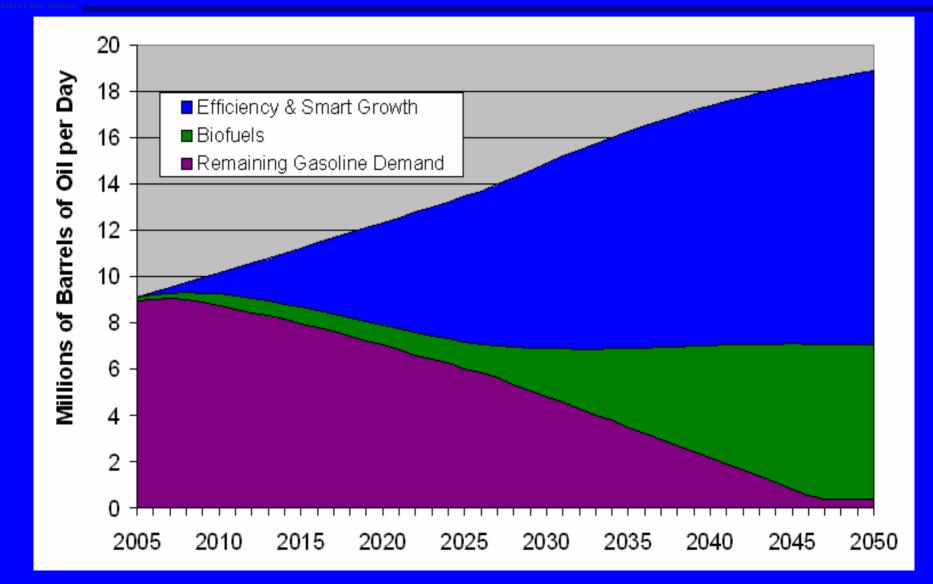


An Environmental Perspective: EPA's RFS Proposal

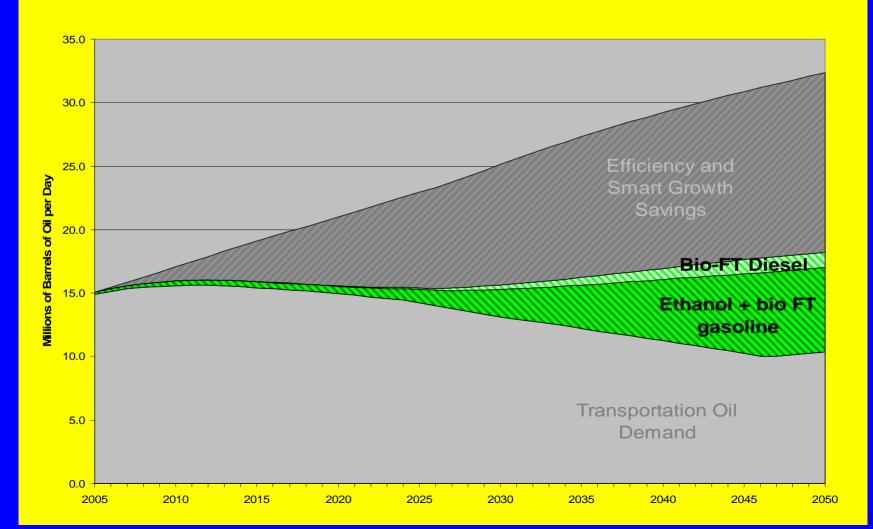
Richard Kassel Director, Clean Fuels & Vehicles Projects Natural Resources Defense Council MSTRS Meeting October 2006

