

DEPLOYING MUNIREM TECHNOLOGIES TO NEUTRALIZE NITROCELLULOSE PROPELLANTS AND OTHER EXPLOSIVES

Presented by

Valentine Nzengung, Professor CEO/CTO MuniRem Environmental

MuniRem Environmental, LLC 111 Riverbend Rd, Ste 270 Athens, GA 30602

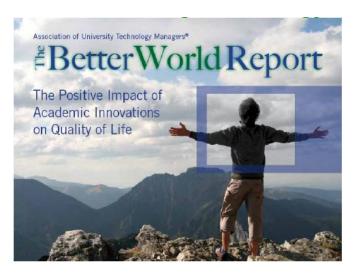
March 4, 2015

MuniRem ENVIRONMENTAL

Agenda

- ✓ MuniRem Munitions Remediation Technologies
- ✓ Applications Specific to Nitrocellulose Propellants
- MuniRem Approach vs. Alternative Propellant Hydrolysis Approach
- ✓ Summary

March 4, 2015

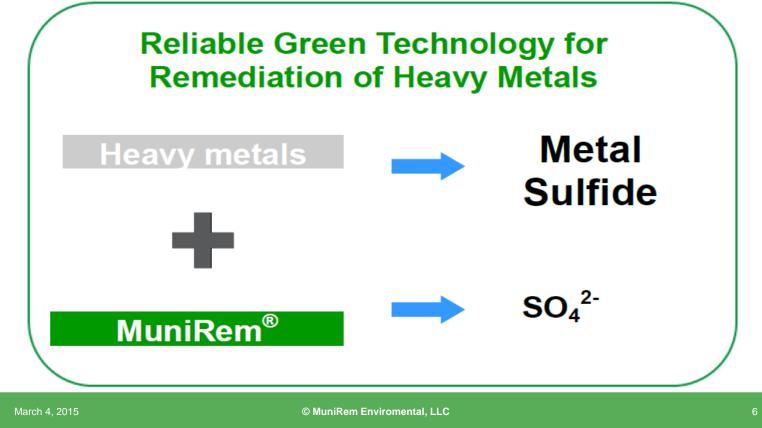

What is MuniRem®?

- Patented technology utilizing a chemical treatment process to rapidly degrade explosives and chemical agents in various media
- Very short clean up time
- Eliminated O&M costs usually associated with other remediation technologies
- Lower treatment time and simple set-up
- Minimum risk to the user and community
- Technology and product that is flexible and scalable

Award-winning Technology

- MuniRem[®] selected winner of the 2010 Better World Technology
- Applied in USA, Canada, Australia and Taiwan
- Currently applied at Camp Minden, LA to safely neutralize bulk explosives, decontaminate equipment and building
- Led by a team of proven and experienced scientists and professionals

March 4, 2015


Effective for Remediation of Explosives and Munitions Constituents

002910

MuniRem in Support of Demiliterization

Wet picric acid recovered from explosive D projectiles



Rapid decontamination of halved bomb casings before and after MuniRem[®] treatment

March 4, 2015

MuniRem Application at a Demilitarization Plant in SE Asia

March 4, 2015

© MuniRem Enviromental, LLC

002913

Building Decontamination with MuniRem Solution to avoid Recrystallisation which Occurs after Steam Decontamination

Deluge Head

March 4, 2015

MuniRem vs. Other Munitions Destruction Technologies ENVIRONMENTAL

					5		
	Technology	Speed & Efficiency	Safety / Environmental	Mobility & Setup Times	Costs (Upfront & Recurring)		
✓	MRE Solutions: MuniRem®	 MuniRem[®]'s scalable and one-step technology begins to react with energetics almost immediately and completes the process in minutes 	 Safe, room temperature process requiring no safety distances No regulatory issues, polished effluent can be dumped in municipal sewer Satisfies criteria for Green technologies 	 Simple and quick deployment and setup. Highly portable, flexible and scalable chemical process 	 Low upfront costs, generally 30% - 50% lower all inclusive cost than alternatives 		
	Alkaline / Base Hydrolysis	 Hours to days inclusive of required pH and Nitrate byproduct treatment processes 	 Chemical handling safety concerns, high pH and Nitrates issues of process pose significant concerns and require further treatment and waste disposal 	 General approach consists of building hydrolysis plants and long term and burdensome operations 	 Immediate product costs are less expensive but high upfront plant costs, pH and nitrate remediation are costly 		
	Open Burn / Open Detonation	 1 hour + for setup and burn / detonation Hours to weeks to remediate soil contamination 	 Substantial physical and environmental hazards from burn / detonation reaction, heat, emissions, debris 	 "Holes in the ground" can be quick initially but remediation "clean-up" burdens are enduring. Incinerators and larger plants are not generally mobile and cumbersome 	 Substantial plant capex, operations, safety, environmental compliance and contamination remediation costs 		
	Flashing Furnaces	 1 hour + for setup and flashing. Scale limited by furnace size 	 Significant physical and environmental issues from reaction, heat, emissions 	 Permanent or "portable" furnaces are required along with all support and safety infrastructure 	 Substantial plant capex, operations, safety, environmental compliance costs 		

