MSTRS – may 10, 2011

EV DEPLOYMENT

EVs Are Coming

Plug-in Hybrids

Fiskar Karma

Prius

Volvo V70

Chevy Volt

Audi A1

Fiskar Nina

Ford Escape

BYD F₃DM

<u>All-electric</u>

Audi e-Tron

BYD E6

Mitsu. iMEV

Nissan Leaf

Coda

Smart

Ford Focus

Tesla S

Fuel Cell Electric (2015-16 Intro.)

Honda Clarity

Mercedes

GM

Toyota

Ford **Transit**

Toyota IQ

California's ZEV Regulation

- First adopted in 1990 (LEVI)
 - Production requirements for OEMs
- Demonstrated ZEVs technically viable
 - > 5,000 vehicles: demos, leases, ownership
 - Accelerated battery and fuel cell development
 - Initial public charging infrastructure
 - ZEVs now on threshold of early commercialization
- Hybrids commercialized
- Next regulation update Nov. 2011
 - 2018-2025 model years
 - Planning increase in # of ZEVs

ZEV Incentives in California

Program	Max Rebate Amount	Years	Appropria ted Funding	Legislation	Number of Vehicles Incentivized
ZIP I	\$9,000	2000- 2004	\$18 Million	AB 2061	1,069
ZIP II, Fleet ZIP	\$5,000/ \$11,000		\$20 Million	AB 1390	
Fueling Alternatives	\$5,000	2008- 2009	\$2.8 Million¹	AB 1811	69
Clean Vehicle Rebate Project	\$5,000²	2009-2015	\$11.1 Million³	AB 118	725

- 1. Funding for CNG vehicles as well
- 2. Current rebate amount, may be lowered in subsequent years
- 3. Represents 2009-2010 & 2010-11 FY; expected 2011-2012 FY funding is \$15-21 Million

2001 Infrastructure Example: CalEPA Parking Garage

~15 EVSEs, 50-50 mix of Inductive and Conductive

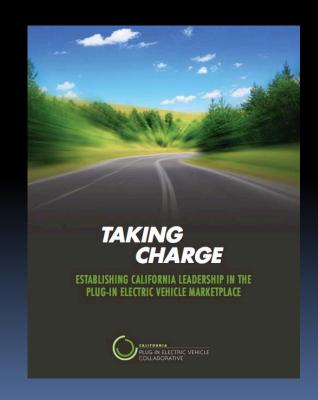
Key challenge:

Garage owned by City of Sacramento

- Charging equipment owned by State
- Cost: ~\$7,000/ space
- Soon to be upgraded to new SAE

California Public Charging Station Retrofit

- California also had ~3,000+ public charging stations that were installed in the late 1990's...many were removed, and the rest are now obsolete.
- State-funded retrofit program underway to upgrade to
 SAE J1772 by Dec 2011



Preparing for EV Deployment:

Plug-In Electric
Vehicle Collaborative

- Multi-stakeholder group (OEMs, utilities, NGOs, state agencies) initiated in
 2010
- Developed strategic plan for deployment of PEVs in CA, released Dec 2010

Preparing for EV deployment:

Plug-In Electric Vehicle Collaborative

- New mission to facilitate PEV deployment in CA to meet economic, energy, environmental goals
 - Convene working groups
 - Coordinate dialogue between stakeholders
 - Communicate recommendations
 - Best practices
 - Extent of public charging infrastructure needed

Plug EV Charging Needs

- Home charging (Priority 1)

- Average gasoline driver ~ 35 miles per day
- In most plug in cars (Chevy Volt or Nissan Leaf) a 35 mile charge takes less than 4 hours at 220 volts (~ 10 hours on 120 volts).
- The Ford Focus BEV, future Leafs, and may other EVs will be able to fill up after a 35 mile drive in about 2 hours
- Some drivers will demand the faster charging 220 volt stations at home, while others will be happy with 120 volts
- Workplace charging (Priority 2)
- Public charging 220 V (Priority 3)
- Fast charging (30 minutes to achieve 80% range)
 - Emergency, or regional trip extension

Economics of EV Charging

Today's price of gasoline in California = \$4.259 Fed and State excise taxes = \$0.537 Price/ gallon without excise taxes = \$3.72

