

#### Technical Roundtables on EPA's Study of the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources

# WATER ACQUISITION

Jennifer Orme-Zavaleta

November 14, 2012





### Water Acquisition



What are the possible impacts of large volume water withdrawals from ground and surface waters on drinking water resources?



## Water Acquisition Research Projects

| Secondary Research Questions                                                                                      | Applicable Research Projects |
|-------------------------------------------------------------------------------------------------------------------|------------------------------|
| 1. How much water is used in hydraulic fracturing                                                                 | Literature Review            |
| operations, and what are the sources of this water?                                                               | Service Company Analysis     |
|                                                                                                                   | Well File Review             |
|                                                                                                                   | FracFocus Analysis           |
|                                                                                                                   | Water Availability Modeling  |
| 2. How might water withdrawals affect short- and                                                                  | Literature Review            |
| long-term water availability in an area with hydraulic fracturing activity?                                       | Water Availability Modeling  |
| 3. What are the possible impacts of water withdrawals for hydraulic fracturing operations on local water quality? | Literature Review            |



## Analysis of Existing Data: Literature Review

#### **Data Sources**

• Existing papers and reports, focusing on peer-reviewed literature.

#### **Anticipated** Data

- Volumes and sources of water used in hydraulic fracturing fluids.
- Local impacts to water availability in areas with hydraulic fracturing activities.
- Water quality impacts from ground and surface water withdrawals.

#### **Research Progress**

- Identification, review, and evaluation of existing literature is underway.
- Barnett, Eagle Ford, Haynesville, and Bakken shales have undergone most thorough analyses.

#### **Next Steps**

• Continue to review and assess literature related to water acquisition according to research questions in the study plan.



## Analysis of Existing Data: Service Company Data

#### **Data Sources**

• Data and information provided by nine hydraulic fracturing service companies.

#### **Anticipated Data**

• Volumes, quality, and sources of water used in Hydraulic Fracturing fluids from 2005–2010.

#### **Research Progress**

• Preliminary data analyses near completion.

#### **Next Steps**

• Discuss data with service companies.



## Analysis of Existing Data: Well File Review

#### **Data Sources**

• Well-specific records provided by nine oil and gas operators.

#### **Anticipated Data**

• Volumes and sources of water used in hydraulic fracturing for 333 wells hydraulically fractured in 2009 and 2010.

#### **Research Progress**

• Data compilation from the well files is underway.

#### **Next Steps**

- Continue compiling data from well files.
- Review data with oil and gas operators.
- Analyze water usage.



## Analysis of Existing Data: FracFocus

#### **Data Sources**

• National registry for chemicals used in hydraulic fracturing.

#### **Anticipated Data**

 Volumes, types, and sources of water used in hydraulic fracturing; well depths; and oil and gas production organized by geographic location, as reported by oil and gas operating companies.

#### **Research Progress**

- Data were compiled, checked for quality, and are being organized for analysis.
- Analysis underway to address research questions.
- Discussing analysis with Ground Water Protection Council.

#### **Next Steps**

- Summarize data.
- Analyze water usage.



# Water Availability Modeling

#### **OBJECTIVE**:

To evaluate possible impacts of large-volume water withdrawals for hydraulic fracturing on water availability in representative basins under hypothetical yet possible future scenarios.

#### **APPROACH:**

- 1. Select representative watersheds from semi-arid and humid climates for scenario evaluations.
- 2. Establish baseline representation of watershed hydrological conditions using historical observed water balance and observed major USGS use designations, such as agriculture or energy.
- 3. Modify baselines to include water withdrawal supporting hydraulic fracturing operations.
- 4. Design future scenarios for (1) business as usual; (2) energy plus; and (3) green technology.
- 5. Conduct analyses of potential changes in stream flows and ground water recharge among historical, current, and future scenarios.

# SEPA Critical Path for Modeling Approach





## **Study Watersheds**



10

EPA 20 Watershed Study also shown in Johnson et al. 2012. J Water Resources Planning and Management. Doi:10:1061/(ASCE)WR.1943-5454.0000175





## **Future Scenarios**

| Model<br>Assumptions                                     |                  | Future Scenarios–<br>Upper Colorado River Basin (UCRB) and Susquehanna River Basin (SRB) |                                                                                      |                                                                              |  |
|----------------------------------------------------------|------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--|
|                                                          |                  | Business as Usual                                                                        | Energy Plus                                                                          | Green Technology                                                             |  |
| Hydraulic<br>Fracturing Well<br>Deployment <sup>*§</sup> |                  | Current deployment<br>schedules                                                          | Maximum projected development                                                        | Current deployment schedules                                                 |  |
| Hydraulic<br>Fracturing<br>Water<br>Management           | U<br>C<br>R<br>B | Fresh water for drilling<br>and dust abatement,<br>100% recycling<br>produced water†     | Fresh water for drilling<br>and dust abatement,<br>100% recycling<br>produced water† | Fresh water for drilling only,<br>100% recycling produced water <sup>+</sup> |  |
|                                                          | S<br>R<br>B      | Current fresh water use,<br>13% recycling produced<br>water‡                             | Current fresh water<br>use, 13% recycling<br>produced water‡                         | Reduced fresh water use, 29% recycling produced water‡                       |  |

\*U.S. Energy Information Administration; §-U.S. Geological Survey; ‡ - Susquehanna River Basin Commission and Colorado Oil and Gas Conservation Commission; † - Bureau of Land Management



# Water Availability Modeling

#### **Research Progress**

- Existing information has been collected from the Susquehanna River Basin Commission and Colorado Oil and Gas Conservation Commission and is being reviewed to parameterize the model to run the scenarios.
- Models are being calibrated and validated for representation of baseline (historical 2000/2005 and current 2010) conditions, including water withdrawals to support hydraulic fracturing.

#### **Next Steps**

• Resources permitting, a ground-water-dependent watershed study will be designed, with model simulations to follow.



## **Questions for Discussion**

- What data are available on rate of recycling that would help EPA improve predictions of the green technology scenario?
- What ground-water-dependent watershed could EPA consider for an additional model evaluation?