MuniRem Technology is Already Applied as Safe and Costeffective Solution for Decontamination of High Explosives in Building and Equipment at Camp Minden, LA

March 4, 2015

MuniRem Environmental LLC Patented Technology for NC Propellant

Methods for Dissolution and Neutralization of Solid Nitrocellulose Propellants and Plasticized Military Munitions

Patent #: US 8,865,961 B2

March 4, 2015

MRE Past Experience on Neutralization of NC Propellants

>October 2010 MRE demonstrated the chemical destruction of NC propellant at Indiana Army Ammunition plant (INAAP) using its patented technology

>The on-site demonstration of MuniRem[®] was preceded by multiple bench scale tests

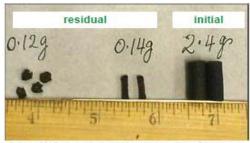
>The on-site tests involved the dissolution and rapid neutralization of NC propellant

>The resulting solution was analyzed for explosives and end-products by TestAmerica

Following success of Indiana AAP demonstration, MuniRem LLC awarded a contract to produce "Propellant Destruction Kits" (PDK) for destruction of small amounts of NC propellant recovered at Maili Beach, Hawaii

Range of Propellant Sizes at INAAP

There are a range of M1 Propellants at INAAP and time to completely neutralize propellants depends on size


Propellant	Diameter	Length	Weight
1	0.44"	1.01"	59.0g
2	0.18"	0.67"	39.3g
3	0.31"	0.79"	23.5g
4	0.14"	0.33"	1.9g

Dissolution and neutralization of smallest size requires ~1 hour

Dissolution and neutralization of largest size requires ~1-2 days

Wood-like residual (see photo) remains after complete neutralization of medium and large size propellant pellets

2.4 g of NC propellant residual in less than 24 hours of treatment

33g of NC propellant reduced to <5g of non-explosive residual in less than 48 hours

What remains after complete destruction of NC Propellant?

Proprietary MuniRem Environmental LLC

Summary of Wastewater Test Results for INAAP Test

Before Treatment	After Treatment
Propellant grains	Non-Detectable
N/A	Glucose, mannose, arabinose, xylose
N/A	309 mg/L
N/A	1000 mg/L
N/A	Non-Detectable
N/A	18.6 mg/L (lower than reporting limit)
	Propellant grains N/A N/A N/A N/A

March 4, 2015

INAAP Results for Single Base Propellant ENV MuniRem[®] Reagent Added to Destroy Nitrate and Nitrite

Client Sample ID: M1PEC1

General Chemistry

Lot-Sample #: GO Date Sampled: 10			order #: eceived:		rix: W	ATER
PARAMETER Nitrate as N	RESULT 36.3 B,Q Dilu	RL 50.0 tion Facto	UNITS mg/L or: 1000	METHOD MCAWW 300.0A MDL 22.0	PREPARATION- ANALYSIS DATE 11/15/10	PREP <u>BATCH #</u> 0319430
Nitrite as N	254 Q Dilu	50.0 tion Facto	mg/L pr: 1000	MCAWW 300.0A MDL 16.0	11/15/10	0319429
Nitrocellulose	ND G Dilu	2000 tion Facto	mg/L pr: 1000	TAL-SOP WS-WC-005	11/13-11/15/10	0317041
Sulfate	1090 Q Dilu	1000 tion Facto	mg/L pr: 1000	MCAWW 300.0A MDL 49.0	11/15/10	0319431
Total Sulfide	12.5 B,G Dilu	50.0 tion Facto	mg/L pr: 1000	MCAWW 376.2 MDL 8.8	11/17/10	0321215

NOTE(S):

RL Reporting Limit

B Estimated result. Result is less than RL.

Q Elevated reporting limit. The reporting limit is elevated due to high analyte levels.

