Ocean-going Vessel Standards – The Carrier's Perspective

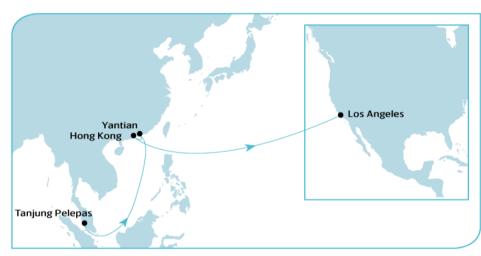
The A.P. Moller-Maersk Group

A.P. Moller-Maersk
Group
HQ: Copenhagen,
Denmark

- •2009 Revenue: USD \$48.5 b in Shipping, Energy, Retail and Banking.
- ■115,000 employees, 130 countries.

A.P. Moller-Maersk transportation businesses in North America

- Maersk Line Limited US-flagged vessels
- Maersk Line North America Sales, operations & inland transportation contracting (rail & trucking)
- APM Terminals Americas Marine terminals
- Maersk Equipment Services Equipment and maintenance
- Direct ChassisLink NEW Neutral chassis leasing business
- Bridge Terminal Transport Truckiza
- Maersk Distribution Services Inc. -
- Gilbert -- Warehousing & logistics
- Damco Third-party logistics


Maersk Line – the container shipping arm

- Operations
 - Operates more than 470 vessels
 - Moves approx 1.8 million containers
- 90% of all goods transported globally is done by ship
- Maersk Line represents approx. 4% of worldwide shipping activities
- 16% of the container segment
- Consumes over 10 M tonnes of heavy fuel oil annually

Multiple vessels are scheduled on each route to provide regular (weekly) service.

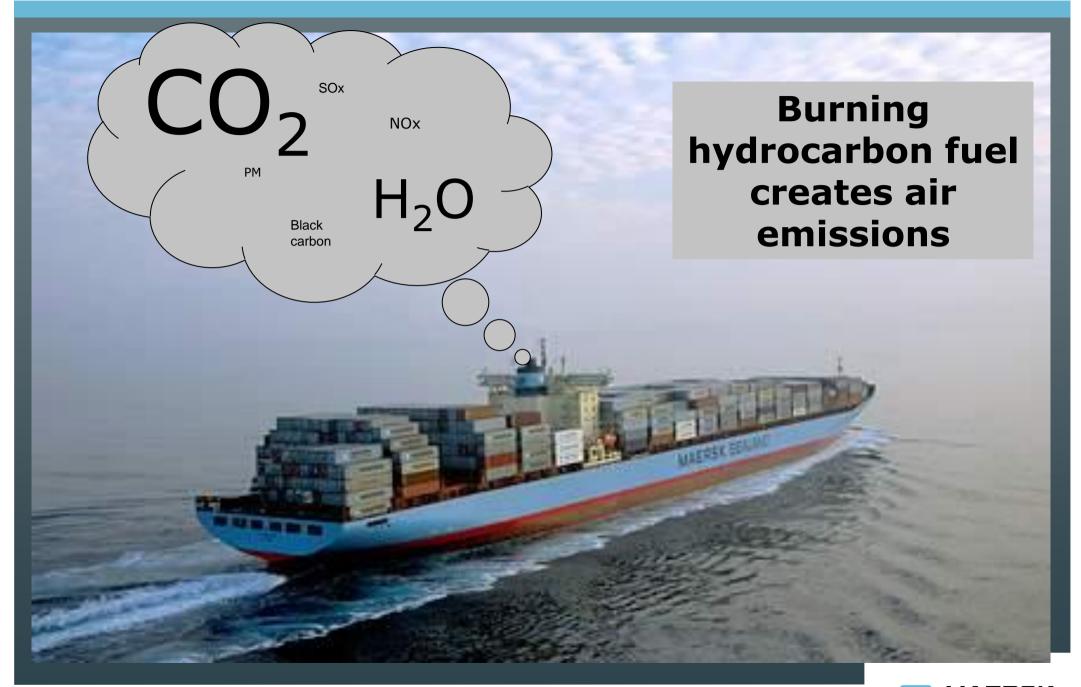
Transpacific 6 (TP6) - Eastbound

PORT	ARRIVES	DEPARTS	TRANSIT
Tanjung Pelepas, Malaysia	MON 1900	WED 0300	
Yantian, Mainland China	FRI 2100	SAT 2200	2
Hong Kong, Mainland China	SUN 0400	MON 0400	4
Los Angeles, CA, USA	FRI 1800	TUE 0200	16

Note: Weekly Service

Transpacific 6 (TP6) - Westbound

PORT	ARRIVES	DEPARTS	TRANSIT
Los Angeles, CA, USA	FRI 1800	MON 1700	
Yokohama, Japan	THU 0100	THU 1600	17
Nagoya, Japan	FRI 0800	FRI 1800	18
Shanghai (YS), Mainland China	SUN 1700	MON 0700	20
Ningbo, Mainland China	MON 1900	TUE 0600	21
Xiamen, Mainland China	WED 1300	THU 0001	23
Hong Kong, Mainland China	THU 2000	FRI 0700	24
Yantian, Mainland China	FRI 1200	SAT 0200	25
Tanjung Pelepas, Malaysia	MON 2100	WED 0400	28



