, based on O’Conor and 
Blomquist would be $1,474. Assuming a three percent discount rate and 1997 life 
expectancies for males in the United States, the present discounted value of the stream 
of annual WTPs would be $30,257 (in 2000$). A unit value, based on a three percent 
discount rate, is the average of the two estimates, or $38,947. Following the method 
used for the §812 Prospective analysis, the uncertainty surrounding the WTP to avoid a 
case of chronic asthma among adult males was characterized by a triangular 
distribution on the range determined by the two study-specific WTP estimates. A 
second unit value, using a seven percent discount rate, is also available for use in 
BenMAP. The method used to derive this unit value is the same as that described above 
for the three percent discount rate unit value. The unit values available for use in 
BenMAP are summarized in Table I-4 below. 

Table I-4. Unit Values Available for Chronic Asthma  

Basis for Estimate 
Age Range 

Unit Value 

Distribution 
of Unit 
Value 

Parameters of 
Distribution 

Min Max P1 P2 
WTP: 3% DR (Discount Rate) 27 99 $38,947 Triangular $30,257 $47,637 
WTP: 7% DR 27 99 $25,357 Triangular $19,699 $31,015 
 

I.2.4 Non-Fatal Myocardial Infarctions (Heart Attacks)  

In the absence of a suitable WTP value for reductions in the risk of non-fatal heart 
attacks, there are a variety of cost-of-illness unit values available for use in BenMAP. 
These cost-of-illness unit values incorporate two components: the direct medical costs 
and the opportunity cost (lost earnings) associated with the illness event. Because the 
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costs associated with a heart attack extend beyond the initial event itself, the unit 
values include costs incurred over five years. Using age-specific annual lost earnings 
estimated by Cropper and Krupnick (1999), and a three percent discount rate, we 
estimated the following present discounted values in lost earnings over 5 years due to a 
heart attack: $8,774 for someone between the ages of 25 and 44, $12,932 for someone 
between the ages of 45 and 54, and $74,746 for someone between the ages of 55 and 
65. The corresponding age-specific estimates of lost earnings using a seven percent 
discount rate are $7,855, $11,578, and $66,920, respectively. Cropper and Krupnick do 
not provide lost earnings estimates for populations under 25 or over 65. As such we do 
not include lost earnings in the cost estimates for these age groups.  

We have found three possible sources of estimates of the direct medical costs of a 
myocardial infarction (MI) in the literature:  

• Wittels et al. (1990) estimated expected total medical costs of MI over 5 years to 
be $51,211 (in 1986$) for people who were admitted to the hospital and 
survived hospitalization. (There does not appear to be any discounting used.) 
Wittels et al. was used to value coronary heart disease in the 812 Retrospective 
Analysis of the Clean Air Act. Using the CPI-U for medical care, the Wittels 
estimate is $109,474 in year 2000$. This estimated cost is based on a medical 
cost model, which incorporated therapeutic options, projected outcomes and 
prices (using “knowledgeable cardiologists” as consultants). The model used 
medical data and medical decision algorithms to estimate the probabilities of 
certain events and/or medical procedures being used. The authors note that the 
average length of hospitalization for acute MI has decreased over time (from an 
average of 12.9 days in 1980 to an average of 11 days in 1983). Wittels et al. 
used 10 days as the average in their study. It is unclear how much further the 
length of stay (LOS) for MI may have decreased from 1983 to the present. The 
average LOS for ICD code 410 (MI) in the year-2000 AHQR HCUP database is 5.5 
days. However, this may include patients who died in the hospital (not included 
among our non-fatal MI cases), whose LOS was therefore substantially shorter 
than it would be if they hadn’t died.  

• Eisenstein et al. (2001) estimated 10-year costs of $44,663, in 1997$ (using a 
three percent discount rate), or $49,651 in 2000$ for MI patients, using 
statistical prediction (regression) models to estimate inpatient costs. Only 
inpatient costs (physician fees and hospital costs) were included.  

• Russell et al. (1998) estimated first-year direct medical costs of treating nonfatal 
MI of $15,540 (in 1995$), and $1,051 annually thereafter. Converting to year 
2000$, that would be $18,880 for a 5-year period, using a three percent discount 
rate, or $17,850, using a seven percent discount rate.  

The age group-specific estimates of opportunity cost over a five-year period are 
combined with the medical cost estimates from each of the three studies listed above. 
Because opportunity costs are derived for each of five age groups, there are 3 x 5 = 15 
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unit values for each of 2 discount rates, or 30 unit values available for use in BenMAP. 
These are given in Table I-5 below.  

Note that we were unable to achieve complete consistency, unfortunately, because of 
limitations in the input studies. For example, although we calculated opportunity costs 
over a five-year period using a 3 percent and a 7 percent discount rate, we were not 
able to do the same for medical costs, except for the medical costs estimated by Russell 
et al. (in which they estimate an annual cost). Wittels et al. appear to have used no 
discounting in their estimate; Eisenstein et al. used a 3 percent discount rate. Similarly, 
although almost all cost estimates (opportunity costs and medical costs) are for a 5-
year period, the medical cost estimate reported by Eisenstein et al. is for a 10-year 
period. There was no reasonable method for inferring from that study what costs over a 
5-year period would be. 

Table I-5. Unit Values Available for Myocardial Infarction 

Basis of Estimate 
Age Range 

Medical Cost * 
Opportunity 

Cost ** Total Cost Min Max 
COI: 5 yrs med, 5 yrs wages, 3% 
DR, Wittels (1990) 

0 24 $109,474 $0 $109,474 
25 44 $109,474 $9,033 $118,507 
45 54 $109,474 $13,313 $122,787 
55 65 $109,474 $76,951 $186,425 
66 99 $109,474 $0 $109,474 

COI: 10 yrs med, 5 yrs wages, 
3% DR, Eisenstein (2001) 

0 24 $49,651 $0 $49,651 
25 44 $49,651 $9,033 $58,683 
45 54 $49,651 $13,313 $62,964 
55 65 $49,651 $76,951 $126,602 
66 99 $49,651 $0 $49,651 

COI: 5 yrs med, 5 yrs wages, 3% 
DR, Russell (1998) 

0 24 $22,331 $0 $22,331 
25 44 $22,331 $9,033 $31,363 
45 54 $22,331 $13,313 $35,644 
55 65 $22,331 $76,951 $99,281 
66 99 $22,331 $0 $22,331 

COI: 5 yrs med, 5 yrs wages, 7% 
DR, Wittels (1990) 

0 24 $109,474 $0 $109,474 
25 44 $109,474 $8,087 $117,561 
45 54 $109,474 $11,919 $121,393 
55 65 $109,474 $68,894 $178,368 
66 99 $109,474 $0 $109,474 

COI: 10 yrs med, 5 yrs wages, 
7% DR, Eisenstein (2001) 

0 24 $49,651 $0 $49,651 
25 44 $49,651 $8,087 $57,738 
45 54 $49,651 $11,919 $61,570 
55 65 $49,651 $68,894 $118,545 
66 99 $49,651 $0 $49,651 

COI: 5 yrs med, 5 yrs wages, 7% 0 24 $21,113 $0 $21,113 
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Basis of Estimate 
Age Range 

Medical Cost * 
Opportunity 

Cost ** Total Cost Min Max 
DR, Russell (1998) 25 44 $21,113 $8,087 $29,200 

45 54 $21,113 $11,919 $33,032 
55 65 $21,113 $68,894 $90,007 
66 99 $21,113 $0 $21,113 

* From Cropper and Krupnick (1999). Present discounted value of 5 yrs of lost earnings, at 3% and 7% discount rate, 
adjusted from 1977$ to 2000$ using CPI-U “all items”.  

** An average of the 5-year costs estimated by Wittels et al. (1990) and Russell et al. (1998). Note that Wittels et al. 
appears not to have used discounting in deriving a 5-year cost of $109,474; Russell et al. estimated first- year direct 
medical costs and annual costs thereafter. The resulting 5-year cost is $22,331, using a 3% discount rate, and 
$21,113, using a 7% discount rate. Medical costs were inflated to 2000$ using CPI-U for medical care. 

1.3 Hospital Admissions & Emergency Room Visits 
This section presents the values for avoided hospital admissions, as well as avoided 
emergency room visits. We assume that hospital admissions due to acute exposure to 
air pollution pass through the emergency room. However, the value of hospital 
admissions that we have calculated here does not account for the cost incurred in the 
emergency room visit.  

I.3.1 Hospital Admissions  

As suggested above, the total value to society of an individual’s avoidance of a hospital 
admission can be thought of as having two components: (1) the cost of illness (COI) to 
society, including the total medical costs plus the value of the lost productivity, as well 
as (2) the WTP of the individual, as well as that of others, to avoid the pain and suffering 
resulting from the illness.  

In the absence of estimates of social WTP to avoid hospital admissions for specific 
illnesses (components 1 plus 2 above), estimates of total COI (component 1) are 
available for use in BenMAP as conservative (lower bound) estimates. Because these 
estimates do not include the value of avoiding the pain and suffering resulting from the 
illness (component 2), they are biased downward. Some analyses adjust COI estimates 
upward by multiplying by an estimate of the ratio of WTP to COI, to better approximate 
total WTP. Other analyses have avoided making this adjustment because of the 
possibility of over-adjusting -- that is, possibly replacing a known downward bias with 
an upward bias. Based on Science Advisory Board (SAB) advice, the COI values 
currently available for use in BenMAP are not adjusted.  

Unit values are based on ICD-code-specific estimated hospital charges and opportunity 
cost of time spent in the hospital (based on the average length of a hospital stay for the 
illness). The opportunity cost of a day spent in the hospital is estimated as the value of 
the lost daily wage, regardless of whether or not the individual is in the workforce.  

For all hospital admissions endpoints available in BenMAP, estimates of hospital 
charges and lengths of hospital stays were based on discharge statistics provided by the 
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Agency for Healthcare Research and Quality’s Healthcare Utilization Project National 
Inpatient Sample (NIS) database (2007). The NIS is the largest inpatient care database 
in the United States, and it is the only national hospital database containing charge 
information on all patients. It contains data from a very large nationally representative 
sample of about eight million hospital discharges, and therefore provides the best 
estimates of mean hospital charges and mean lengths of stay available, with negligible 
standard errors. The sampling frame for the 2007 NIS is a sample of hospitals that 
comprises approximately 90 percent of all hospital discharges in the United States. 
Since the NIS is based on discharge samples, the discharge-level weight was used to 
weight discharges in order to produce national estimates. The principle diagnoses were 
used to define the health endpoints.  

Since most pollution-related hospital admissions are likely unscheduled, the unit values 
of avoided hospital admissions used in BenMAP are based solely on unscheduled 
hospitalizations. The total COI for an ICD-code-specific hospital stay lasting n days is 
estimated as the mean hospital charge plus n times the daily lost wage.  

County-specific median annual income divided by (52*5) was used to estimate county-
specific median daily wage. The data source for median annual income is the 2010 
American Community Survey (ACS). ACS provided data for median annual earnings of 
full-time males and females at least 16 years old in 800 counties. For these 800 
counties, the average of full-time male and female earnings was used to estimate the 
county-specific median annual income. For all other counties, the ratio of state-specific 
median annual income in 2010 to 2000 was calculated. This ratio was then applied to 
the 2000 county-specific median annual income to obtain the estimate for 2010 county-
specific income (the source for 2000 county-specific income is Geolytics, 2001). 
Because wage data used in BenMAP are county-specific, the unit value for a hospital 
admission varies from one county to another.  

Although the data for hospital charge are from year 2007 and median income data are 
from 2010, the default hospital admission unit values in BenMAP are in year 2000 
dollars to be consistent with the unit values of other health endpoints in BenMAP. This 
was done by deflating the medical costs (2007 dollars) and median income (2010 
dollars) to 2000 dollars using BenMAP’s inflation index. Then when BenMAP estimates 
year 2007 dollars, the answer will be the same as if 2007 NIS and 2010 ACS data were 
used.  

The hospital admission outcomes for which unit values are available in BenMAP are 
given in Table I-6. Although unit values available for use in BenMAP are county-specific, 
the national median daily wage was used to calculate opportunity costs and total costs 
for the table below, to give a general idea of the cost of illness estimates for the different 
hospital admissions endpoints. 
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Table I-6.  Unit Values Available for Hospital Admissions 

Endpoint ICD Codes 

Age Range 
Mean 

Hospital 
Charge 

(2000 $) 

Mean 
Length 
of Stay 
(days) 

Total Cost 
of Illness 

(Unit 
Value in 
2000 $)* Min Max 

HA, All Cardiovascular 390-429 18 64 $26,654 4.12 $27,119 
HA, All Cardiovascular 390-429 65 99 $24,893 4.88 $25,444 
HA, All Cardiovascular 390-429 0 99 $25,605 4.59 $26,123 
HA, Congestive Heart Failure 428 65 99 $19,693 5.32 $20,293 
HA, Dysrhythmia 427 65 99 $19,560 3.98 $20,008 
HA, Dysrhythmia 427 0 99 $19,301 3.72 $19,720 
HA, Ischemic Heart Disease 410-414 65 99 $32,452 4.61 $32,972 
HA, All Respiratory 460-519 0 1 $9,883 3.19 $10,242 
HA, All Respiratory 460-519 65 99 $20,667 6.07 $21,351 
HA, All Respiratory 460-519 0 99 $19,009 5.35 $19,612 
HA, Asthma 493 0 64 $9,723 3.00 $10,061 
HA, Astham 493 65 99 $15,267 4.79 $15,808 
HA, Asthma 493 0 99 $10,852 3.37 $11,232 
HA, Chronic Lung Disease 490-496 18 64 $12,836 3.90 $13,276 
HA, Chronic Lung Disease 490-496 65 99 $14,835 4.79 $15,375 
HA, Chronic Lung Disease 490-496 0 99 $13,025 4.10 $13,487 
HA, Chronic Lung Disease (less Asthma) 490-492, 494-

496 
18 64 $13,999 4.23 $14,475 

HA, Chronic Lung Disease (less Asthma) 490-492, 494-
496 

65 99 $14,742 4.79 $15,282 

HA, Chronic Lung Disease (Less Asthma) 490-492, 494-
496 

0 99 $14,497 4.59 $15,015 

HA, Pneumonia 480-487 65 99 $17,647 5.77 $18,297 
HA, Pneumonia 480-487 0 99 $16,956 5.25 $17,548 
* The opportunity cost of a day spent in the hospital was estimated, for the above exhibit, at the median 
daily wage of all workers, regardless of age. The median daily wage was calculated by dividing the 
median weekly wage ($695 in 2007 dollar or $564.3 in 2000 dollar) by 5. The median weekly wages for 
2007 was obtained from the U.S. Census Bureau, Statistical Abstract of the United States: 2009, Section 
12, T able 626: “Full-Time Wage and Salary Workers - Numbers and Earnings: 2000 to 2007.” 

