Meeting of the Mobile Sources Technical Review Subcommittee Clean Air Act Advisory Committee

Washington, D.C. January 17, 2001

EPA HDEWG Program

PHASES 1,2, & 3

EPA Heavy-Duty Engine Working Group (EPA HDEWG)

- λ Established in December 1995 by MSTRS
- λ Co-Chairs:
 - » John Wall Cummins, Tom Bond BP Amoco
- Steering Committee Membership
 - » EPA, Cummins, Caterpillar, International, Ford, BP Amoco, Equilon, Exxon/Mobil, Phillips, EMA, API, NPRA
- λ General Membership (~30)
 - » EPA, OEMs, Refiners, States, Consultants, Academics

EPA Heavy-Duty Engine Working Group

λ Objective:

- » Contribute to EPA's 1999 technology review of exhaust emission standards for model year 2004+ heavy-duty diesel engines by assessing relative merits of achieving the 2.5 g/HP*h NOx+NMHC emission level either through:
 - engine system modifications, or
 - a combination of engine system and fuel modifications

λ Target Completion:

» Mid-1999

EPA-HDEWG Program Phases

- λ Phase 1 was designed to assess current literature and identify a representative (transparent) test engine; completed April 1997
- λ Phase 2 was an investigation of diesel fuel and engine system effects on exhaust emissions of the "transparent" CAT 3176 engine; completed January 1999
- Phase 3 was designed to ascertain if Phase 2 results are representative of "black box", advanced prototype, heavy-duty diesel engines currently being developed by engine manufacturers; completed October 2000

PHASE 1 PROGRAM

EPA HDEWG Program

- λ Phase 1, completed in April 1997, was aimed at establishing:
 - whether the combined <u>effects of diesel fuel properties</u> on exhaust emissions of "black box",prototype, heavyduty diesel engines then being developed by engine manufacturers were large_enough to <u>warrant Phase 2</u>,
 - whether the "transparent" Caterpillar 3176 heavy-duty diesel engine installed at SWRI was representative of "black box" engines with respect to diesel fuel effects on NOx emissions

Results of Phase 1 demonstrated that these criteria were met and triggered execution of Phase 2

Results of Phase 1 Testing

PHASE 2 PROGRAM

Phase 2 Test Program

Fuel Matrix Design

- λ Based on a review of existing data and results of Phase 1, four fuel properties were selected for investigation: density, cetane number, monoaromatic and polyaromatic hydrocarbon content
- λ Sulfur content was not included as a variable because:
 - » Test engine was not equipped with any sulfur sensitive exhaust aftertreatment devices
 - » Particulate emission measurements were not planned (as explained below)
 - » Sulfur content has never been observed to affect engine-out NOx, HC or CO emissions

Fuel Matrix Design

- λ Effect of cetane number investigated at 3 levels (non-linear effects). Other variables evaluated at 2 levels
- λ Cetane number changes from base level achieved through use of ignition improver (ethylhexyl nitrate)
 - Boosted cetane selected to simplify fuel blending. Literature survey indicated lack of significant differences in emission effects of natural and boosted cetane number

Fuel Matrix Design

- Numerous fuel matrix designs investigated with help of SwRI statistician
- Number of test fuels in fuel matrices evaluated ranged from 8 to 24. Twelve-fuel design selected
- λ Form of basic emission model:
 - Emission = Intercept + a_1^* Density + a_2^* Cetane + a_3^* Monoaro + a_4^* Polyaro + a_5^* (Cetane * Density) + a_6^* (Cetane * Monoaro) + a_7^* (Cetane * Polyaro)
- λ Additional fuels incorporated in the matrix to enable <u>direct</u> comparison of density effects as well as those of natural and boosted cetane number

Test Fuel Development

- λ Based on adopted design of the fuel matrix, 18 test fuel were developed: 7 base fuels and 11 cetane boosted fuels
- λ Density: 830 and 860 kg/m³
- λ Cetane Number: 42, 48 and 53
- λ Monoaromatics: 10 and 25%
- λ Polyaromatics: 2.5 and 10%
- Distillation properties were tightly controlled
- λ Sulfur content capped at 470ppm, otherwise uncontrolled
- λ Fuels developed with sole purpose of investigating fuel effects on emissions. Commercial viability was not considered

Phase 2 Test Program

Exhaust Emission Testing

- Emission test program executed by SwRI
- Effects of fuel properties, injection timing and EGR on exhaust
- emissions were evaluated
 - AVL 8-mode test procedure used exclusively. (Prototype EGR
- system of the test engine was not compatible with the EPA transient test). The same modal engine speed and load settings were used for all test fuels
 - Testing conducted on CAT 3176 engine previously identified
- in Phase 1 as a useful test bed