\$/ kW-hr	Charging Scenario	Equivalent Gasoline Price \$/gal* (cost to drive basis***)
0.10	Evening off peak	\$1.15
0.15	Daytime	\$1.73
0.79	\$15 Fast charge**	\$9.13
1.05	\$20 Fast charge**	\$12.14

^{*} Excludes road tax of \$0.54/gallon, and assumes EPA's 33.7 kWhr/gallon

^{**} Assumes 80% fill of Nissan Leaf, or, 19 kWhr delivered for this "fill"

^{***} Assumes EV consumes 0.34 kWhr/mile, and equivalent mid-size car at 34 MPH

Infrastructure Cost

Charging Type	Typical Installation Cost* (Including Charging Station)
Home garage; adequate panel	\$700 - \$6 , 300
Home garage; new panel	\$2,300 - \$9,000
Public	\$3,400 - \$11,000
Fast charge	\$50,000+

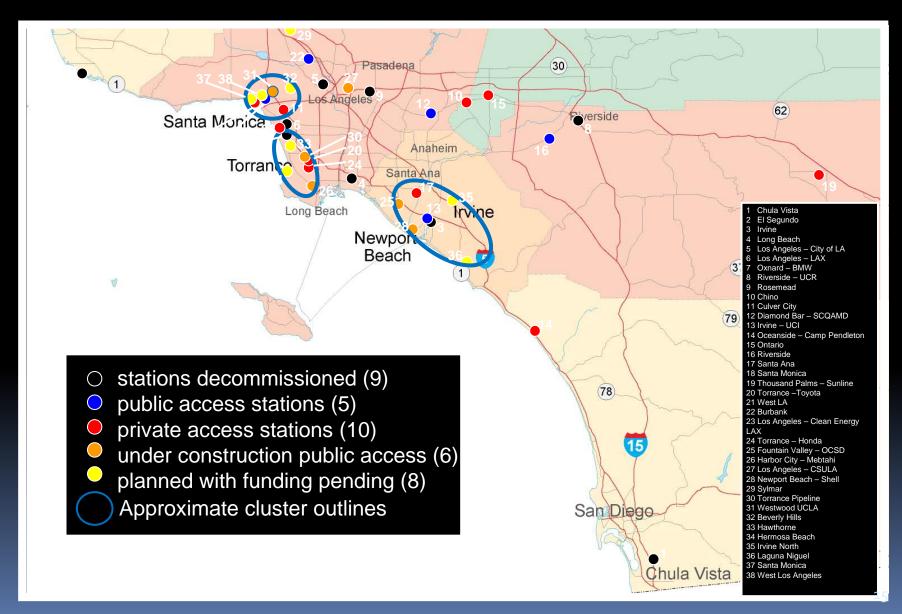
^{*} Tax credits, incentives, grants not subtracted

Infrastructure Use: The EV Project

- DOE funded; Largest deployment of PEV charge infrastructure in history
- Characterize EV use in diverse topographic and climatic conditions
 - ~5700 Leafs; 2600 Volts
- Evaluate effectiveness of charge infrastructure
- Revenue system trials for public charge

infrastructure

Infrastructure Use: The EV Project


California locations

- San Diego: 1,000 residential EVSEs, 1,500 Level II
 public accessible EVSEs, 60 DC Fast Charge Stations
- Los Angeles region: 3,000 residential EVSEs, 30 DC Fast Charge Stations
- San Francisco Bay Area: 2,750 residential EVSEs, 30
 DC Fast Charging Stations

California's Approach to Hydrogen Infrastructure (the 'other' EV)

- Phase I: Focus on major population centers (LA, Bay Area, Sacramento)
- Phase I objectives
 - Match infrastructure to size of vehicle and bus fleets
 - Meet consumer refueling expectations
 - Outreach to:
 - Permitting officials
 - Trained first responders
 - Public education

Southern California Hydrogen Fueling Network: Cluster Station Development

Summary

- EVs are coming
 - BEV and PHEV now
 - FCV by 2015
- Infrastructure preparation necessary
 - Both electric and H2 underway in CA
 - Optimum fueling infrastructure to be determined through early projects
 - EV Project in San Diego
 - H2 fueling clusters in coastal LA