

Federal Railroad Administration

Presentation to Mobile Source Technical Review Subcommittee, EPA Clean Air Act Advisory Committee April 18th, 2001

Arrigo P. Mongini, Deputy Associate Administrator for Railroad Development

Steven W. Sill, P.E., General Engineer/Program Manager, Program Development Division, Office of Railroad Development

Who/what is FRA?

- Primarily regulatory Office of Safety, inspector force
- Office of Railroad Development
 - High-speed passenger programs
 - Amtrak funding

4/26/01

• No authority to regulate exhaust emissions

4/26/01

RR Network Efficiency

- Improved RR performance (speed, cost, convenience) tends to divert freight from trucks and passengers from auto/bus/air
- Air-quality benefits from diversion to rail
 - FRA/State/Amtrak passenger programs
 - Freight industry programs to reduce costs/time
- FRA programs to reduce pollution from rail itself

FRA RR Development Programs

- Next Generation High-Speed Rail Tech.
 - Demonstrate incremental speed increases on existing lines to 150mph (passenger service)
- MAGLEV
 - Develop 300 mph + technology
- R & D primarily safety-related
 - Rail lubrication studies, efforts w. DOE

HIGH-SPEED GUIDED GROUND TRANSPORTATION PROGRAMS

Designated High Speed Rail Corridors As Of 1/19/01

MAGLEV

- Competition to build 1st US high-speed Magnetic Levitation (MAGLEV) train
- Two 40 mile finalists
 - Pittsburgh airport to downtown
 - Baltimore-Washington, DC
 - Both based on German technology

4/26/01

MAGLEV

- FRA matching funds for planning activities
 - Each project to prepare EIS & seek financing
 - Provide DOT information for selecting best project
- Decision to construct in 2003
 - Subject to appropriation of \$950M and State/Local/Private financing sources

Next Generation High-Speed Rail (NGHSR)

- Develop & demonstrate technologies to improve feasibility of incremental HSR
 - Non-Electric Locomotives
 - No catenary required, reduces implementation barriers/costs, net air quality benefit over no service
 - Positive Train Control
 - Grade Crossings/Innovative Technologies
 - Track & Structures

4/26/01

4/26/01

NGHSR Turbine Electric Demo. Locomotive

- 5000hp gas turbine-electric locomotive
- Based on Acela Express power car body
- Joint FRA-Bombardier \$13M/\$13M shared
- Performance similar to electric, to 150mph
- Provide high-speed service outside of NEC
- Under test, demonstration to start 9/01

NGHSR Turbine Electric Demo. Locomotive

NGHSR Turbine Electric Demo. Locomotive

- Estimated Emissions on Simulated Route
 - Toronto-Montreal
 - 1-4-0 consist, 125 mph maximum
 - 9 inches cant deficiency
 - 239 seats, 350 kW HEP load
 - Compared to Tier II compliant diesel

(courtesy of Bombardier Transportation)

NGHSR Turbine Electric Demo. Locomotive

Toronto to Montreal Estimated Emissions – 1 Train, 1-Way					
	HC (kg)	CO (kg)	NOx (kg)		
EPA - Tier 2	2.74	13.48	52.64		
Turbine-Electric – Estimated	1.75	5.32	38.97		
Reduction	.99	8.16	13.67		
Turbine-Electric Improvement	36%	61%	26%		
*Particulate matter data not available for turbine at this time (courtesy of Bombardier Transportation)					

Auto-Air-Rail Comparison

10,000 Passengers, Toronto to Montreal						
Mode	Fuel (kg)	HC (ka)	CO (kg)	NOx (kg)		
$\int \Delta u t o 1.$	05 563	222	7 200	Q17		
	30,000	000	1,200	041		
A: -2)		400	1 201	40 540		
	260,905	123	1,304	18,512		
Dail3.)	11 210	105	210	2 2 2 2		
Γαιι	44,310	105	019	2,330		
1.) 22 mpg, MY1999 EPA emissions, 1.7 occupants						
2) 50% Boeing 767-200, 50% Airbus 320, 70% Load Factor						
2.750% DUEING $707-200, 50%$ And $3520, 70%$ Load 1 actor						
3.) 1-4-0 consist, 70% Load Factor						
(courtesy of Bombardier Transportation)						