I.3.2  Emergency Room Visits for Asthma  

Two unit values are currently available for use in BenMAP for asthma emergency room 
(ER) visits. One is $311.55, from Smith et al., 1997, who reported that there were 
approximately 1.2 million asthma-related ER visits made in 1987, at a total cost of 
$186.5 million, in 1987$. The average cost per visit was therefore $155 in 1987$, or 
$311.55 in 2000 $ (using the CPI-U for medical care to adjust to 2000$). The 
uncertainty surrounding this estimate, based on the uncertainty surrounding the 
number of ER visits and the total cost of all visits reported by Smith et al. is 
characterized by a triangular distribution centered at $311.55, on the interval [$230.67, 
$430.93].  
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A second unit value is $260.67 from Stanford et al. (1999). This study considered 
asthmatics in 1996-1997, in comparison to the Smith et al. (1997) study, which used 
1987 National Medical Expenditure Survey (NMES) data). In comparing their study, the 
authors note that the 1987 NMES, used by Smith et al., “may not reflect changes in 
treatment patterns during the 1990s.” In addition, its costs are the costs to the hospital 
(or ER) for treating asthma rather than charges or payments by the patient and/or third 
party payer. Costs to the ER are probably a better measure of the value of the medical 
resources used up on an asthma ER visit (see above for a discussion of costs versus 
charges).  

The unit values and the corresponding distributions available in BenMAP for asthma-
related ER visits are summarized in Table I-7. 

Table I-7. Unit Values Available for Asthma-Related ER Visits  

Basis for Estimate 
Age Range 

Unit Value 

Distribution 
of Unit 
Value 

Parameters of 
Distribution 

Min Max P1 P2 
COI: Smith et al. (1997) 0 99 $312 Triangular $231 $431 
COI: Standford et al. (1999) 0 99 $261 Normal 5.22 -- 
 

I.4  Acute Symptoms and Illness Not Requiring Hospitalization  
Several acute symptoms and illnesses have been associated with air pollution, including 
acute bronchitis in children, upper and lower respiratory symptoms, and exacerbation 
of asthma (as indicated by one of several symptoms whose occurrence in an asthmatic 
generally suggests the onset of an asthma episode). In addition, several more general 
health endpoints which are associated with one or more of these acute symptoms and 
illnesses, such as minor restricted activity days, school loss days, and work loss days, 
have also been associated with air pollution. We briefly discuss the derivation of the 
unit values for each of these acute symptoms and illnesses. Tables J-8 and J-9 
summarize the values. 
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Table I-8. Unit Values Available for Acute Symptoms and Illnesses (in 2000 $)  

Health 
Endpoint Basis for Estimate * 

Age Range Unit 
Value 

Distributio
n of Unit 

Value 

Parameters of 
Distribution 

Min Max P1 P2 
Acute 
Bronchitis 

WTP: 1 day illness, CV studies 0 17 $59 Uniform 17.51 101.11 
WTP: 6 day illness, CV studies 0 17 $356 Uniform 105.06 606.64 
WTP: 28 symptom-days, 
Dickie and Ulery 

0 17 $374 Lognormal 5.947 0.0907 

Any of 19 
Respiratory 
Symptoms 

WTP: 1 day illness, CV studies 1 65 $24 Uniform 0 48.25 

Minor 
Restricted 
Activity 
Days 

WTP: 1 day, CV studies 18 99 $51 Triangular 20.71 80.37 
WTP: 3 symptoms 1 day, 
Dickie and Ulery (2002) 

18 99 $98 Lognormal 4.6088 0.0649 

Lower 
Respiratory 
Symptoms 

WTP: 1 day, CV studies 0 17 $16 Uniform 6.94 24.47 
WTP: 2 symptoms 1 day, 
Dickie and Ulery (2002) 

0 17 $187 Lognormal 5.2556 0.07048 

WTP: 2x1 day, CV studies 0 17 $31 uniform 13.89 48.93 
School Loss 
Days 

Described in text 0 17 $75 None N/A N/A 

Upper 
Respiratory 
Symptoms 

WTP: 1 day, CV studies 0 17 $25 Uniform 9.22 43.11 
WTP: 2 symptoms 1 day, 
Dickie and Ulery (2002) 

0 17 $187 Lognormal 5.2556 0.07048 

WTP: 2x1 day, CV studies 0 17 $49 Uniform 18.45 86.22 
Work Loss 
Days ** 

Median daily wage, county-
specific 

18 65 $115 None N/A N/A 

* All unit values pulled from a lognormal distribution from Model 1, Table III in Dickie and Ulery are 
multiplied by 0.973811 to adjust for a difference in mean household income between the study 
participants and the general population. The unit values shown here have already been adjusted.  
** Unit values for work loss days are county-specific, based on county-specific median wages. The unit 
value shown here is the national median daily wage, given for illustrative purposes only. 

Table I-9. Unit Values Available for Asthma-related Acute Symptoms and Illnesses 

Health 
Endpoint Basis for Estimate * 

Age Range Unit 
Value 

Unit Value 
Distributio

n 

Parameters of 
Distribution 

Min Max P1 P2 
Asthma 
Attacks; 
Cough; 
Moderate 
or Worse; 
One or 
more 
symptoms; 
Shortness 
of Breath; 
Wheeze 

Bad asthma day, Rowe and 
Chestnut (1986) 

18 99 $43 Uniform 15.56 70.88 

1 symptom-day, Dickie and 
Ulery (2002) 

18 99 $74 Lognormal 4.321 0.0957 

Bad asthma day, Rowe and 
Chestnut (1986) 

0 17 $43 Uniform 15.56 70.88 

2 x bad asthma day, Rowe and 
Chestnut (1986) 

0 17 $86 Uniform 31.12 141.77 

1 symptom-day, Dickie and 
Ulery (2002) 

0 17 $156 Lognormal 5.074 0.0925 

* All unit values pulled from a lognormal distribution from Model 1, Table III in Dickie and Ulery, 2002, 
are multiplied by 0.973811 to adjust for a difference in mean household income between the study 
participants and the general population. The unit values shown here have already been adjusted. 
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I.4.1 Acute Bronchitis in Children  

Estimating WTP to avoid a case of acute bronchitis is difficult for several reasons. First, 
WTP to avoid acute bronchitis itself has not been estimated. Estimation of WTP to avoid 
this health endpoint therefore must be based on estimates of WTP to avoid symptoms 
that occur with this illness. Second, a case of acute bronchitis may last more than one 
day, whereas it is a day of avoided symptoms that is typically valued. Finally, the C-R 
function used in the benefit analysis for acute bronchitis was estimated for children, 
whereas WTP estimates for those symptoms associated with acute bronchitis were 
obtained from adults.  

Three unit values are available in BenMAP for acute bronchitis in children. In previous 
benefit analyses, EPA used a unit value of $59.31. This is the midpoint between a low 
estimate and a high estimate. The low estimate is the sum of the midrange values 
recommended by IEc (1994) for two symptoms believed to be associated with acute 
bronchitis: coughing and chest tightness. The high estimate was taken to be twice the 
value of a minor respiratory restricted activity day. For a more complete description of 
the derivation of this estimate, see Abt Associates (2000, p. 4-30).  

The above unit value assumes that an episode of acute bronchitis lasts only one day. 
However, this is generally not the case. More typically, it can last for 6 or 7 days. A 
simple adjustment, then, would be to multiply the original unit value of $59.31 by 6 or 
7. A second unit value of $356 (=$59.31 x 6) was therefore derived.  

Finally, as noted above, the epidemiological study relating air pollution to the incidence 
of acute bronchitis referred to children specifically. The value of an avoided case should 
therefore be WTP to avoid a case in a child, which may be different from WTP to avoid a 
case in an adult. Recent work by Dickie and Ulery (2002) suggests, in fact, that parents 
are generally willing to pay about twice as much to avoid sickness in their children as in 
themselves. In one of several models they estimated, the natural logarithm of parents’ 
WTP was related both to the number of symptom-days avoided and to whether it was 
their child or themselves at issue. Dickie and Ulery noted that “experiencing all of the 
symptoms [considered in their study - cough and phlegm, shortness of 
breath/wheezing, chest pain, and fever] for 7 days, or 28 symptom-days altogether, is 
roughly equivalent to a case of acute bronchitis ...” Using this model, and assuming that 
a case of acute bronchitis can be reasonably modeled as consisting of 28 symptom-days, 
we estimated parents’ WTP to avoid a case of acute bronchitis in a child to be $374. This 
is the third unit value available in BenMAP.  

The mean household income among participants in the Dickie and Ulery CV survey was 
slightly higher than the national average. We therefore adjusted all WTP estimates that 
resulted from their models downward slightly, using an income elasticity of WTP of 
0.147, the average of the income elasticities estimated in the four models in the study. 
The adjustment factor thus derived was 0.9738. 
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I.4.2 Upper Respiratory Symptoms (URS) in Children 

In past benefit analyses, EPA based willingness to pay to avoid a day of URS on 
symptom-specific WTPs to avoid those symptoms identified as part of the URS complex 
of symptoms. Pope et al. (1991) defined a day of URS as consisting of one or more of the 
following symptoms: runny or stuffy nose; wet cough; and burning, aching, or red eyes. 
The three contingent valuation (CV) studies shown in Table I-10 have estimated WTP to 
avoid various morbidity symptoms that are either within the URS symptom complex 
defined by Pope et al., or are similar to those symptoms. 

Table I-10. Median WTP Estimates and Derived Midrange Estimates (in 1999 $) 

Symptom* Dickie et al. 
Tolley et al. 

(1986) 
Loehman et al. 

(1979) 
Mid-Range 

Estimate 
Throat congestion 4.81 20.84 - 12.75 
Head/sinus congestion 5.61 22.45 10.45 12.75 
Coughing 1.61 17.65 6.35 8.93 
Eye irritation - 20.03 - 20.03 
Headache 1.61 32.07 - 12.75 
Shortness of breath 0.00 - 13.47 6.37 
Pain upon deep inhalation (PDI) 5.63 - - 5.63 
Wheeze 3.21 - - 3.21 
Coughing up phlegm 3.51** - - 3.51 
Chest tightness 8.03 - - 8.03 

* All estimates are WTP to avoid one day of symptom. Midrange estimates were derived by IEc (1993). 
** 10% trimmed mean. 

 
The three individual symptoms that were identified as most closely matching those 
listed by Pope et al. for URS are cough, head/sinus congestion, and eye irritation, 
corresponding to “wet cough,” “runny or stuffy nose,” and “burning, aching or red eyes,” 
respectively. A day of URS could consist of any one of the seven possible “symptom 
complexes” consisting of at least one of these three symptoms. The original unit value 
for URS was based on the assumption that each of these seven URS complexes is equally 
likely. This unit value for URS, $24.64, is just an average of the seven estimates of mean 
WTP for the different URS complexes.  

The WTP estimates on which the first unit value is based were elicited from adults, 
whereas the health endpoint associated with air pollution in the epidemiological study 
is in children. As noted above, recent research by Dickie and Ulery (2002) suggests that 
parental WTP to avoid symptoms and illnesses in their children is about twice what it is 
to avoid those symptoms and illnesses in themselves. We therefore derived a second 
unit value of $49.28 (=2 x $24.64) from the first unit value.  

A third unit value was derived by using Model 1, Table III in Dickie and Ulery (2002) 
(the same model used for acute bronchitis), assuming that a day of URS consists of 2 
symptoms. As noted above, this model relates parental WTP to the number of 
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symptom-days avoided and to whether it is the parent or the child at issue. The unit 
value derived from this model is $187.  

A WTP estimate elicited from parents concerning their WTP to avoid symptoms in their 
children may well include some calculation of lost earnings resulting from having to 
lose a day of work. Estimates from the Dickie and Ulery model therefore (appropriately) 
probably include not only their WTP to have their children avoid the pain and suffering 
associated with their illness, but also the opportunity cost of a parent having to stay 
home with a sick child.  

I.4.3  Lower Respiratory Symptoms (LRS) in Children  

The three unit values for LRS in children currently available in BenMAP follow the same 
pattern as those for URS in children. In past benefit analyses, EPA based willingness to 
pay to avoid a day of LRS on symptom-specific WTPs to avoid those symptoms 
identified as part of the LRS complex of symptoms. Schwartz et al. (1994) defined a day 
of LRS as consisting of at least two of the following symptoms: cough, chest tightness, 
coughing up phlegm, and wheeze. Of the symptoms for which WTP estimates are 
available (listed in Table I-10), those that most closely match the symptoms listed by 
Schwartz et al. are coughing, chest tightness, coughing up phlegm, and wheeze. A day of 
LRS, as defined by Schwartz et al., could consist of any one of 11 possible combinations 
of at least two of these four symptoms. In the absence of any further information, each 
of the 11 possible “symptom clusters” was considered equally likely. The original unit 
value for LRS, $15.57, is just an average of the eleven estimates of mean WTP for the 
different LRS symptom clusters.  

A second unit value is twice the original unit value, or $31.15, based on the evidence 
from Dickie and Ulery (2002) that parents are willing to pay about twice as much to 
avoid symptoms and illness in their children as in themselves. The third unit value is 
based on Model 1, Table III in Dickie and Ulery, assuming that, as for URS, a day of LRS 
consists of 2 symptoms. As noted above, this model relates parental WTP to the number of 
symptom-days avoided and to whether it is the parent or the child at issue. The unit value 
derived from this model is $187. 