G Elevated reporting limit. The reporting limit is elevated due to matrix interference.

INAAP Results for Single Base Propellant

Client Sample ID: DBPEC1

General Chemistry

Lot-Sample #: GO Date Sampled: 10			Order # Received		rix: W.	ATER
PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Nitrate as N	309 Q Dil	50.0 ution Fact	mg/L or: 1000	MCAWW 300.0A MDL 22.0	11/15/10	0319430
Nitrite as N	1000 Q Dil	50.0 ution Fact	mg/L or: 1000	MCAWW 300.0A MDL 16.0	11/15/10	0319429
Nitrocellulose	ND G Dil	2000 ution Fact	mg/L or: 1000	TAL-SOP WS-WC-005 MDL 475	11/13-11/15/10	0317041
Sulfate	ND G Dil	1000 ution Fact	mg/L or: 1000	MCAWW 300.0A MDL 49.0	11/15/10	0319431
Total Sulfide	18.6 B,G Dil	50.0 ution Fact	mg/L or: 1000	MCAWW 376.2 MDL 8.8	11/17/10	0321215

NOTE(S):

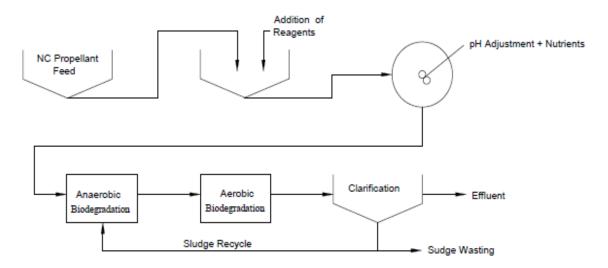
RL Reporting Limit

Q Elevated reporting limit. The reporting limit is elevated due to high analyte levels.

G Elevated reporting limit. The reporting limit is elevated due to matrix interference.

B Estimated result. Result is less than RL.

18



General Steps of Treating NC Propellants

- 1. Place NC Propellants in reactor
- 2. Use chemicals to pre-treat NC propellant to expose explosive compounds and hydrolyze NC
- 3. Use MuniRem[®] to degrade all nitro and amino compounds remaining in solution
- 4. Treat by-products from reaction and safely dispose of non-hazardous end products

MRE's Approach Couples Chemical Destruction of Bulk Propellant with Bioremediation of Effluent Wastewater

Flow diagram of NC propellant destruction with MuniRem proprietary technology and biodegradation process with denitrification (Adapted from USACERL TR-98/65)

Comparison of Two Wet Chemistry Solutions

Parameter	Alkaline Pressure Hydrolysis	MuniRem Process
Reactors (Pfaudler Hydrolysis Reactor)	 Tank farm Main reactor with heat exchanger jacket 	 Tank farm Main reactor with heat exchanger jacket
Pre-treatment	Not a required	Not a required
Operating Conditions	 ✓ NaOH ✓ Temp = 150 C ✓ P < 12 bar ✓ Time <1 hour ✓ Exothermic Reaction 	 NaOH Organic Solvent Temp = Ambient Pressure = Ambient Time <1 hour Exothermic Reaction
Wastewater Composition	 ✓ Nitrite ✓ Nitrate ✓ Short chain organic acids ✓ Nitroaromatics aminoaromatics 	 ✓ Nitrite ✓ Nitrate ✓ Sulfate ✓ Short chain organic acids ✓ Sugars
Residue	Non-explosive; Depends on alkali content	Non-explosive; 5% of initial mass
Air Pollution Mitigation	Scrubber	Scrubber
Wastewater Treatment	Biodegradation	Biodegradation
Waste-to-Value	Yes, but will require time	Yes, but will require time
Handling Issues	Could be a challenge	Digests Ryon Cloth Bag

March 4, 2015

How Does an EOD Tech Move Unstable M6 from Storage to Treatment Location?

- > Could Maili Beach, Hawaii have the answer?
- Will cold water ensure safety during transportation to treatment site?

March 4, 2015

Conclusions

MuniRem[®] and NC Propellant Technology

Neutralizes high explosives in minutes

Offers the a non-thermal rapid neutralization of NC propellants

Neutralizes other munitions and munitions components: CWM

Ensures instant neutralization of explosives to non-toxic end products

Meets the criteria for a green technology to manage explosive safety challenges

Valentine Nzengung, PhD Mobile: (706) 202-4296 Email: vnzengung@munirem.com Website: www.munirem.com

March 4, 2015

© MuniRem Enviromental, LLC

24