Advanced Locomotive Propulsion Systems (ALPS)

- Develop/demonstrate technologies
 - high-speed lightweight generator
 - energy storage flywheel
- Demonstrate with Bombardier locomotive
- U-Texas @ Austin (lead), Honeywell, Navy (NSWC), Argonne NL, Seneca Group

ALPS

- Lightweight 15,000 rpm generator for direct drive from turbine (no reduction gear)
 - Module with TF-40 turbine in loco. in CY02
- Flywheel (recover braking energy, aid acceleration, reduce turbine cycling)
 - 2MW (2700hp) for 3 minutes
 - Demonstrate with locomotive CY2003

Turboliner Upgrade

- Turbine trainset for Empire Corridor (NYC-Albany) service @ 110+ mph
- RTL-2 test vs. diesel (F-40) (approximate):
 - 90% reduction in NOx, 80% reduction CO
 - 70% reduction in PM, HC improved some (Source: USDOT/FRA – " Measurement of Air Pollution Emission from the RTL-2 Turboliner", 2/9/98)
- 7 RTL-3s now being built expected to be even better

HIGH-SPEED GUIDED GROUND TRANSPORTATION PROGRAMS

Turboliner Upgrade

4/26/01

Positive Train Control/Grade X-ing.

- 2 train control technology demonstration programs underway (MI & IL)
 - Increased safety and maximum speeds, lower implementation costs over current technology
 - Increased capacity/efficiency -> reduced idling on sidings and speed changes
 - Reduced fuel consumption and emissions
- Grade crossing improvements can increase speeds, decrease trip times & emissions

4/26/01

Modal Energy Consumption

- Truck vs. Freight Rail (kW-hr/Ton-Mi)
 - Truck: 0.876 kW-hr/Ton-Mi
 - Rail: 0.106 kW-hr/Ton-Mi
- Truck 1,027,000 Million Ton Miles/year
- Rail 1,376,802 Million Ton Miles/year

(Source: Transportation Energy Data Book - Edition 20–2000) (http://www-cta.ornl.gov/data/tedb20/Index.html)

Modal Energy Consumption

- Air vs. Auto vs. Intercity Rail (National Average)
 - Air: 1.171 kW-hr/Passenger- mile
 - Auto: 1.075 kW-hr/Passenger mile
 - Intercity Rail: 0.720 kW-hr/Passenger mile

(Source: Transportation Energy Data Book - Edition 20–2000) (http://www-cta.ornl.gov/data/tedb20/Index.html)

Modal Energy Consumption

- Maglev vs. Metroliner vs. Diesel (Hypothetical Route)
 - Maglev: 163 W-hr/Seat Mile
 - Metroliner: 98 W-hr/Seat Mile
 - Diesel: 55 W-hr/Seat Mile
- Assumptions:
 - Diesel efficiency ~ 0.3, 40.64 kW-hr/gallon
 - Maglev 150 seats, Metroliner and Diesel 264 seats
 - 50 mile straight flat route
 - (Source: USDOT/FRA "High-Speed Ground Transportation for America", 9/97)

Summary

- Rail/MAGLEV transportation of people and goods can offer substantial air quality benefits over auto/truck/air transport
- Benefits of Next Generation turbine-electric passenger locomotives/ALPS over traditional equipment appears significant, remain to be demonstrated

22

Points of Contact

- Mark E. Yachmetz, Associate Administrator for Railroad Development, 202/493-6484
- Arrigo P. Mongini, Deputy Associate Administrator for Railroad Development, 202/493-6386
- Robert J. McCown, P.E., Acting Chief, Program Development Division, 202/493-6350
- Michael N. Coltman, Chief, Structures and Dynamics Division; Volpe National Transportation Systems Center, 617/494-2591
- Steven W. Sill, P.E., General Engineer/Program Manager, Program Development Division, 202/493-6348