I.4.4 Any of 19 Respiratory Symptoms 

The presence of “any of 19 acute respiratory symptoms” is a somewhat subjective 
health effect used by Krupnick et al. (1990). Moreover, not all 19 symptoms are listed in 
the Krupnick et al. study. It is therefore not clear exactly what symptoms were included 
in the study. Even if all 19 symptoms were known, it is unlikely that WTP estimates 
could be obtained for all of the symptoms. Finally, even if all 19 symptoms were known 
and WTP estimates could be obtained for all 19 symptoms, the assumption of additivity 
of WTPs becomes tenuous with such a large number of symptoms. The likelihood that 
all 19 symptoms would occur simultaneously, moreover, is very small.  

Acute respiratory symptoms must be either upper respiratory symptoms or lower 
respiratory symptoms. In the absence of further knowledge about which of the two 
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types of symptoms is more likely to occur among the “any of 19 acute respiratory 
symptoms,” we assumed that they occur with equal probability. Because this health 
endpoint may also consist of combinations of symptoms, it was also assumed that there 
is some (smaller) probability that upper and lower respiratory symptoms occur 
together. To value avoidance of a day of “the presence of any of 19 acute respiratory 
symptoms” we therefore assumed that this health endpoint consists either of URS, or 
LRS, or both. We also assumed that it is as likely to be URS as LRS and that it is half as 
likely to be both together. That is, it was assumed that “the presence of any of 19 acute 
respiratory symptoms” is a day of URS with 40 percent probability, a day of LRS with 40 
percent probability, and a day of both URS and LRS with 20 percent probability. Using 
the point estimates of WTP to avoid a day of URS and LRS derived above, the point 
estimate of WTP to avoid a day of “the presence of any of 19 acute respiratory 
symptoms” is:  

 $24.12. = $15.57) + .64(0.20)($24 + .57)(0.40)($15 + .64)(0.40)($24  

Because this health endpoint is only vaguely defined, and because of the lack of 
information on the relative frequencies of the different combinations of acute 
respiratory symptoms that might qualify as “any of 19 acute respiratory symptoms,” the 
unit dollar value derived for this health endpoint must be considered only a rough 
approximation. 

I.4.5 Work Loss Days (WLDs)  

Work loss days are valued at a day’s wage. BenMAP calculates county-specific median 
daily wages from county-specific annual wages by dividing by (52*5), on the theory that 
a worker’s vacation days are valued at the same daily rate as work days. 

I.4.6 Minor Restricted Activity Days (MRADs)  

Two unit values are currently available in BenMAP for MRADs. No studies are reported 
to have estimated WTP to avoid a minor restricted activity day (MRAD). However, IEc 
(1993) derived an estimate of WTP to avoid a minor respiratory restricted activity day 
(MRRAD), using WTP estimates from Tolley et al. (1986) for avoiding a three-symptom 
combination of coughing, throat congestion, and sinusitis. This estimate of WTP to 
avoid a MRRAD, so defined, is $38.37 (1990 $). Although Ostro and Rothschild (1989) 
estimated the relationship between PM2.5 and MRADs, rather than MRRADs (a 
component of MRADs), it is likely that most of the MRADs associated with exposure to 
PM2.5 are in fact MRRADs. The original unit value, then, assumes that MRADs associated 
with PM exposure may be more specifically defined as MRRADs, and uses the estimate 
of mean WTP to avoid a MRRAD.  

Any estimate of mean WTP to avoid a MRRAD (or any other type of restricted activity 
day other than WLD) will be somewhat arbitrary because the endpoint itself is not 
precisely defined. Many different combinations of symptoms could presumably result in 
some minor or less minor restriction in activity. Krupnick and Kopp (1988) argued that 
mild symptoms will not be sufficient to result in a MRRAD, so that WTP to avoid a 
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MRRAD should exceed WTP to avoid any single mild symptom. A single severe 
symptom or a combination of symptoms could, however, be sufficient to restrict 
activity. Therefore WTP to avoid a MRRAD should, these authors argue, not necessarily 
exceed WTP to avoid a single severe symptom or a combination of symptoms. The 
“severity” of a symptom, however, is similarly not precisely defined; moreover, one 
level of severity of a symptom could induce restriction of activity for one individual 
while not doing so for another. The same is true for any particular combination of 
symptoms.  

Given that there is inherently a substantial degree of arbitrariness in any point estimate 
of WTP to avoid a MRRAD (or other kinds of restricted activity days), the reasonable 
bounds on such an estimate must be considered. By definition, a MRRAD does not result 
in loss of work. WTP to avoid a MRRAD should therefore be less than WTP to avoid a 
WLD. At the other extreme, WTP to avoid a MRRAD should exceed WTP to avoid a 
single mild symptom. The highest IEc midrange estimate of WTP to avoid a single 
symptom is $20.03 (1999 $), for eye irritation. The point estimate of WTP to avoid a 
WLD in the benefit analysis is $83 (1990 $). If all the single symptoms evaluated by the 
studies are not severe, then the estimate of WTP to avoid a MRRAD should be 
somewhere between $16 and $83. Because the IEc estimate of $38 falls within this 
range (and acknowledging the degree of arbitrariness associated with any estimate 
within this range), the IEc estimate is used as the mean of a triangular distribution 
centered at $38, ranging from $16 to $61. Adjusting to 2000 $, this is a triangular 
distribution centered at $50.55, ranging from $21 to $80.  

A second unit value is based on Model 1, Table III in Dickie and Ulery (2002). This 
model estimates the natural logarithm of parents’ WTP to avoid symptoms as a linear 
function of the natural logarithm of the number of symptom-days avoided and whether 
or not the person avoiding the symptoms is the parent or the child. The unit value 
derived from this model, assuming that an MRAD consists of one day of 3 symptoms in 
an adult, is $98. 

I.4.7 Asthma Exacerbation  

Several respiratory symptoms in asthmatics or characterizations of an asthma episode 
have been associated with exposure to air pollutants. All of these can generally be taken 
as indications of an asthma exacerbation (“asthma attack”) when they occur in an 
asthmatic. BenMAP therefore uses the same set of unit values for all of the variations of 
“asthma exacerbation” that appear in the epidemiological literature.  

Two unit values are currently available in BenMAP for asthma exacerbation in adults, 
and three are currently available for asthma exacerbation in children. In past benefit 
analyses, EPA based willingness to pay to avoid an asthma exacerbation on four WTP 
estimates from Rowe and Chestnut (1986) for avoiding a “bad asthma day.” The mean 
of the four average WTPs is $32 (1990 $), or $43 in 2000$. The uncertainty surrounding 
this estimate was characterized by a continuous uniform distribution on the range 
defined by the lowest and highest of the four average WTP estimates from Rowe and 
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Chestnut, [$12, $54] in 1990$, or [$16, $71] in 2000 $. This unit value is available for 
both adults and children.  

A second unit value for adults was derived by using Model 1, Table III in Dickie and 
Ulery (2002) -- the same model used for acute bronchitis, LRS, and URS -- assuming that 
an asthma exacerbation consists of 1 symptom-day. As noted above, this model relates 
parental WTP to the number of symptom-days avoided and to whether it is the parent 
or the child at issue. The unit value derived from this model for adults is $74.  

Two additional unit values are available for children. One of these is twice the original 
unit value, or $86, based on the evidence from Dickie and Ulery (2002) that parents are 
willing to pay about twice as much to avoid symptoms and illness in their children as in 
themselves. The third unit value is based on Model 1, Table III in Dickie and Ulery (the 
same model used for asthma exacerbation in adults, only now with the “adult or child” 
variable set to 1 rather than 0). The unit value derived from this model is $156. 

I.4.8  School Loss Days  

There is currently one unit value available in BenMAP for school loss days, based on (1) 
the probability that, if a school child stays home from school, a parent will have to stay 
home from work to care for the child, and (2) the value of the parent’s lost productivity. 
We first estimated the proportion of families with school-age children in which both 
parents work, and then valued a school loss day as the probability of a work loss day 
resulting from a school loss day (i.e., the proportion of households with school-age 
children in which both parents work) times a measure of lost wages.  

From the U.S. Bureau of the Census (2002) we obtained (1) the numbers of single, 
married, and “other” (i.e., widowed, divorced, or separated) women with children in the 
workforce, and (2) the rates of participation in the workforce of single, married, and 
“other” women with children. From these two sets of statistics, we calculated a 
weighted average participation rate of 72.85 percent, as shown in Table I-11.  

Our estimated daily lost wage (if a mother must stay at home with a sick child) is based 
on the median weekly wage among women age 25 and older in 2000. This median 
weekly wage is $551. Dividing by 5 gives an estimated median daily wage of $103. The 
expected loss in wages due to a day of school absence in which the mother would have 
to stay home with her child is estimated as the probability that the mother is in the 
workforce times the daily wage she would lose if she missed a day = 72.85% of $103, or 
$75. We currently have insufficient information to characterize the uncertainty 
surrounding this estimate. 
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Table I-11. Women with Children: Number and Percent in the Labor Force, 2000, 
and Weighted Average Participation Rate 

Category 

Women in 
Labor Force 
(millions)* 

Population 
Rate (%)* 

Implied Total 
Number in 

Population (in 
millions) 

Implied 
Percent in 
Population 

Population-
Weighted Average 
Participation Rate 

(1) (2) (3) = (1)/(2) (4) 
[=sum (2)x(4) over 

rows] 
Single 3.1 73.9% 4.19 11.84% -- 
Married 18.2 70.6% 25.78 72.79% -- 
Other** 4.5 82.7% 5.44 15.36% -- 
Total -- -- 35.42 -- 72.85% 
*Source: U.S. Bureau of the Census (2002). 
** Widowed, divorced, or separated. 

A unit value based on the approach described above is likely to understate the value of a 
school loss day in two ways. First, it omits WTP to avoid the symptoms/illness which 
resulted in the school absence. Second, it effectively gives zero value to school absences 
which do not result in a work loss day. The unit value of $75 is therefore considered an 
“interim” value until such time as alternative means of estimating this unit value 
become available.  



 Appendix J: Population & Other Data in U.S. Setup 

BenMAP-CE User’s Manual Appendices March 2015 
183 

Appendix J: Population & Other Data in U.S. Setup  
This section describes the population and monitor data in the United States setup.  

• Population Data. This describes how BenMAP forecasts population; the block-
level and county-level data underlying the forecasts; and the PopGrid software 
application, which aggregates block-level population data to whatever grid 
definition might be needed.  

• Monitor Data. The default United States setup has ozone, PM2.5, PM10, lead, NO2, 
and SO2 monitor data for the years 2000-2007. Data for CO are available at the 
BenMAP website: http://www.epa.gov/air/benmap/. 

J.1 Population Data in U.S. Setup 
The U.S. setup in BenMAP calculates health impacts for any desired grid definition, so 
long as you have a shapefile for that grid definition and population data for that grid 
definition. In this description, we use the term “population grid cell” to refer to a cell 
(e.g., county) within a grid definition. The foundation for calculating the population 
level in the population grid-cells is 2010 Census block data. A separate application 
developed by Abt Associates, called “PopGrid,” described below, combines the Census 
block data with any user-specified set of population grid- cells, so long as they are 
defined by a GIS shape file. Unfortunately, PopGrid relies on extremely large census files 
that are too large to include with BenMAP -- hence the need for the separate 
application. If you are interested in PopGrid, please email: benmap@epa.gov.  

Within any given population grid-cell, BenMAP has 304 unique race-ethnicity-gender-
age groups: 19 age groups by 2 ethnic groups by gender by 4 racial groups 
(19*2*2*4=304). Table J-1 presents the 304 population variables available in BenMAP. 
As discussed below, these variables are available for use in developing age estimates in 
whatever grouping desired by you. 

Table J-1. Demographic Groups and Variables Available in BenMAP  

Racial Group Ethnicity Age Gender 
White, African 
American, Asian, 
American Indian 

Hispanic, Non-
Hispanic 

<1, 1-4, 5-9, 10-14, 15-19, 20-24, 25-29, 
30-34, 35-39, 40-44, 45-49, 50-54, 55-59, 
60-64, 65-69, 70-74, 75-79, 80-84, 85+ 

Male, Female 

 

In this section on population data in the U.S. setup, we describe:  

• Forecasting Population. This describes how BenMAP forecasts population.  

• Data Needed. This section describes the block-level and county-level data 
underlying the forecasts. 

http://www.epa.gov/air/benmap/
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• PopGrid. This section reviews the PopGrid software application, which 
aggregates block-level population data to whatever grid definition might be 
need. 

J.1.1 How BenMAP Forecasts Population 

In calculating the population in age groups that may include a portion of one of the pre-
specified demographic groups in Table J-1, BenMAP assumes the population is uniformly 
distributed in the age group. For example, to calculate the number of children ages 3 
through 12, BenMAP calculates:  

14109541123 5
3

2
1

−−−− ×++×= ageageageage  

To estimate population levels for the years after the last Census in 2010, BenMAP scales 
the 2010 Census-based estimate with the ratio of the county-level forecast for the 
future year of interest over the 2010 county-level population level. Woods & Poole 
(2012) provides the county-level population forecasts used to calculate the scaling 
ratios; these data are discussed in detail below.  

In the simplest case, where one is forecasting a single population variable, say, children 
ages 4 to 9 in the year 2020, BenMAP calculates: 

2010,,94

2020,,94
2010,,942020,,94

county

county
gg age

age
ageage

−

−
−− ×=  

Where the gth population grid-cell is wholly located within a given county. 

In the case, where the gth grid-cell includes “n” counties in its boundary, the situation is 
somewhat more complicated. BenMAP first estimates the fraction of individuals in a given age 
group (e.g., ages 4 to 9) that reside in the part of each county within the gth grid-cell. 
BenMAP calculates this fraction by simply dividing the population all ages of a given county 
within the gth grid-cell by the total population in the gth grid-cell:  

gall

countyingall
countying age

age
ageoffraction c

c
,

,
,94 =−  

Multiplying this fraction with the number of individuals ages 4 to 9 in the year 2010 
gives an estimate of the number of individuals ages 4 to 9 that reside in the fraction of 
the county within the gth grid-cell in the year 2010: 

cc countyinggcountying agefractionageage ,942010,,942010,,94 −−− ×=  

To then forecast the population in 2020, we scale the 2010 estimate with the ratio of 
the county projection for 2020 to the county projection for 2010:  
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Combining all these steps for “n” counties within the gth grid-cell, we forecast the 
population of persons ages 4 to 9 in the year 2020 as follows:  
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In the case where there are multiple age groups and multiple counties, BenMAP first 
calculates the forecasted population level for individual age groups, and then combines 
the forecasted age groups. In calculating the number of children ages 4 to 12, BenMAP 
calculates:  
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J.1.2  Data Needed for Forecasting  

Underlying the population forecasts in BenMAP there are block-level databases used to 
provide year 2010 population estimates and a county-level database of forecast ratios. Both 
files have the same set of 304 race-ethnicity-gender-age population groups.  