Sustainable Biofuels in America's Energy Future

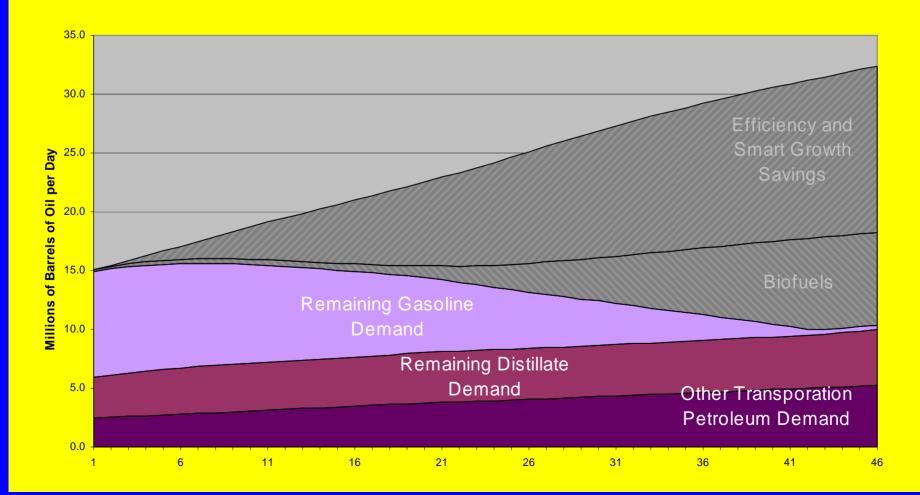
To move beyond oil, America must have a sustainable biofuels plan


- Biofuels as a transportation fuel, rather than an additive
- Sustainable and compatible with the nation's agricultural, forestry and land use needs
- Adverse air and water impacts are mitigated

- Biofuels need to reach a price where they don't need subsidies to become more than a fuel additive
- Advanced cellulosic ethanol should be able to compete even without today's high prices


Wholesale Price (\$ per Gal Gasoline Equivalent)		High	Average	Low
Advanced Cellulosic Ethanol (depending on technology and scale)		\$0.91	\$0.77	\$0.59
Gasoline	2000-2004	\$1.50	\$0.91	\$0.44
	2025 - EIA Forecast	\$1.03	\$0.79	\$0.48

Biofuels + Efficiency = No Gasoline Demand in 2050?


Most of the Biofuels Will Replace Gasoline

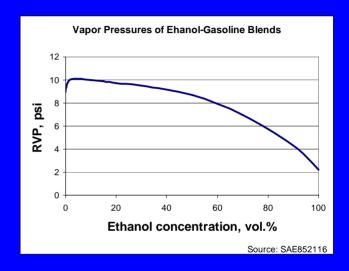
Reduced Oil Demand through Biofuels, Efficiency and Smartgrowth

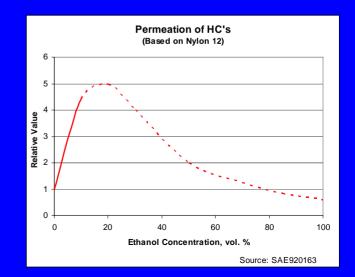
Demand Reductions Will Be Driven By Gasoline, Not Diesel

Reduced Oil Demand through Biofuels, Efficiency and Smartgrowth

- Without efficiency improvements: 36% of an unsustainable gasoline demand
- With achievable efficiency improvements, 94% of our remaining demand
 - Efficiency improvements are the key to sustainable biofuels production, given potential land constraints
- We need to do for biofuels in the 21st century what we did for food production in the 20th century