AVL 8-Mode Emission Test Cycle

CAT 3176 Test Engine

- 10.3 liter displacement
- 355 HP @ 1800 rpm
- Equipped with electronically controlled unit injectors
- Cooled EGR
- No exhaust aftertreatment

Exhaust Emission Testing

- Engine calibrated to approach NOx level of 2.5 g/HP*h
- Some tests repeated w/o EGR (Direct comparison of emission effects of natural and boosted cetane number)
- NOx, HC, CO and Bosch smoke emissions were measured
- Particulate emissions were not measured (Poor correlation between AVL 8-mode test and EPA transient test for particulates), engine technology not transient compatible

Statistical Analysis of Test Data

- Prediction models developed for NOx, HC, NOx+HC,CO emissions and BSFC
- Development of models based on four parameters: Density, cetane number, mono- and polyaromatics
- Other fuel parameters and two-way interactions between density, cetane number, mono- and polyaromatics were subsequently tested in each model. With one exception, none were found to further improve the models
- All statistical analyses were performed using a 5% significance level.

Results of Phase 2 Testing

Fuel Effects

NOx Emission Model

 Density, cetane number, monoaromatics and polyaromatics are statistically significant predictors of NOx emissions. They account for 92% of NOx variation.

NOx = -1.334 + 0.00413*Density + 0.00337*Cetane

+ 0.00646*Monoaromatics + 0.00763*Polyaromatics

where NOx is in g/HP*h, density in kg/m³, mono- and polyaromatics in %m.

 Observed increase of NOx emissions with cetane number is a confirmation of Phase 1 results.

Effect of Fuel Properties on NOx Emissions

(*) Calculated relative to "average" US diesel fuel (Density of 845 kg/m3, cetane number of 45, monoaromatic content of 25% and polyaromatic content of 9%)

HC Emission Model

λ Cetane number, monoaromatics and polyaromatics are statistically significant predictors of HC emissions. They account for 78% of the HC variation.

HC = 0.2027 - 0.00186*Cetane + 0.00677*Monoaromatics + 0.00160*Polyaromatics

Where HC is in g/HP*h, mono- and polyaromatics are in %m.

Effect of Fuel Properties on HC Emissions

(*) Calculated relative to "average" US diesel fuel (Density of 845 kg/m3, cetane number of 45, monoaromatic content of 25% and polyaromatic content of 9%)

NOx+HC Emission Model

 Density, monoaromatics and polyaromatics are statistically significant predictors of NOx+HC emissions. They account for 90% of NOx+HC variation.

NOx+HC =
$$-0.811 + 0.00384$$
*Density+
0.00766*Monoaromatics + 0.00842*Polyaromatics

Where NOx+HC is in g/HP*h, density in kg/m³, mono- and polyaromatics in %m.

Effect of Fuel Properties on NOx+HC Emissions

(*) Calculated relative to "average" US diesel fuel (Density of 845 kg/m3, cetane number of 45, monoaromatic content of 25% and polyaromatic content of 9%)

CO Emission Model

 Cetane number is the only statistically significant predictor of CO emissions. It accounts for 77.8% of CO variation.

 $CO = 1.28 - 0.0105^*$ Cetane

where CO is in g/HP*h.

Effect of Fuel Properties on CO Emissions

(*) Calculated relative to "average" US diesel fuel (Density of 845 kg/m3, cetane number of 45, monoaromatic content of 25% and polyaromatic content of 9%)

Natural vs. Boosted Cetane Number

λ Boosted cetane number had the same effect on NOx emissions as natural cetane number, with and w/o EGR

Effects of Natural and Boosted Cetane on NOx Emissions with EGR

FUEL	Cetane Number	Measured (*) NOx	NOx Difference	% NOx Difference vs. Natural	Statistical Significance of Natural vs. Boosted
		g/HP*h	g/HP*h		
	48.0				
HDE-8N		2.411			
	Natural		2.411		
	48.1		<u>-2.421</u>	-0.4	no
HDE-8	Boosted	2.421	-0.010		
	from 42.8				
	53.4				
HDE-16N		2.334			
	Natural		2.334		
HDE-16	52.2		<u>-2.359</u>	-1.1	no
	Boosted	2.359	-0.025		
	from 42.1				

^(*) Average of two tests

Effects of Natural and Boosted Cetane on NOx Emissions w/o EGR

FUEL	Cetane Number	Measured (*) NOx g/HP*h	NOx Difference g/HP*h	% NOx Difference vs. Natural	Statistical Significance of Natural vs. Boosted
HDE-8N	48.0 Natural	3.793	3.793		
HDE-8	48.1 Boosted from 42.8	3.813	<u>-3.813</u> -0.020	-0.5	no
HDE-16N	53.4 Natural	3.686	3.686		
HDE-16	52.2 Boosted from 42.1	3.681	<u>-3.681</u> 0.005	0.1	no

^(*) Average of two tests

vBSFC Model

Density and monoaromatic content are statistically significant predictors of volumetric brake specific fuel consumption, vBSFC. They account for 94% of vBSFC variation

vBSFC = 487.9 - 0.274*Density + 0.0793*Monoaromatics

where vBSFC is in g/kW*h, density in kg/m³ and monoaromatics in %m.