The block-level data is typically not used directly in BenMAP, and instead is used with 
the PopGrid software (described below) to provide year 2010 estimates for a grid 
definition of interest (e.g., 12 kilometer CMAQ grid). The output from PopGrid with the 
year 2010 population estimates can then be loaded into BenMAP.  

The county-level data comes pre-installed in the U.S. setup, and is not something that 
the user needs to load herself. These data are simply county-level ratios of a year (2009, 
2011-2040) and year 2010 population data for each county and each of the 304 race-
ethnicity-gender-age population groups.  

We describe the development of each databases below. 

J.1.2.1 Block-Level Census 2010  

There are about five million “blocks” in the United States, and for each block we have 
304 race-ethnicity-gender-age groups. The block-level population database is created 
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separately for each state, in order to make the data more manageable. (A single national 
file of block data would be about six gigabytes.)  

The initial block file from the U.S. Census Bureau is not in the form needed. The block 
data has 7 racial categories and 23 age groups, as opposed to the 4 and 19 used in 
BenMAP. Table J-2 summarizes the initial set of variables and the final desired set of 
variables. 

Table J-2. Race, Ethnicity and Age Variables in 2010 Census Block Data  

Type Race Ethnicity Gender Age 
Initial 
Variables 
(SF1 file) 

White Alone, Black Alone, 
Native American Alone, Asian 
Alone, Pacific 
Islander/Hawaiian Alone, Other 
Alone, Two or More Alone 

-- Male, 
Female 

0-4, 5-9, 10-14, 15-17, 18-
19, 20, 21, 22-24, 25-29, 
30-34, 35-39, 40-44, 45-
49, 50-54, 55-59, 60-61, 
62-64, 65-66, 67-69, 70-
74, 75-79, 80-84, 85+ 

Final 
Desired 
Variables 

White, African-American, Asian-
American, Native-American 

Hispanic, 
Non-
Hispanic 

Female, 
Male 

<1,1-4, 5-9, 10-14, 15-19, 
20-24, 25-29, 30-34, 35-
39, 40-44, 45-49, 50-54, 
55-59, 60-64, 65-69, 70-
74, 75-79, 80-84, 85+ 

 

The initial set of input files are as follows.  

• Census 2010 block-level and tract-level files (Summary File 1)  
Data: http://www2.census.gov/census_2010/04-Summary_File_1/  
Docs: http://www.census.gov/prod/cen2010/doc/sf1.pdf  

• Census 2000 MARS national-level summary  
Docs: http://www.census.gov/popest/archives/files/MRSF-01-US1.pdf  

The SF1 tract-level and MARS data, as described below, are needed to reorganize the 
variables that come initially in the block-levelSF1 file. (For the sake of completeness, we 
note that there exists a county-level Census 2000 MARS file; however, due to major 
population count discrepancies between the county-level MARS file and block-level SF1 
file, we used only the nation-level summary table. Tables in MARS documentation file 
did not have the discrepancies that the county-level file had. We were unable to get an 
adequate explanation of this from the U. S. Census.)  

The steps in preparing the data are as follows:  

1. Adjust Age-classifications:  

We combined some age groups in the block-level SF1 data to match the age groups 
wanted for BenMAP. For example, we combined age groups 15-17 and 18-19 to create 
the 15-19 age group used in BenMAP. Then, in the case of the 0-4 age group, we split it 
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into <1 and 1-4 using the tract-level SF1 data, which gave us the fraction of 0-4 year-
olds who are <1.  

2. Fill in Missing Racial-Ethnic Interactions:  

We used the tract-level SF1 data to calculate the fraction of Hispanics in each ethnically-
aggregated subpopulation from the block-level data, by age and sex. We used these 
fractions to distribute each age-sex-race-block-level datum into Hispanics and non-
Hispanics.  

3. Assign “Other” and “Multi-Racial” to the Remaining Four Racial Categories:  

We assign the “Other” race category in two steps. First, based on the national MARS 
data, we estimated how many people in the “multi-racial” category checked off “some 
other race” as one of their races, for Hispanics and non-Hispanics separately. In each 
age-sex-race-block-level datum, we added those people to “other race” category to 
create the re-distribution pool, analogously to the method implemented by Census 
while creating MARS data (see U.S. Census Bureau, 2002a, Table 1, below). Second, 
based on the national re-allocation fractions for Hispanics and non-Hispanics (derived 
from the MARS data), we assigned the “Other” race into the four races of interest and 
“multi-race”.  

After the assignment of the “Other” race category, we then assigned “multi-racial” 
category to the four racial categories, using state fractions of these races in each age-
sex-race-block- level datum. 
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J.1.2.2  County-Level Forecasts  

Woods & Poole (2012) developed county-level forecasts for each year from 2000 
through 2040, by age and gender for non-Hispanic White, African-American, Asian-
American, and Native-American and for all Hispanics. The detailed documentation can 
be found at http://www. woodsandpoole.com/pdfs/CED12.pdf. As discussed below, the 
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adjustments necessary to prepare the data for use in BenMAP are relatively 
straightforward.  

For each non-Hispanic subset of the population and each year from 2000-2040, we 
divided the Woods and Poole population for that year by the Woods and Poole 
population for that subset in 2010. These serve as the growth coefficients for the non-
Hispanic subsets of each race. We used a similar calculation to determine the growth 
rates for the Hispanic population. We assume that each Hispanic race grows at the same 
rate, and use these growth rates for the Hispanic subsets of each race.  

Matching Age Groups Used in BenMAP  

There are 86 age groups, so it is a simple matter of aggregating age groups to match the 
19 used in BenMAP.  

Matching Counties Used in U.S. Census  

The county geographic boundaries used by Woods & Poole are somewhat more 
aggregated than the county definitions used in the 2010 Census and those in BenMAP, 
and the FIPS codes used by Woods and Poole are not always the standard codes used in 
the Census. To make the Woods and Poole data consistent with the county definitions in 
BenMAP, we disaggregated the Woods and Poole data and changed some of the FIPS 
codes to match the U.S. Census.  

Calculating Growth Ratios with Zero Population in 2000  

There are a small number of cases were the 2010 county population for a specific 
demographic group is zero, so the ratio of any future year to the year 2010 data is 
undefined. In these relatively rare cases, we prepared statewide and national totals and 
used ratios at the higher levels of geographic aggregation when the more local ratios 
caused divide-by-zero errors.  

J.1.3  PopGrid  

If the geographic center of a Census block falls within a population grid-cell, PopGrid 
assigns the block population to this particular population grid-cell. Note that the grid-
cells in an air quality model, such as CMAQ, may cross multiple county boundaries. 
PopGrid keeps track of the total number of people in each race-ethnic group by county 
within a particular population grid-cell. Of course, when the population grid-cell is for 
U.S. counties, then there is only a single county associated with the population grid-cell. 
However, with air quality models, there can clearly be multiple counties in a population 
grid-cell.  

Keeping track of the total number of people in a county is necessary when forecasting 
population, as the population forecast for a given grid cell is equal to the year 2010 
population estimate from the Census Bureau multiplied by the ratio of future-year to 
year 2010 county population estimates from Woods & Poole. BenMAP assumes that all 
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age-gender groups within a given race-ethnic group have the same geographic 
distribution.  

J.1.3.1  How to Use PopGrid  

After installing PopGrid, double-click on the PopGrid executable “PopGrid4.exe.” The 
following screen will appear: 

 

The Census Data Files Directory box points PopGrid to where the block data are 
located that PopGrid uses. Make sure that the files in this directory are unzipped. This 
data folder should look something like the following:  
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The Result Population File box provides the path and the name of the file that you want to 
create. In the example above, PopGrid is being used to estimate population for the intersection 
of air basins and counties in California (CA_AirBasin_by_County).  

Click on the Step 2: Shape File tab. Choose the shapefile that you want to use. The example 
for air basins and counties in California looks as follows:  
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After choosing your shapefile, go to the Step 3: Run tab, which should look as follows:  
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Click Run. PopGrid will now begin processing. It can take a very long time to run. When 
PopGrid has finished running, check the log file. The log file notes the start time, the 
files that PopGrid used, and the end time. Also, at the very end of the log file, PopGrid notes 
the number of people that PopGrid assigned to your grid definition (“Population covered 
by grid”) and the number of people that PopGrid determined are outside of your grid 
definition (“Population outside grid”).  
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J.1.3.2  PopGrid Output  

PopGrid generates two files. One file has the number of people in each grid cell for each 
of the 304 race-ethnicity-gender-age demographic groups available in PopGrid. Table J-
4 presents an example of what the population file looks like from PopGrid. The Row and 
Column uniquely identify each grid cell. Note that the Race, Ethnicity, Gender and 
AgeRange variables are precisely defined (see section on loading population data 
LoadData_Setups_Population). 

Table J-4.  Population File Fragment from PopGrid 

Row Column Year Population Race Ethnicity Gender AgeRange 
58 81 2000 1.54 WHITE HISPANIC MALE 0TO0 
58 81 2000 0.03 BLACK HISPANIC MALE 0TO0 
58 81 2000 0.01 NATAMER HISPANIC MALE 0TO0 
58 81 2000 0.01 ASIAN HISPANIC MALE 0TO0 
58 81 2000 4.86 WHITE HISPANIC MALE 1TO4 
58 81 2000 0.12 BLACK HISPANIC MALE 1TO4 
58 81 2000 0.03 NATAMER HISPANIC MALE 1TO4 
58 81 2000 0.03 ASIAN HISPANIC MALE 1TO4 
58 81 2000 6.79 WHITE HISPANIC MALE 5TO9 
58 81 2000 0.21 BLACK HISPANIC MALE 5TO9 
58 81 2000 0.05 NATAMER HISPANIC MALE 5TO9 
58 81 2000 0.05 ASIAN HISPANIC MALE 5TO9 
58 81 2000 0.90 WHITE HISPANIC MALE 10TO14 
58 81 2000 0.04 BLACK HISPANIC MALE 10TO14 
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Row Column Year Population Race Ethnicity Gender AgeRange 
58 81 2000 0.01 NATAMER HISPANIC MALE 10TO14 
58 81 2000 0.01 ASIAN HISPANIC MALE 10TO14 
58 81 2000 3.44 WHITE HISPANIC MALE 15TO19 
58 81 2000 0.15 BLACK HISPANIC MALE 15TO19 
58 81 2000 0.04 NATAMER HISPANIC MALE 15TO19 
58 81 2000 0.04 ASIAN HISPANIC MALE 15TO19 
58 81 2000 1.49 WHITE HISPANIC MALE 20TO24 
58 81 2000 0.06 BLACK HISPANIC MALE 20TO24 
58 81 2000 0.02 NATAMER HISPANIC MALE 20TO24 
58 81 2000 0.03 ASIAN HISPANIC MALE 20TO24 
58 81 2000 1.93 WHITE HISPANIC MALE 25TO29 
58 81 2000 0.04 BLACK HISPANIC MALE 25TO29 
58 81 2000 0.01 NATAMER HISPANIC MALE 25TO29 
58 81 2000 0.01 ASIAN HISPANIC MALE 25TO29 
58 81 2000 1.87 WHITE HISPANIC MALE 30TO34 
58 81 2000 0.08 BLACK HISPANIC MALE 30TO34 

 

PopGrid generates a second file that keeps track of the fraction of the total population in 
each of the eight race-ethnic groups that comes from each county in the United States. 
Table J-2 presents a sample. The SourceCol and SourceRow uniquely identify each 
county, and the TargetCol and TargetRow uniquely identify each grid cell. The Value 
variable gives the fraction of the total population in the grid cell for a given race-ethnic 
group that comes from the “source” county.  

When a grid cell lies completely within a county, then the fraction will be 1. When a grid 
cell is in more than county, then the sum of the fractions across the counties for a given 
race-ethnic group must sum to one. In Table J-5, you can see that for grid cell 
(TargetCol=123, TargetRow=18) that the fraction of Asian Non-Hispanic coming from 
county (SourceCol=16, SourceRow=71) is 0.49 and for county (SourceCol=49, 
SourceRow=3) the fraction is 0.51. In this case, about half the population of Asian Non-
Hispanics comes from each of the two counties. In the case of Black Hispanics, the 
fraction from county (SourceCol=16, SourceRow=71) is only 0.12, with most Black 
Hispanics in this grid cell coming from county (SourceCol=49, SourceRow=3).  

Table J-5. Population-Weight File Fragment from PopGrid  

SourceCol SourceRow TargetCol TargetRow Race Ethnicity Value Year 
16 71 123 18 ASIAN NON-

HISPANIC 
0.49 2000 

16 71 123 18 ASIAN HISPANIC 0.21 2000 
16 71 123 18 BLACK NON-

HISPANIC 
0.49 2000 

16 71 123 18 BLACK HISPANIC 0.12 2000 
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SourceCol SourceRow TargetCol TargetRow Race Ethnicity Value Year 
16 71 123 18 NATAMER NON-

HISPANIC 
0.98 2000 

16 71 123 18 NATAMER HISPANIC 0.43 2000 
16 71 123 18 WHITE NON-

HISPANIC 
0.23 2000 

16 71 123 18 WHITE HISPANIC 0.06 2000 
49 3 123 18 ASIAN NON-

HISPANIC 
0.51 2000 

49 3 123 18 ASIAN HISPANIC 0.79 2000 
49 3 123 18 BLACK NON-

HISPANIC 
0.51 2000 

49 3 123 18 BLACK HISPANIC 0.88 2000 
49 3 123 18 NATAMER NON-

HISPANIC 
0.02 2000 

49 3 123 18 NATAMER HISPANIC 0.57 2000 
49 3 123 18 WHITE NON-

HISPANIC 
0.77 2000 

49 3 123 18 WHITE HISPANIC 0.94 2000 
6 23 45 1 ASIAN NON-

HISPANIC 
0.00 2000 

6 23 45 1 ASIAN HISPANIC 0.00 2000 
6 23 45 1 BLACK NON-

HISPANIC 
0.00 2000 

6 23 45 1 BLACK HISPANIC 0.00 2000 
6 23 45 1 NATAMER NON-

HISPANIC 
1.00 2000 

6 23 45 1 NATAMER HISPANIC 1.00 2000 
6 23 45 1 WHITE NON-

HISPANIC 
1.00 2000 

6 23 45 1 WHITE HISPANIC 1.00 2000 
6 23 45 2 ASIAN NON-

HISPANIC 
1.00 2000 

6 23 45 2 ASIAN HISPANIC 1.00 2000 
6 23 45 2 BLACK NON-

HISPANIC 
1.00 2000 

6 23 45 2 BLACK HISPANIC 1.00 2000 
6 23 45 2 NATAMER NON-

HISPANIC 
1.00 2000 

6 23 45 2 NATAMER HISPANIC 1.00 2000 
6 23 45 2 WHITE NON-

HISPANIC 
1.00 2000 

6 23 45 2 WHITE HISPANIC 1.00 2000 
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J.2 Monitor Data in U.S. Setup 
BenMAP-ready data files were created from 2000 through 2007 data, as reported to the 
U.S. Environmental Protection Agency’s (EPA) Air Quality System (AQS), for PM2.5, PM10 
STP and LC, lead TSP, ozone, NO2, SO2, and CO. Table J-6 summarizes the data sources 
and vintage of the processed data. 