With Efficiency Improvements, Land Is Not A Constraint to Biofuels Growth

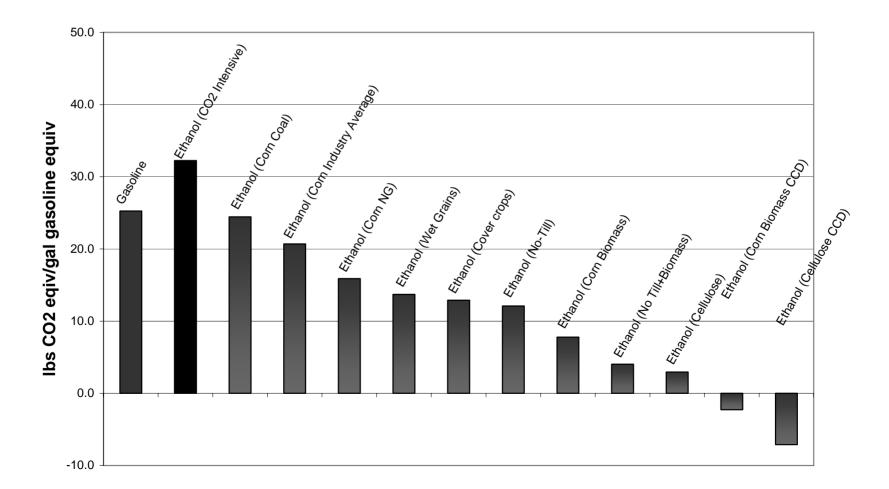

	Gasoline Demand (B. Gal. Gas-eq.)	Switchgrass Yield (dt/acre/year)	Conversion Efficiency (Gal. Gas-eq/dt)	Land Needed (Mill. Acres)
Status Quo 2050	289	5	33	1753
Production and Efficiency	y Gains			
Smart Growth/Efficiency	108	5	33	657
Conversion Efficiency	108	5	69	313
Biofuels Coproduction	108	5	77	282
Switchgrass Yield	108	12.4	77	114


Alternative Sources of Land and Biomass

Protein Recovery	Replace 50-100% of 73 million acres of soybean	41 - 77
Corn Stover	Collect 75% of 323 million tons of corn stover	21 - 58
CRP Land	Convert 33-50% of CRP acreage into switchgrass	6 - 48

Air Quality Impacts of Low-Blend Ethanol Must Be Addressed

- EPA and CARB models show low-blends increase VOC and NOx and decrease CO emissions
 - Up to 6% VOC + NOx increase locally
 - Especially significant in CA and w/ nonroad S-I engines
- Impacts of low-blends are only likely to become bigger as we understand permeation



No "Show-Stoppers," But Other Unresolved Issues Must Be Addressed

- Many unresolved questions to consider:
 - Commingling of blended fuels (E10-E85)?
 - Toxics: If benzene decreases, but aldehydes increase, is that a good trade-off?
 - Will NOx increases from low-blends increase PM2.5? Create new climate change concerns?
 - What are the aggregate and other public health impacts?
 - What can be done to the fuel and/or vehicles to reduce environmental and health impacts?

Greenhouse Gas Emissions from Different Ethanol Production Practices

...And More Paths Opening

- New technologies
 - Biobutanol, thermochemical processing (gasification), algae feedstocks, and other R & D areas attracting new attention
 - Potential for 15,000 to 200,000 gallons per acre
 - Some could use existing pipeline infrastructure
- To avoid future competition for feedstock, water, land and other impacts, new technologies must provide greater benefits/gallon and more gallons/acre

How To Ensure Sustainable Biofuels Future?

- RFS should set environmental performance standards, including oil displacement/GHG standards
 - Minimum performance standards (e.g., 20% better than gasoline)
 - Market structures that encourage competition based on performance (e.g., RFS credits based on lifecycle GHG emissions)
 - Flexible enough to allow new technologies, fuels, production methods to compete
- <u>Bottom Line</u>: RFS should commit to using more renewable fuels, set performance standards, and shouldn't pick winners prematurely

The Transition Presents the Greatest Challenges

- Transition impacts from production:
 - Impacts on soil, water, habitat, and potentially food from too much use of starch, sugar, vegetable oil based biofuels
- Transition impacts from end-use:
 - Ozone impacts of low blends of ethanol and gasoline
- Need to be managed, but will be helped by performance standards, rapid deployment of advanced technologies, and early use of biofuels as an alternative instead of as an additive

Conclusions: Recommendations For The RFS Proposal

- EPA RFS should include performance standards for biofuels
 - e.g.: Ratios should be set according to lifecycle oil displacement and GHG emission reductions
- EPA RFS should include incentives for more sustainable biofuels production into its registration system
 - e.g.: The RIN system should include placeholders so it can evolve into a tracking system for multiple environmental characteristics
- EPA should design its RFS program for projected biofuels production, rather than EPAct mandates.
 D e g : EPAct's 250M g/vr of cellulosic ethanol
 - e.g.: EPAct's 250M g/yr of cellulosic ethanol should be surpassed by 2013, and could reach 1 billion g/yr by 2016