Effect of Fuel Properties on vBSFC

(*) Calculated relative to "average" US diesel fuel (Density of 845 kg/m3, cetane number of 45, monoaromatic content of 25% and polyaromatic content of 9%)

Engine Hardware Effects

Effect of EGR

λ EGR had a strong effect on NOx emissions, but no statistically significant effect on fuel consumption

Effect of EGR on NOx Emissions

FUEL	Measured (*) NOx w/EGR	Measured (*) NOx w/o EGR	NOx Difference	% NOx Difference vs. w/o EGR	Statistical Significance of EGR Effect
	g/HP*h	g/HP*h	g/HP*h	voi 11,70 2 3 1 X	0. 20 . \ 2
HDE-R	2.538	4.000	-1.462	-36.6	yes
HDE-7N	2.397	3.819	-1.422	-37.2	yes
HDE-8	2.420	3.813	-1.393	-36.5	yes
HDE-8N	2.410	3.793	-1.383	-36.5	yes
HDE-14N	2.338	3.660	-1.322	-36.1	yes
HDE-16	2.358	3.681	-1.323	-35.9	yes
HDE-16N	2.334	3.686	-1.352	-36.7	yes

^(*) Average of two tests, with the exception of fuel HDE-R which was tested five times

Effect of EGR on gravimetric brake specific fuel consumption, gBSFC

FUEL	Measured (*) gBSFC w/EGR	Measured (*) gBSFC w/o EGR	gBSFC Difference	% gBSFC Difference vs. w/o EGR	Statistical Significance of EGR Effect
	g/kW*h	g/kW*h	g/kW*h		
HDE-R	220.4	218.4	2.0	0.9	no
HDE-7N	216.5	215.7	0.8	0.4	no
HDE-8	219.2	217.1	2.1	1.0	no
HDE-8N	218.2	215.2	3.0	1.4	no
HDE-14N	216.6	215.3	1.3	0.6	no
HDE-16	216.4	215.3	1.1	0.5	no
HDE-16N	216.7	214.3	2.4	1.1	no

^(*) Average of two tests, with the exception of fuel HDE-R which was tested five times

PHASE 3 PROGRAM

Phase 3 Test Program

- λ <u>Purpose</u>: Determine whether Phase 2 results are representative of advanced "black box", prototype diesel engines currently being developed by manufacturers
- λ Exhaust emission testing of four 2004 "black box" engines (2.5 g/bhp-hr HC+NOx and 0.10 g/bhp-hr PM) was conducted by manufacturers
- λ 3 test fuels and the reference fuel were evaluated
- λ EPA transient test procedure and AVL 8-mode used
- λ Focus was on assessing NOx and PM impacts
- λ Program completed October 2000

PHASE 3 FUEL PROPERTIES

	Base	Fuel A	Fuel B	Fischer - Tropsch
	Normal Cert	Lo CN/Hi Aro	Hi CN/Lo Aro	Ultra Hi CN
	Diesel			/Ultra Lo Aro
		(HDE–10 mod)	(HDE–16 mod)	
Density	848	860	830	770
(kg/m3)				
Cetane Number	46.9	42.7	51.1	73
Monoaromatics	20.2	23.8	10.6	
(% m)				
Polyaromatics	12.1	9.8	2.9	
(%m)				
Total	32.3	33.6	13.5	0.4
Aromatics				
(%m)				

Comparison of Phase 2 Predicted vs. Phase 3 Results

= Phase 2 Predicted Results

= EMA combined data (4 engines)

Results of Phase 3 PM Testing (4 engines)

SUMMARY

- Note: The initial property in the initial property
- λ Phase 1 and 2 results demonstrated that for 2004 type technology
 - » increasing cetane number (natural or enhanced) increases NOx emission rates
 - » decreasing aromatics or density decreases NOx emission rates
 - » Phase 1 indicated that engines responded a bit differently to fuel changes
- λ Based on these results EPA did not propose any diesel fuel controls in the 2004 technology review
- λ Phase 3 confirmed that the technology and fuel quality relationships found in Phases 1 and 2 were still valid

SUMMARY

- Correlation of Phase 3 results with Phase 2 predictions is remarkable
 - » confirms that likely magnitude of fuel-based NOx impact on EGR engines does not justify regulatory action
- λ Results not applicable to current diesel fleet
- More work needs to be done to assess overall impact on 2004 and future fleet
 - » advanced prototypes not fully 2004 compliant
 - » technology effects were seen in the data for some engines