Table J-6. Underlying Data Sources for BenMAP Air Quality Data File 

Pollutant 

AQS 
Paramete

r Code Year Data Source 
Date 

Acquired 
Documente

d Vintage 

PM2.5 88101 
2000-
2006 

http://www.epa.gov/ttn/airs/airsaqs/
detailedata/downloadaqsdata.htm 

5/22/200
8 4/10/2008 

2007 Requested from AQS representative 6/4/2008 

Ozone 44201 
2000-
2006 

http://www.epa.gov/ttn/airs/airsaqs/
detaildata/downloadaqsdata.htm 

5/22/200
8 

4/14/2008-
4/15/2008 

2007 Requested from AQS representative 6/4/2008 

Lead TSP 12128 

2000 http://www.epa.gov/ttn/airs/airsaqs/
detaildata/downloadaqsdata.htm 

5/29/200
8 6/20/2007 

2001-
2006 

http://www.epa.gov/ttn/airs/airsaqs/
detaildata/downloadaqsdata.htm 

5/29/200
8 4/9/2008 

2007 http://www.epa.gov/ttn/airs/airsaqs/
detaildata/downloadaqsdata.htm 6/4/2008 

PM10 STP 81102 2000-
2006 

http://www.epa.gov/ttn/airs/airsaqs/
detaildata/downloadaqsdata.htm 

5/22/200
8 4/10/2008 

  2007 Requested from AQS representative 6/4/2008 

PM10 LC 85101 2000-
2007 

Requested from AQS representative 6/4/2008 

 

The AQS data were uploaded to the STI Air Quality Archive (AQA) Oracle database. The 
AQA database performs additional quality control (QC) checks against the AQS data, 
such as uniqueness by AQS site, method, parameter occurrence code (POC), and 
duration codes; checks of minimum and maximum values; and maximum rate of change 
between consecutive data values (where appropriate). The specific QC checks imposed 
on the BenMAP data are outlined in Table J-7. No maximum value filters were applied to 
the concentration data. High aerosol concentration values caused by dust storms or 
other exceptional events are included in the BenMAP-ready data files.  

Table J-7. Pollutant-Specific QC Checks Performed in AQA 

Pollutant 

AQS 
Parameter 

Code 

Acceptable 
Concentration 

Range 
Maximum Rate 

of Change 
PM2.5 88101 > = 0 µg/m3 – 
Ozone 44201 > = 0 ppb 60 ppb 
Lead 12128 > = 0 µg/m3 – 

http://www.epa.gov/ttn/airs/airsaqs/detaildata/downloadaqsdata.htm
http://www.epa.gov/ttn/airs/airsaqs/detaildata/downloadaqsdata.htm
http://www.epa.gov/ttn/airs/airsaqs/detaildata/downloadaqsdata.htm
http://www.epa.gov/ttn/airs/airsaqs/detaildata/downloadaqsdata.htm
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Pollutant 

AQS 
Parameter 

Code 

Acceptable 
Concentration 

Range 
Maximum Rate 

of Change 
PM10 81102 and 

85101 
> = 0 µg/m3 – 

CO 42101 > = 0 ppm – 
NO2 42602 > = 0 ppb 50 ppb 
SO2 42401 > = 0 ppb – 

 

J.2.1 Data Processing 

STI developed data processing procedures consistent with those used in the past by Abt 
Associates to create air quality data for files for use in the BenMAP model. Critical data 
processing rules implemented in the deliverable data are listed below:  

• Data delivered by STI are reported with consistent units: µg/m3 for aerosols; 
ppb for ozone, NO2, and SO2; and ppm for CO.  

• The “monitor name” field is populated by concatenating the AQS site, parameter, 
and POC codes.  

• The “monitor description” field is populated with the following metadata: 
method code, land use, location setting, POC, and AQS parameter code. The AQS 
probe location and monitoring objective code fields are left blank in STI-processed 
data.  

• The data were formatted with one record per site, pollutant, POC, and year for 
use in the BenMAP program. Data for 365 days, or 8,760 hourly values, are 
expected per record. This format is satisfied regardless of leap years; an average 
of February 28 and 29 data are reported.  

• The monitoring method is allowed to change over the course of a year. To 
provide a more complete record, data with multiple method codes for a given 
site, parameter, POC, and year were combined and the first reported method 
code was reported in the BenMAP-ready data files.  

• Aerosol data collected with 24-hr sample durations were used before data 
collected with underlying 1-hr sample durations.One-hour sampling duration 
data are used for ozone, NO2, SO2, and CO.  

J.2.2 Output Files 

Table J-8 lists the number of monitors by pollutant and year, represented in the 
resulting BenMAP-ready data files.  
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Table J-8. Number of Monitors by Pollutant, AQS Parameter Code, and Year Included  
in the BenMAP-Ready Data Files  

Pollutant 

AQS 
Parameter 

Code 

Number of Monitors by Year 
2000 2001 2002 2003 2004 2005 2006 2007 

PM2.5 88101 1,311 1,339 1,328 1,316 1,226 1,260 1,197 1,144 
PM10 STP 81102 1,415 1,388 1,320 1,240 1,211 1,199 1,164 1,111 
PM10 LC 85101 868 757 714 694 688 748 558 502 
Lead TSP 12128 209 232 253 250 231 247 204 175 
Ozone 44201 1,138 1,184 1,191 1,210 1,206 1,194 1,199 1,217 
NO2 42602 444 458 445 444 446 437 428 423 
CO 42101 523 518 498 482 452 429 413 389 
SO2 42401 613 605 580 561 557 534 518 520 
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Appendix K: Uncertainty & Pooling  
This Appendix discusses the treatment of uncertainty in BenMAP, both for incidence 
changes and associated dollar benefits. Some background is then given on pooling 
methodology. Finally, the mechanics of the various Pooling Methods available in 
BenMAP are discussed in detail, including Subjective Weight based pooling, Fixed 
Effects pooling, Random / Fixed Effects pooling, and independent and dependent Sum 
and Subtraction.  

K.1  Uncertainty  
Although there are several sources of uncertainty affecting estimates of incidence 
changes and associated benefits, the sources of uncertainty that are most readily 
quantifiable in benefit analyses are uncertainty surrounding the health impact 
functions and uncertainty surrounding unit dollar values. The total dollar benefit 
associated with a given endpoint group depends on how much the endpoint group will 
change in the control scenario (e.g., how many premature deaths will be avoided) and 
how much each unit of change is worth (e.g., how much a statistical death avoided is 
worth).  

Both the uncertainty about the incidence changes and uncertainty about unit dollar 
values can be characterized by distributions. Each “uncertainty distribution” 
characterizes our beliefs about what the true value of an unknown (e.g., the true change 
in incidence of a given health effect) is likely to be, based on the available information 
from relevant studies. Although such an “uncertainty distribution” is not formally a 
Bayesian posterior distribution, it is very similar in concept and function (see, for 
example, the discussion of the Bayesian approach in Kennedy 1990, pp. 168-172). 
Unlike a sampling distribution (which describes the possible values that an estimator of 
an unknown value might take on), this uncertainty distribution describes our beliefs 
about what values the unknown value itself might be.  

Such uncertainty distributions can be constructed for each underlying unknown (such 
as a particular pollutant coefficient for a particular location) or for a function of several 
underlying unknowns (such as the total dollar benefit of a regulation). In either case, an 
uncertainty distribution is a characterization of our beliefs about what the unknown (or 
the function of unknowns) is likely to be, based on all the available relevant 
information. Uncertainty statements based on such distributions are typically 
expressed as 90 percent credible intervals. This is the interval from the fifth percentile 
point of the uncertainty distribution to the ninety-fifth percentile point. The 90 percent 
credible interval is a “credible range” within which, according to the available 
information (embodied in the uncertainty distribution of possible values), we believe 
the true value to lie with 90 percent probability. The uncertainty surrounding both 
incidence estimates and dollar benefits estimates can be characterized quantitatively in 
BenMAP. Each is described separately below.  
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K.1.1 Characterization of Uncertainty Surrounding Incidence Changes  

To calculate point estimates of the changes in incidence of a given adverse health effect 
associated with a given set of air quality changes, BenMAP performs a series of 
calculations at each grid-cell. First, it accesses the health impact functions needed for 
the analysis, and then it accesses any data needed by the health impact functions. 
Typically, these include the grid-cell population, the change in population exposure at 
the grid-cell, and the appropriate baseline incidence rate. BenMAP then calculates the 
change in incidence of adverse health effects for each selected health impact function. 
The resulting incidence change is stored, and BenMAP proceeds to the next grid-cell, 
where the above process is repeated.  

In Latin Hypercube mode, BenMAP reflects the uncertainty surrounding estimated 
incidence changes (resulting from the sampling uncertainty surrounding the pollutant 
coefficients in the health impact functions used) by producing a distribution of possible 
incidence changes rather than a single point estimate. To do this, it uses the distribution 
(Dist Beta) associated with the pollutant coefficient (Beta, or β), and potentially the 
point estimate (Beta) and two parameters (P1Beta, P2Beta). Typically, pollutant 
coefficients are normally distributed, with mean Beta and standard deviation P1Beta.  

BenMAP uses an N-point Latin Hypercube to represent the underlying distribution of β 
and to create a corresponding distribution of incidence changes in each population grid 
cell, where N is specified by you. The Latin Hypercube method represents an underlying 
distribution by N percentile points of the distribution, where the nth percentile point is 
equal to: 

NN
n

2
100100)1( +×−  

The Latin Hypercube method is used to enhance computer processing efficiency. It is a 
sampling method that divides a probability distribution into intervals of equal probability, with 
an assumption value for each interval assigned according to the interval’s probability distribution. 
Compared with conventional Monte Carlo sampling, the Latin Hypercube approach is 
more precise over a fewer number of trials because the distribution is sampled in a 
more even, consistent manner (Decisioneering, 1996, pp. 104-105).  

Suppose, for example, that you elect to use a 20-point Latin Hypercube. BenMAP would then 
represent the distribution of β by 20 percentile points, specifically the 2.5th, 7.5th, ..., 97.5th. To do 
this, the inverse cumulative distribution function specified by the distribution of β is called with 
the input probability equal to each the 20 percentile points. BenMAP then generates an 
estimate of the incidence change in a grid-cell for each of these values of β, resulting in a 
distribution of N incidence changes. This distribution is stored, and BenMAP proceeds to the 
next population grid-cell, where the process is repeated.  
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K.1.2 Characterization of Uncertainty Surrounding Dollar Benefits 

The uncertainty distribution of the dollar benefits associated with a given health or 
welfare effect is derived from the two underlying uncertainty distributions - the 
distribution of the change in incidence of the effect (number of cases avoided) and the 
distribution of the value of a case avoided (the “unit value”). The derivation of the 
uncertainty distribution for incidence change is described above. The distributions used 
to characterize the uncertainty surrounding unit values are described in detail in the 
appendix on the Economic Value of Health Effects. As noted in that Appendix, a variety 
of distributions have been used to characterize the uncertainty of unit values, including 
uniform, triangular, normal, and Weibull.  

To represent the underlying distribution of uncertainty surrounding unit values, a 100-
point Latin Hypercube is generated in the same way described in the previous section for the 
distribution of β . That is, the unit value distribution is represented using the 0.5th, 1.5th, ..., and 
99.5th percentile values of its distribution.  

A distribution of the uncertainty surrounding the dollar benefits associated with a given 
endpoint is then derived from Latin Hypercube values generated to represent the change in 
incidence and the Latin Hypercube values generated to represent the unit value distribution. To 
derive this new distribution, each of the 100 unit values is multiplied by each of the N incidence 
change values, yielding a set of 100 * N dollar benefits. These values are sorted low to high and 
binned down to a final distribution of N dollar benefit values.  

K.1.3 Characterization of Uncertainty Surrounding QALY Estimates 

The uncertainty distribution of the QALY estimates associated with a given health effect 
is similar to that for dollar benefits. That is, it is derived from the two underlying 
uncertainty distributions - the distribution of the change in incidence of the effect 
(number of cases avoided) and the distribution of the QALYs per case avoided. The 
derivation of the uncertainty distribution for incidence change is described above. The 
distributions used to characterize the uncertainty surrounding QALYs are described in 
detail in the appendix on the Economic Value of Health Effects. As noted in that 
Appendix, a variety of distributions have been used to characterize the uncertainty of 
unit values, including uniform, triangular, normal, and Weibull.  

To represent the underlying distribution of uncertainty surrounding unit values, a 100-
point Latin Hypercube is generated in the same way that was described in the previous 
section for the distribution of . That is, the       
the 0.5th, 1.5th, ..., and 99.5th percentile values of its distribution.  

A distribution of the uncertainty surrounding the QALYs associated with a given 
endpoint is then derived from Latin Hypercube values generated to represent the 
change in incidence and the Latin Hypercube values generated to represent the QALY 
distribution. To derive this new distribution, each of the 100 QALY weights is multiplied 
by each of the N incidence change values. These values are sorted low to high and 
binned down to a final distribution of QALY values. 



 Appendix K: Uncertainty & Pooling 

BenMAP-CE User’s Manual Appendices March 2015 
203 

K.2 Pooling 
There is often more than one study that has estimated a health impact function for a 
given pollutant-health endpoint combination. Each study provides an estimate of the 
pollutant coefficient, β, along with a measure of the uncertainty of the estimate. Because 
uncertainty decreases as sample size increases, combining data sets is expected to yield more 
reliable estimates of β, and therefore more reliable estimates of the incidence change predicted 
using β. Combining data from several comparable studies in order to analyze them together is 
often referred to as meta-analysis.  

For a number of reasons, including data confidentiality, it is often impractical or 
impossible to combine the original data sets. Combining the results of studies in order to 
produce better estimates of β provides a second-best but still valuable way to synthesize 
information . This is referred to as pooling. Pooling β‘s requires that all of the studies contributing 
estimates of β use the same functional form for the health impact function. That is, the β‘s must be 
measuring the same thing.  

It is also possible to pool the study-specific estimates of incidence change derived from 
the health impact functions, instead of pooling the underlying β‘s themselves. For a variety 
of reasons, this is often possible when it is not feasible to pool the underlying β‘s. For example, if 
one study is log-linear and another is linear, we could not pool the β‘s because they are not 
different estimates of a coefficient in the same health impact function, but are instead estimates of 
coefficients in different health impact functions. We can, however, calculate the incidence 
change predicted by each health impact function (for a given change in pollutant concentration 
and, for the log-linear function, a given baseline incidence rate), and pool these incidence 
changes. BenMAP allows the pooling of incidence changes predicted by several studies for 
the same pollutant-health endpoint group combination. It also allows the pooling of the 
corresponding study-specific estimates of monetary benefits.  

As with estimates based on only a single study, BenMAP allows you to characterize the 
uncertainty surrounding pooled estimates of incidence change and/or monetary benefit. To do 
this, BenMAP pools the study-specific distributions of incidence changes (or monetary 
benefit or QALYs) to derive a pooled distribution. This pooled distribution incorporates 
information from all the studies used in the pooling procedure.  

K.2.1 Weights Used for Pooling 

The relative contribution of any one study in the pooling process depends on the weight 
assigned to that study. A key component of the pooling process, then, is the 
determination of the weight given to each study. There are various methods that can be 
used to assign weights to studies. Below we discuss the possible weighting schemes 
that are available in BenMAP. 

K.2.1.1 Subjective Weights 

BenMAP allows you the option of specifying the weights to be used. Suppose, for 
example, you want to simply average all study-specific results. You would then assign a 
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weight of 1/N to each of the N study-specific distributions that are to be pooled. Note 
that subjective weights are limited to two decimal places, and are normalized to sum to 
one, if they do not already sum to one. 

K.2.1.2 Automatically Generated Weights 

A simple average has the advantage of simplicity but the disadvantage of not taking into 
account the uncertainty of each of the estimates. Estimates with great uncertainty 
surrounding them are given the same weight as estimates with very little uncertainty. A 
common method for weighting estimates involves using their variances. Variance takes into 
account both the consistency of data and the sample size used to obtain the estimate, two 
key factors that influence the reliability of results. BenMAP has two methods of 
automatically generating pooling weights using the variances of the input distributions - 
Fixed Effects Pooling and Random / Fixed Effects Pooling.  

The discussion of these two weighting schemes is first presented in terms of pooling the 
pollutant coefficients (the β‘s), because that most closely matches the discussion of the 
method for pooling study results as it was originally presented by DerSimonian and 
Laird. We then give an overview of the analogous weighting process used within 
BenMAP to generate weights for incidence changes rather than β‘s.  

K.2.1.3 Fixed-Effect Weights 

The fixed effects model assumes that there is a single true concentration-response relationship 
and therefore a single true value for the parameter β that applies everywhere. Differences 
among β‘s reported by different studies are therefore simply the result of sampling 
error. That is, each reported β is an estimate of the same underlying parameter. The 
certainty of an estimate is reflected in its variance (the larger the variance, the less certain 
the estimate). Fixed effects pooling therefore weights each estimate under consideration in 
proportion to the inverse of its variance.  

Suppose there are n studies, with the ith study providing an estimate βi with variance vi (I = 
1, ..., n). Let  

∑= ,1

iv
S  

denote the sum of the inverse variances. Then the weight, wi , given to the ith estimate, 
βi , is:  

.
1

S
v

w i
i =  

This means that estimates with small variances (i.e., estimates with relatively little 
uncertainty surrounding them) receive large weights, and those with large variances 
receive small weights. The estimate produced by pooling based on a fixed effects model, then, 
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is just a weighted average of the estimates from the studies being considered, with the weights 
as defined above.  

That is: 

iife w ββ ×= ∑  

The variance associated with this pooled estimate is the inverse of the sum of the 
inverse variances:  

∑
=

i
fe v

v
1
1  

Table K-1 shows the relevant calculations for this pooling for three sample studies.  

Table K-1. Example of Fixed Effects Model Calculations 

Study Βi Vi 1/vi Wi Wi*βi 
1 0.75 0.1225 8.16 0.016 0.012 
2 1.25 0.0025 400 0.787 0.984 
3 1.00 0.0100 100 0.197 0.197 

Sum   ?=508.16 ?=1.000 ?=1.193 
 

The sum of weighted contributions in the last column is the pooled estimate of β based 
on the fixed effects model. This estimate (1.193) is considerably closer to the estimate 
from study 2 (1.25) than is the estimate (1.0) that simply averages the study estimates. 
This reflects the fact that the estimate from study 2 has a much smaller variance than 
the estimates from the other two studies and is therefore more heavily weighted in the 
pooling.  

The variance of the pooled estimate, vfe, is the inverse of the sum of the variances, or 
0.00197. (The sums of the βi and vi are not shown, since they are of no importance. The 
sum of the 1/vi is S, used to calculate the weights. The sum of the weights, wi, i=1, ..., n, 
is 1.0, as expected.)  

K.2.1.4  Random- / Fixed-Effect Weights  

An alternative to the fixed effects model is the random effects model, which allows the 
possibility that the estimates βi from the different studies may in fact be estimates of 
different parameters, rather than just different estimates of a single underlying 
parameter. In studies of the effects of PM10 on mortality, for example, if the composition 
of PM10 varies among study locations the underlying relationship between mortality 
and PM10 may be different from one study location to another. For example, fine 
particles make up a greater fraction of PM10 in Philadelphia than in El Paso. If fine 
particles are disproportionately responsible for mortality relative to coarse particles, 
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then one would expect the true value of β in Philadelphia to be greater than the true 
value of β in El Paso. This would violate the assumption of the fixed effects model.  

The following procedure can test whether it is appropriate to base the pooling on the 
random effects model (vs. the fixed effects model):  

A test statistic, Qw, the weighted sum of squared differences of the separate study 
estimates from the pooled estimate based on the fixed effects model, is calculated as:  

( )∑ −=
i

ife
i

w v
Q 21 ββ  

Under the null hypothesis that there is a single underlying parameter, β, of which all the 
βi’s are estimates, Qw has a chi-squared distribution with n-1 degrees of freedom. 
(Recall that n is the number of studies in the meta-analysis.) If Qw is greater than the 
critical value corresponding to the desired confidence level, the null hypothesis is 
rejected. That is, in this case the evidence does not support the fixed effects model, and 
the random effects model is assumed, allowing the possibility that each study is 
estimating a different β. (BenMAP uses a five percent one-tailed test).  

The weights used in a pooling based on the random effects model must take into 
account not only the within-study variances (used in a meta-analysis based on the fixed 
effects model) but the between-study variance as well. These weights are calculated as 
follows:  

Using Qw , the between-study variance, η2, is:  
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It can be shown that the denominator is always positive. Therefore, if the numerator is 
negative (i.e., if Qw < n-1), then η2 is a negative number, and it is not possible to 
calculate a random effects estimate. In this case, however, the small value of Qw would 
presumably have led to accepting the null hypothesis described above, and the meta-
analysis would be based on the fixed effects model. The remaining discussion therefore 
assumes that η2 is positive.  

Given a value for η2 , the random effects estimate is calculated in almost the same way 
as the fixed effects estimate. However, the weights now incorporate both the within-
study variance (vi) and the between-study variance ( η2). Whereas the weights implied 
by the fixed effects model used only vi, the within-study variance, the weights implied 
by the random effects model use vi + η2.  

Let vi* = vi + η2. Then: 
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The estimate produced by pooling based on the random effects model, then, is just a 
weighted average of the estimates from the studies being considered, with the weights 
as defined above. That is:  

∑ ×= iirand w ββ *  

The variance associated with this random effects pooled estimate is, as it was for the 
fixed effects pooled estimate, the inverse of the sum of the inverse variances:  
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The weighting scheme used in a pooling based on the random effects model is basically 
the same as that used if a fixed effects model is assumed, but the variances used in the 
calculations are different. This is because a fixed effects model assumes that the 
variability among the estimates from different studies is due only to sampling error (i.e., 
each study is thought of as representing just another sample from the same underlying 
population), while the random effects model assumes that there is not only sampling 
error associated with each study, but that there is also between-study variability -- each 
study is estimating a different underlying β. Therefore, the sum of the within- study 
variance and the between-study variance yields an overall variance estimate.  

Fixed Effects and Random / Fixed Effects Weighting to Pool Incidence Change 
Distributions and Dollar Benefit Distributions  

Weights can be derived for pooling incidence changes predicted by different studies, 
using either the fixed effects or the fixed / random effects model, in a way that is 
analogous to the derivation of weights for pooling the β‘s in the C-R functions. As 
described above, BenMAP generates a Latin Hypercube representation of the 
distribution of incidence change corresponding to each health impact function selected. 
The means of those study-specific Latin Hypercube distributions of incidence change 
are used in exactly the same way as the reported β‘s are used in the calculation of fixed 
effects and random effects weights described above. The variances of incidence change 
are used in the same way as the variances of the β‘s. The formulas above for calculating 
fixed effects weights, for testing the fixed effects hypothesis, and for calculating random 
effects weights can all be used by substituting the mean incidence change for the ith 
health impact function for βi and the variance of incidence change for the ith health 
impact function for vi.  
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Similarly, weights can be derived for dollar benefit distributions. As described above, 
BenMAP generates a Latin Hypercube representation of the distribution of dollar 
benefits. The means of those Latin Hypercube distributions are used in exactly the same 
way as the reported β‘s are used in the calculation of fixed effects and random effects 
weights described above. The variances of dollar benefits are used in the same way as 
the variances of the β‘s. The formulas above for calculating fixed effects weights, for 
testing the fixed effects hypothesis, and for calculating random effects weights can all be 
used by substituting the mean dollar benefit change for the ith valuation for βi and the 
variance of dollar benefits for the ith valuation for vi.  

BenMAP always derives Fixed Effects and Random / Fixed Effects weights using 
nationally aggregated results, and uses those weights for pooling at each grid cell (or 
county, etc. if you choose to aggregate results prior to pooling). This is done because 
BenMAP does not include any regionally based uncertainty - that is, all uncertainty is at 
the national level in BenMAP, and all regional differences (population, for example) are 
treated as certain. 

K.2.2 Mechanics of Pooling in BenMAP  

Once weights are generated for each input distribution, BenMAP has three options for 
using these weights to combine the input distributions into a single new distribution. 
These options are referred to as Advanced Pooling Methods.  

Round Weights to Two Digits  

This is BenMAP’s default Advanced Pooling Method, and is always the method used when 
Subjective Weights are used. The first step is converting the weights to two digit 
integers by multiplying them by 100 and rounding to the nearest integer. If all the integral 
weights thus generated are divisible by the smallest weight, they are each divided by that 
smallest weight. For example, if the original weights were 0.1, 0.2, 0.3, and 0.4, the resulting 
integral weights would be 10/10, 20/10, 30/10, and 40/10 (or 1, 2, 3, and 4).  

BenMAP then creates a new distribution by sampling each entire input distribution 
according to its weight. That is, in the above example the first distribution would be 
sampled once, the second distribution twice, and so forth. The advantage of sampling 
whole distributions is that it preserves the characteristics (i.e., the moments - the mean, 
the variance, etc.) of the underlying distributions. Assuming n latin hypercube points, 
the resulting distribution will contain a maximum of 100 * n values, which are then 
sorted low to high and binned down to n values, which will represent the new, pooled 
distribution.  

Round Weights to Three Digits  

This Advanced Pooling Method is essentially the same as rounding weights to two 
digits, except that the weights are converted to three digit integers, and so forth. That is, 
the weights are multiplied by 1000 and rounded to the nearest integer. Again, if all the 
integral weights thus generated are divisible by the smallest weight, they are each 
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divided by that smallest weight. Assuming n Latin Hypercube points, the resulting 
distribution with this Advanced Pooling Method can contain a maximum of 1000 * n 
values, which are sorted low to high and binned down to n values, which represent the 
new, pooled distribution.  

Exact Weights for Monte Carlo  

This Advanced Pooling Method uses a Monte Carlo method to combine the input 
distributions. Using this method, on each of many iterations, (1) an input distribution is 
selected (with the probability of selection equal to the weight assigned to the 
distribution), and (2) a value is randomly drawn from that distribution. Values chosen 
in this way are placed into a temporary pooled distribution, which will have one point 
per iteration of the Monte Carlo method. The number of iterations is specified by the 
user, and defaults to 5,000. After the temporary distribution is fully generated, it is 
sorted low to high and binned down to n values (where n is the number of Latin 
Hypercube Points chosen for the analysis).  

K.2.3  Summing Distributions  

Sometimes rather than pooling distributions we want to add them. For example, some 
studies have estimated a health impact function for hospital admissions for COPD and 
another health impact function for hospital admissions for pneumonia. From each of 
these health impact functions, BenMAP can derive the corresponding distributions for 
incidence change. Hospital admissions for COPD and pneumonia are two of the most 
important components of respiratory hospital admissions, and we may want to 
estimate the number of cases of “respiratory hospital admissions,” as characterized by 
being either COPD or pneumonia. To do this we would add the two distributions.  

Summing across distributions can be done in one of two ways: We can assume the two 
distributions are independent of each other or dependent. Which is the more 
reasonable assumption depends on the particulars of the distributions being summed.  

Assuming Independence  

This is the Sum (Independent) Pooling Method. To sum two distributions that are 
independent, on each of many iterations of a Monte Carlo procedure, BenMAP (1) 
randomly selects a value from the first input distribution, (2) randomly selects a value 
from the second input distribution, and (3) adds the two values together. To sum N 
distributions that are independent, BenMAP follows an analogous procedure in which, 
on each iteration it makes a random selection from each of the input distributions and 
then adds the results together. When the Monte Carlo procedure is completed, all such 
generated results are sorted low to high and binned down to the appropriate number of 
latin hypercube points. The number of iterations is determined by the Monte Carlo 
Iterations setting.  



 Appendix K: Uncertainty & Pooling 

BenMAP-CE User’s Manual Appendices March 2015 
210 

Assuming Dependence  

This is the Sum (Dependent) Pooling Method. Recall that the uncertainty distributions 
in BenMAP are latin hypercube representations, consisting of N percentile points. To 
sum two distributions assumed to be dependent, BenMAP simply generates a new N 
point latin hypercube where each point is the sum of the corresponding points from the 
input latin hypercubes. That is, the first point in the new latin hypercube is the sum of 
the first points in the two input latin hypercubes, and so forth. To sum n distributions 
that are assumed to be dependent, BenMAP follows an analogous procedure in which 
each point in the new latin hypercube is the sum of the corresponding points from each 
of the input latin hypercubes.  

K.2.4  Subtracting Distributions  

In some cases, you may want to subtract one or more distribution(s) from another. For 
example, one study may have estimated a health impact function for minor restricted 
activity days (MRADs), and another study may have estimated a health impact function 
for asthma “episodes.” You may want to subtract the change in incidence of asthma 
episodes from the change in incidence from MRADs before estimating the monetary 
value of the MRADs, so that the monetary value of asthma episodes avoided will not be 
included.  

Subtracting across distributions can be done in one of two ways: we can assume the 
two distributions are independent of each other or dependent. Which is the more 
reasonable assumption depends on the particulars of the distributions being 
subtracted.  

Assuming Independence  

This is the Subtraction (Independent) Pooling Method. To subtract one distribution 
from another, assuming independence, on each of many iterations of a Monte Carlo 
procedure, BenMAP (1) randomly selects a value from the first input distribution, (2) 
randomly selects a value from the second input distribution, and (3) subtracts the 
second value from the first. To subtract N distributions from another distribution, 
assuming independence, BenMAP follows an analogous procedure in which, on each 
iteration it makes a random selection from each of the input distributions and then 
subtracts the second through the Nth from the first. When the Monte Carlo procedure is 
completed, all such generated results are sorted low to high and binned down to the 
appropriate number of Latin Hypercube points. The number of iterations is determined 
by the Monte Carlo Iterations setting.  

Assuming Dependence  

This is the Subtraction (Dependent) Pooling Method (see Chapter 6 for details). Recall 
that the uncertainty distributions in BenMAP are Latin Hypercube representations, 
consisting of N percentile points. To subtract one distribution from another, assuming 
them to be dependent, BenMAP simply generates a new N point Latin Hypercube where 
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each point is the result of subtracting the corresponding point of the second input Latin 
Hypercube from the corresponding point of the first input Latin Hypercube. That is, the 
first point in the new Latin Hypercube is the result of subtracting the first point in the 
second Latin Hypercube from the first point of the first Latin Hypercube, and so forth. 
To subtract n distributions from another distribution, assuming dependence, BenMAP 
follows an analogous procedure in which each point in the new Latin Hypercube is the 
result of subtracting the corresponding points of the second through the Nth input Latin 
Hypercubes from the corresponding point of the first. 
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Appendix L: Command Line BenMAP  
The command line version of BenMAP is capable of performing all of the functions of 
the GUI-based version. It is most useful for large, complex analyses that require 
generation of a substantial number of files. This appendix describes the syntax and use 
of the command line version.  

L.1  Overview  
The overall format of the file is a variable definitions section followed by a commands 
section. Comment statements are supported at any point in the file. Lines beginning 
with a pound character (#) are considered comment lines and will be ignored during 
file parsing.  

Additionally, LOAD <filename> statements are supported at any point in the file. These 
work as string replacements - the contents of the file specified by <filename> are simply 
inserted into the main file. Multi-level LOAD statements are supported, but no attempt 
is made to detect cycles (two files referencing each other with LOAD statements, for 
example).  

The control file is, in general, not case sensitive. In the case of user-defined strings, 
(variable values, etc.), it is preserved.  

L.2 Variables  
The variable definitions section is optional, and if present will consist of a single line 
with the word “Variables” on it, followed by one or more lines that define variables. A 
variable definition consists of a variable name and a variable value. When parsing lines 
in the commands section of the control file, all occurrences of the variable name will be 
replaced by the variable value.  

All variable names must begin and end with the percent character (%).  

Variable Name/Value replacement will be done in multiple passes (until no variable 
names remain), so variable values may contain other variable names. No attempt will 
be made to detect cycles, however, so be careful not to introduce them. For example, 
avoid variable definitions like the following:  

%BENMAPDIR%   %AQGDIR%\  

%AQGDIR%    %BENMAPDIR%\Air Quality Grids  

Variable values must be contained in a single line, and will consist of the first non-
whitespace character after the variable name through the newline character. Watch out 
for undesired trailing whitespaces! 
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L.3 Commands  
The commands section is required, and will consist of one or more command sections. 
There are five types of command sections:  

SETACTIVESETUP  

CREATE AQG  

RUN CFG RUN APV  

GENERATE REPORT  

This section will discuss each one in turn.  

In general, in command sections, there must be at least one white space between each 
token (where a token is either a command, a parameter name, or a parameter value). 
Additional white space is ignored, including newline characters. To include white space 
in a parameter value, you must enclose the parameter in double quotes. The double 
quotes will not be included in the parameter value in this case (If you wish to include 
beginning and trailing double quotes in a parameter value, put two in a row at the 
beginning and end - e.g. ““Look at all those double quotes.”“). 

L.3.1 Set Active Setup  

For the US version of the BenMAP command line executable the only valid value is 
United States. The SETACTIVESETUP section is required.  

Example  

-ActiveSetup “United States”  

L.3.2 Create AQG 

This section initiates the creation of one or more air quality grids (normally one, 
potentially two in the case of monitor rollback grid creation - see below). It always 
starts with the words CREATE AQG. It must then include the following options, in any 
order: 

-Filename <filename>  

-Gridtype <gridtype>  

-Pollutant <pollutant>  

The Filename value is the name of the air quality grid that will be created.  

The GridType value must be one found in the BenMAP database. The actual values for 
this parameter are found on the Modify Setup screen in the Grid Definitions list box.  
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Supported Pollutant values are:  

-Ozone  

-PM10  

-PM2.5  

These values are also found on the Modify Setup screen in the Pollutants list box.  

After these required options, the type of grid creation must be identified, and then the 
parameters for that grid creation type must be specified. There are four air quality grid 
creation types:  

-ModelDirect  

-MonitorDirect  

-MonitorModelRelative  

-MonitorRollback 

 

L.3.2.1  Model Direct  

This section initiates the creation of a model direct air quality grid.  

This creation type has two required parameters:  

-ModelFilename <filename>  

-DSNName   <ODBC DSN name>  

and one optional parameter:  

-TableName   <tablename>  

Supported DSNName values are:  

“Excel Files”    Excel Spreadsheet (.xls)  

“Text Files”    Comma-delimited (.csv) files  

“MS Access Database”  Access Database (.mdb)  

If the DSNName is “Excel Files” and there is more than one worksheet in the workbook 
or “MS Access Database” and there is more than one table in the database then the 
TableName parameter must indicate the worksheet or table name. 
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L.3.2.2  Monitor Direct  

This section initiates the creation of a monitor direct air quality grid.  

The required parameters are:  

-MonitorDataType <DataSource descriptor>  

-InterpolationMethod <Interpolation Method>  

Valid values for MonitorDataType are:  

-Library  

-DatabaseRows  

-DatabaseColumns  

-TextFile  

Valid values for Interpolation method are:  

-ClosestMonitor  

-V N A  

If MonitorDataType is Library then the following parameters are required:  

-MonitorDataSet <Monitor Dataset Name>  

MonitorDataSet is the Dataset name of Monitor data stored in the BenMAP 
database. These values can be found on the Modify Setup screen in Monitor 
Datasets list box.  

-MonitorYear <Year>  

MonitorYear specifies the year of interest in the monitor library.  

If MonitorDataType is DatabaseRows then the following parameters are 
required:  

-MonitorFile  <filename>  

-DSNName  <ODBC DSN name>  

and one optional parameter:  

-TableName  <tablename>  
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Supported DSNName values are:  

-”Excel Files”    Excel Spreadsheet (.xls)  

-”Text Files”    Comma-delimited (.csv) files  

-”MS Access Database”  Access Database (.mdb) 

If the DSNName is “Excel Files” and there is more than one worksheet in the workbook 
or “MS Access Database” and there is more than one table in the database then the 
TableName parameter must indicate the worksheet or table name.  

If MonitorDataType is DatabaseColumns then the same parameters for 
MonitorDataType DatabaseRows are required along with the following:  

-MonitorDefFilename  

-DefDSNName  

-DefTableName  

These parameters behave the same as the corresponding DatabaseRows parameters.  

If MonitorDataType is TextFile the following parameter is required:  

-MonitorFile <filename>  

MonitorFile specifies a comma separated values (*.csv, generally) file 
containing monitor data.  

Optional Parameters:  

-MaxDistance <real>  

Specifies the maximum distance (in kilometers) to be used in 
ClosestMonitor interpolation or VNA interpolation. Monitors outside this 
distance will not be considered in the interpolation procedure.  

-MaxRelativeDistance <real>  

Specifies the maximum relative distance to be used in VNA interpolation, 
where relative distance is the multiple of the distance to the closest monitor 
used in the interpolation procedure.  

-WeightingMethod <method>  
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Specifies the weighting procedure used for monitors in VNA interpolation. 
Supported values are InverseDistance and InverseDistanceSquared. If this 
parameter is not specified, InverseDistance weighting is used.  

L.3.2.3  Monitor Model Relative  

This section initiates the creation of a monitor model relative air quality grid. This 
creation type has all the same required and optional parameters as the MonitorDirect 
creation type. In addition, it has two/three new required parameters.  

Required Parameters:  

-ScalingMethod <scaling method>  

Supported scaling methods are Spatial, Temporal, and Both.  

-BaseYearFilename <filename>  

Specifies the base year adjustment file to use in monitor scaling.  

-BaseYearDSNName <ODBC DSN Name>  

Supported -BaseYearDSNName values are  

“Excel Files”    Excel Spreadsheet (.xls)  

“Text Files”    Comma-delimited (.csv) files  

“MS Access Database”  Access Database (.mdb) 

When the ScalingMethod is Temporal or Both, the FutureYearFileName and 
FutureYearDSNName parameters are required. These specify the future year 
adjustment file to use in monitor scaling. 

L.3.2.4  Monitor Rollback  

// MonitorRollback  

SpatialScaling  = ‘-SpatialScaling’;  

BaselineFilename  = ‘-BaselineFilename’;  

 

// RollbackOptions  

Percentage  = ‘-Percentage’;  

Increment  = ‘-Increment’;  
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// RollbackToStandardOptions  

Standard  = ‘-Standard’;  

Metric  = ‘-Metric’; Ordinality  = ‘-Ordinality’;  

InterdayRollbackMethod = ‘-InterdayRollbackMethod’;  

IntradayRollbackMethod = ‘-IntradayRollbackMethod’; 

L.3.3  Run CFG  

The command line version of BenMAP does not support creation of new .cfg files, both 
because this would be quite cumbersome to do in plain text, and because it probably is 
not needed. Slight modifications of existing .cfg files are supported, and it is thought 
that at this point this should be enough.  

As such, the only required parameter to run a configuration is the configuration 
filename. Optional parameters allow the slight modifications mentioned above.  

Required Parameters  

-CFGFilename <filename>  

Specifies the .cfg file to run.  

-ResultsFilename <filename>  

Specifies the .cfgr file to save the results in.  

Optional Parameters  

-BaselineAQG <filename>  

Specifies the baseline air quality grid file to use when running the 
configuration - overrides whatever value is present in the .cfg file.  

-ControlAQG <filename>  

Specifies the control air quality grid file to use when running the 
configuration - overrides whatever value is present in the .cfg file.  

-Year <Integer>  

Year in which to run the configuration (this will affect the population 
numbers used) - overrides whatever value is present in the .cfg file. 
Supported values are 1990 and up.  
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-LatinHypercubePoints <integer>  

Number of latin hypercube points to generate when running the 
configuration (zero means run in point mode), overrides whatever value is 
present in the .cfg file.  

-Threshold <real>  

Threshold to use when running the configuration - overrides whatever value is 
present in the .cfg file. 

L.3.4  Run APV  

The command line version of BenMAP does not support creation of new .apv files, both 
because this would be quite cumbersome to do in plain text, and because it probably is 
not needed. Slight modifications of existing .apv files are supported, and it is thought 
that at this point this should be enough.  

As such, the only required parameter to run an APV configuration is the APV 
configuration filename. Optional parameters allow the slight modifications mentioned 
above. 

Required Parameters  

-APVFilename <filename>  

Specifies the .apv file to run.  

-ResultsFilename <filename>  

Specifies the .apvr file to save the results in.  

Optional Parameters  

-CFGRFilename <filename>  

Specifies the .cfgr file to use when running the APV configuration - note that this 
file must contain the same set of results which the .cfgr file originally used to 
generate the .apv file contained. Overrides whatever value is present in the .apv 
file.  

-IncidenceAggregation <aggregation level>  

Level to aggregate incidence results to before pooling them. Supported values 
are None, County, State, and Nation. Overrides whatever value is present in the 
.apv file.  

-ValuationAggregation <aggregation level>  



 Appendix L: Command Line BenMAP 

BenMAP-CE User’s Manual Appendices March 2015 
220 

Level to aggregate valuation results to before pooling them. Supported values 
are None, County, State, and Nation (though the value must be greater than or 
equal to IncidenceAggregation). Overrides whatever value is present in the .apv 
file.  

-RandomSeed <integer>  

Random seed to use for all procedures requiring pseudo-random numbers (e.g. 
monte carlo procedures). Overrides the default behavior, which is to generate a 
new random seed each time the APV configuration is run.  

-DollarYear <integer> 

L.3.5 Generate Report  

Reports come in three main varieties - Audit Trail Reports, which can be generated 
from any BenMAP file; Configuration Results Reports, which can be generated from 
.cfgr files; and APV Configuration Results Reports, which can be generated from .apvr 
files. All these report types need an input filename and an output filename. CFGR 
reports and APVR reports additionally take many optional parameters.  

The format for each report type is:  

GENERATE REPORT <ReportType> 

-InputFile <filename>  

-ReportFile <filename>  

<optional parameters> 

Supported ReportType values are: AuditTrail, CFGR, and APVR. 

L.3.5.1  Audit Trail  

Audit trail reports require only the parameters described in the “Generate Report” 
section.  

L.3.5.2  CFGR Report  

A CFGR report may be generating using only the parameters described in the “Generate 
Report” section. However, there are also a number of additional options, described 
below.  

Optional Parameters  

-GridFields <comma separated field names>  
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Specifies the set of grid fields to include in the report. Grid fields include Column 
and Row. If this parameter is not present, all fields will be included in the report.  

-CustomFields <comma separated field names>  

Specifies the set of custom fields (C-R Function identifiers, in this case) to 
include in the report. If this parameter is not present, all fields will be included in 
the report.  

-ResultFields <comma separated field names>  

Specifies the set of result fields to include in the report. Result fields include 
Point Estimate, Population, Delta, Mean, Standard Deviation, Variance, and Latin 
Hypercube Points. If this parameter is not present, all fields will be included in 
the report.  

-Grouping <grouping method>  

Specifies the grouping for the results - Gridcell, then C-R Function, or C-R 
Function, then Gridcell. Supported values are GridcellFirst, GridcellLast. The 
default value is GridcellFirst.  

-DecimalDigits <integer>  

Specifies the number of digits after the decimal point to include in the report. 
Supported values are zero to eight. The default value is four.  

L.3.5.3  APVR Report  

Required Parameters  

APVR Reports require one additional parameter beyond those required for Audit Trail 
or CFGR Reports. 

-ResultType <result type>  

Specifies the result type for which a report should be created. Supported result 
types are: IncidenceResults, AggregatedIncidence, PooledIncidence,Valuation, 
AggregatedValuation, PooledValuation, QALYValuation, 
AggregatedQALYValuation and PooledQALYValuation.  

Optional Parameters  

All of the CFGR report parameters are supported for APVR reports as well, except that 
Population and Delta are not supported ResultField elements.  

-Totals <total type>  
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Specifies the type of totals which should be included in the report. Supported 
types are Dependent and Independent. Totals can only be generated for 
valuation results (Valuation, AggregatedValuation, and PooledValuation result 
types). 

L.4 Example 1 
VARIABLES  

%CFG% C:\BenMAP\CommandLine\Configurations\PM25 Wizard.cfg 
%APV% C:\BenMAP\CommandLine\Configuations\PM25 Wizard.apv 
%RESULTSDIR% C:\BenMAP\Temp 
%REPORTDIR% C:\BenMAP\Temp 
%AQG% C:\BenMAP\CommandLine\Air Quality Grids 
 
COMMANDS 
 
SETACTIVESETUP 
 
-ActiveSetup “United States” 
 
CREATE AQG 
 

-Filename %AQG%\PM25_2002Baseline_50km.aqg 
-GridType “CMAQ 12km” 
-Pollutant PM2.5 
 
MonitorDirect 
 
-InterpolationMethod VNA_Alt 
-MonitorDataType Library 
-MonitorDataSet “EPA Standard Monitors” 
-MonitorYear 2002 
-MaxDistance 50 
 

CREATE AQG 
 

-Filename %AQG%\PM25_2002Control_50km.aqg 
-GridType “CMAQ 12km” 
-Pollutant PM2.5 
 
MonitorRollback 
 
-InterpolationMethod VNA_Alt 
-MonitorDataType Library 
-MonitorDataSet “EPA Standard Monitors” 
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-MonitorYear 2002 
-RollbackGridType State 
-MaxDistance 50 
 
RollbackToStandardOptions 
 
-Stanard 65 
-Metric D24HourMean 
-InterdayRollbackMethodQuadratic 
 

RUN CFG 
 
-CFGFilename %CFG% 
-ResultsFilename %RESULTSDIR%\PM25_2002_50km.aqg 
-BaselineAQG %AQG%\PM25_2002Baseline_50km.aqg 
-ControlAQG %AQG%\PM25_2002Control_50km.aqg 
 

RUN APV 
 
-APVFilename %APV% 
-ResultsFilename %RESULTSDIR%\PM25_2002_50km.apvr 
-CFGRFilename %RESULTSDIR%\PM25_2002_50km.cfgr 
-IncidenceAggregation Nation 
-ValuationAggregation Nation 
 

GENERATE REPORT APVR 
 
-InputFile %RESULTSDIR%\PM25_2002_50km.apvr 
-ReportFile %REPORTDIR%\PM25_2002_50km_IncidenceNation.csv 
-ResultType PooledIncidence 
-CustomFields “Endpoint Group,Author,Start 
Age,Endpoint,Qualifier,Pooling Window” 
-ResultFields “Mean,Standard Deviation,Latin Hypercube Points” 
-DecimalDigits 0 
 

GENERATE REPORT APVR 
 
-InputFile %RESULTSDIR%\PM25_2002_50km.apvr 
-ReportFile %REPORTDIR%\PM25_2002_50km_ValuationNation.csv 
-ResultType PooledValuation 
-CustomFields “Endpoint Group, Author,Start Age, Endpoint, Qualifier,  
 Pooling Window” 
-ResultFields “Mean,Standard Deviation,Latin Hypercube Points” 
-DecimalDigits 0 
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L.5 Example 2 
 

VARIABLES 
 
%CFG% C:\BenMAP\CommandLine\Configurations\PM25 
Wizard.cfg 
%APV% C:\BenMAP\CommandLine\Configurations\PM25 
Wizard.apv 
%RESULTSDIR% C:\BenMAP\Temp 
%REPORTDIR% C:\BenMAP\Temp 
%AQG% C:\BenMAP\CommandLine\Air Quality Grids 
 

COMMANDS 
 

SETACTIVESETUP 
 
-ActiveSetup “United States”  
 

CREATE AQG 
 
-Filename %AQG%\PM25_2004Baseline.aqg 
-GridType “County” 
-Pollutant PM2.5 
 
MonitorDirect 
 
-InterpolationMethod VNA_Alt 
-MonitorData Type Library 
-MonitorDataSet “EPA Standard Monitors” 
-MonitorYear 2004 
 

CREATE AQG 
 
-Filename %AQG%\PM25_2004_Control.aqg 
-GridType “County” 
-Pollutant PM2.5 
 
MonitorRollback 
 
-InterpolationMethod VNA_Alt 
-MonitorDataType Library 
-MonitorDataSet “EPA Standard Monitors” 
-MonitorYear 2004 
-RollbackGridType State 
-MaxDistance 50 
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RollbackToStandardOptions 
 
-Standard 35 
-Metric D24HourMean 
-InterdayRollbackMethodQuadratic 
 

RUN CFG 
-CFGFilename %CFG% 
-ResultsFilename %RESULTSDIR%\PM25_2004.cfgr 
-BaselineAQG %AQG%\PM25_2004Baseline.aqg 
-ControlAQG %AQG%\PM25_2004Control.aqg 
 

RUN APV 
-APVFilename %APV% 
-ResultsFilename %RESULTSDIR%\PM25_2004.apvr 
-CFGRFilename %RESULTSDIR%\PM25_2004.cfgr 
-IncidenceAggregaton Nation 
-IncidenceAggregation Nation 
 

GENERATE REPORT APVR 
 
-InputFile %RESULTSDIR%\PM25_2004.apvr 
-ReportFile %REPORTDIR%\pm25_2004_IncidenceNation.csv 
-ResultType PooledIncidence 
-CustomFields “Endpoint Group, Author,Start Age, Endpoint,Qualifier,  
 Pooling Window” 
-ResultFields “Mean,Standard Deviation, Latin Hypercube Points” 
-DecimalDigits 0 
 

GENERATE REPORT APVR 
 
-InputFile %RESULTSDIR%\PM25_2004.apvr 
-ReportFile %REPORTDIR%\PM25_2004_ValuationNation.csv 
-ResultType PooledValuation 
-CustomFields “Endpoint Group, Author, Start Age, Endpoint, Qualifier, 

Pooling Window 
-ResultFields “Mean,Standard Deviation, Latin Hypercube Points” 
-DecimalDigits 0 
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Appendix M: Function Editor  
The function editor is used to develop both health impact functions and valuation 
functions. This appendix describes the syntax of this editor. 

M.1 User Defined Variables 
In addition to pre-defined variables that you can select from the Available Variables list, 
you can create your own variables in the C-R Function Editor.  

A variable is an identifier whose value can change at runtime. Put differently, a variable 
is a name for a location in memory; you can use the name to read or write to the 
memory location. Variables are like containers for data, and, because they are typed, 
they tell the compiler how to interpret the data they hold.  

The basic syntax for a variable declaration is  

var identifierList: type;  

where identifierList is a comma-delimited list of valid identifiers and type is any valid 
type. For example,  

var I: Integer;  

declares a variable I of type Integer, while  

var X, Y: Real;  

declares two variables--X and Y--of type Real.  

Consecutive variable declarations do not have to repeat the reserved word var:  

var  

X, Y, Z: Double;  

I, J, K: Integer;  

Digit: 0..9;  

IndicatorName: String;  

Okay: Boolean;  

Variables can be initialized at the same time they are declared, using the syntax  

var identifier: type = constantExpression;  
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where constantExpression is any constant expression representing a value of type type. 
Thus the declaration  

var I: Integer = 7; 

is equivalent to the declaration and statement  

var I: Integer;  

...  

I := 7;  

Multiple variable declarations (such as var X, Y, Z: Real;) cannot include initializations, 
nor can declarations of variant and file-type variables. 

M.2 The Script Language 
In the C-R Function Editor, you can evaluate complex block of statements.  

You can use constructions like:  

If...then...else;  

for I:= ... to .. do ;  

while... do ;  

repeat .... until...;  

break;  

assignment (...:=....;)  

try...finally...end; try...except...end;  

Each function you create can be a single statement or a block of statements.  

When you specify it as a block of statements, your script must conform to the rules of 
the script language, as follows:  

1. Each single statement must end with a semicolon (;)  

2. You can use the following statements:  

variable := expression;  

If logical expression then statement(s) [else statement(s)];  
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for variable := from_expression to/downto to_expression do statement(s);  

while logical_expression do statement(s);  

repeat statement(s) until logical_expression;  

try statement(s) finally statement(s) end; try  

statement(s) except statement(s) end;  

inline comments: // comment... until the end of the line 

nested comments: { nested comment } 

Statement(s) in the above declarations states that you can specify either a single 
statement or a block of statements. The block of statements must be enclosed in begin 
... end keywords. It is not necessary to enclose the body of the function in begin .. end. 
Cycle statements can use break keyword to break the cycle (break must also end with 
semicolon.) 

M.3 Operands 
Expressions may contain the following constant and variable types: 

Integer numbers; 

Floating point numbers; 

Scientific numbers; 

Decimal separator for all floating point and scientific-format numbers in expressions, is 
independent of the Regional Settings of Windows and always is a decimal point (‘.’).  

Boolean values - TRUE or FALSE;  

Date type values - values of that type must be put in quotes ( ‘ ‘ ), and also date separator 
character is independent of the Regional Settings of Windows and always is a slash - /, i.e. - 
‘01/01/2005’  

String values - values of that type must be put in double quotes (“ “); If a string contains double 
quotes, you should double them (i.e., “this is a ““string”“ “);  

M.4 Operations 
Arithmetical 

+, –, ×, /;  

div - integer division;  
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mod - modulo;  

^ - power of;  

- - negate;  

Logical  

<, <=, >=, >, <>, =;  

and, or, xor, not;  

Bitwise  

and, or, xor;  

~ - negate;  

M.5 Arithmetic Functions 
ABS(X) Absolute value 
SQR(X) Square = X×2=X×X 
SQRT(X) Square root 
SIGN(X) Sign of X;=1 for X>0, =0 for X=0, =-1 for X<0 
ZERO(X) =0 for X=0, =1 for X<>0 
TRUNC(X)=INT(X) Integer part 
FRAC(X)  fractional part  
ROUND(X)  rounds X to the nearest integer value  
CEIL(X)  always returns “ceil” integer value 
FLOOR(X)  always returns “floor” integer value 
DEC(X)  decrements a value X by 1 and returns a new value  
INC(X)  increments a value X by 1 and returns a new value  
ARG(X,Y)  argument(phase) of X and Y  
RADIUS(X,Y) = sqrt(sqr(X)+sqr(Y))  
POWER(X,Y) raises X to a power of Y (Y is a floating point value)  
IPOWER(X,Y)  raises X to a power of Y (Y is a integer value)  
X^ Y  raises X to a power of Y (same as above two functions)  
EXP(X)  exponent 
LN(X)  natural logarithm  
LG(X)  decimal logarithm  
LOG(X) base 2 logarithm  
SIN(X) sine 
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COS(X) cosine 
TAN(X)  Tangent 
COTAN(X)  cotangent 
ASIN(X)  Arcsine 
ACOS(X) arccosine 
ATAN(X) arctangent 
SINH(X) hyperbolic sine  
COSH(X) hyperbolic cosine 
TANH(X) hyperbolic tangent 
  

M.6 Aggregate Functions 
AVG(X1,X2,...)  returns average value of (unlimited number of) arguments.  

MAX(X1,X2,...)  maximum of (unlimited number of) arguments. 

MIN(X1,X2,...)  minimum of (unlimited number of) arguments. 

SUM(X1,X2,...)  sum of (unlimited number of) arguments.  

PROD(X1,X2,..)  product of (unlimited number of) arguments.  
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