Vessel schedule: Georg Maersk on TP-6

Port Name	Arrival [Date	Departure Date	
Hong Kong	18 Apr 2010	04:00	19 Apr 2010 04:00	
Los Angeles	30 Apr 2010	18:00	03May 2010 17:00	
Yokonama	20 May 2010	01:00	20 May 2010 16:00	
Nagoya	21 May 2010	08:00	21May 2010 18:00	
Shanghai	23 May 2010	17:00	24 May 2010 07:00	
Ningbo	24 May 2010	19:00	25 May 2010 06:00	
Xiamen	26 May 2010	13:00	27 May 2010 00:01	
Hong Kong	27 May 2010	18:00	28 May 2010 11:00	
Yantian	28 May 2010	17:00	29 May 2010 07:00	
Tanjung Pelepas	01 Jun 2010	09:00	02 Jun 2010 16:00	
Jeddah	11 Jun 2010	23:00	12 Jun 2010 23:00	
Suez Canal	15 Jun 2010	01:00	15 Jun 2010 17:00	
Barcelona	19 Jun 2010	08:00	20 Jun 2010 08:00	
Valencia	21 Jun 2010	02:00	22 Jun 2010 08:00	
Algeciras	23 Jun 2010	08:00	24 Jun 2010 14:00	
Port Tangier Mediterranee	25 Jun 2010	00:01	26 Jun 2010 02:00	
Suez Canal	01 Jul 2010	19:00	02 Jul 2010 17:00	
Tanjung Pelepas	17 Jul 2010	02:30	18 Jul 2010 10:30	
Vung Tau	20 Jul 2010	08:00	21 Jul 2010 08:00	
Yantian	23 Jul 2010	15:00	24 Jul 2010 22:00	
Hong Kong	25 Jul 2010	04:00	<u>26 Jul 2010</u> 04:00	
Los Angeles	08 Aug 2010	18:00	12 Aug 2010 03:00	

Transportation does have a significant impact on the environment, but

We are actually doing something about it.

Fuel switching provides immediate air quality improvement.

Vessels change fuels:

From Bunker avg. 2.7% sulfur

To Distillate avg. 0.12% sulfur

Emissions reduction:

SOx: 95%

PM: 86%

NOx: 6 to 12%

Locations:

California – from 24nm

(1.5/0.5% required since 7/2009)

WA & BC – at dock

Houston – demo 11/09, DERA grant

Mærsk Mc-Kinney Møller stands on the dock at Pier 400 in Los Angeles with the Sine Maersk at berth behind him. The vessel was the first to perform a fuel switch as part of a Maersk Line pilot environmental initiative in California.

-- March 21, 2006

Typical Fuel Switch Map

Choose a voyage from the drop-down menu to see fuel switch path: 12/21/2008 - CARSTEN MAERSK - (1506) CARSTEN MAERSK - (1506) Lamont Satellite Hybrid ← 🌞 Barstow Lancaster Victorville o Santa Hesperia Bernardin Thousand Burbank Glendale Redland Ontario Inglewood Angeles **Fuel Switch Locations:** Anaheim Long Beach Newport 1. Auxiliary Engine Entry Beach Stockton 2. Main Engine Entry California 3. Port of Los Angeles Fresno Bakersfield 4. Main Engine Exit Los Angeles o 5. Auxiliary Engine Exit

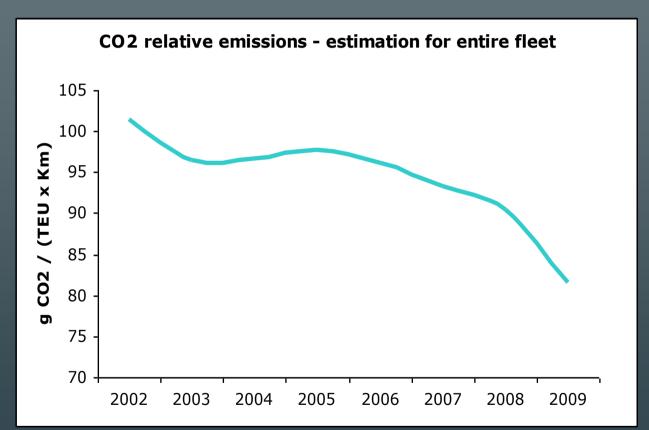
Data by ENVIRON

Fuel switch costs and implementation

- Little or no capital investment required vessel or port
- Mobile solution travels with the vessel
- Rapid implementation (weeks vs. years)
- Does not shift emissions to other power sources or locations
- Minimal personnel safety or training issue

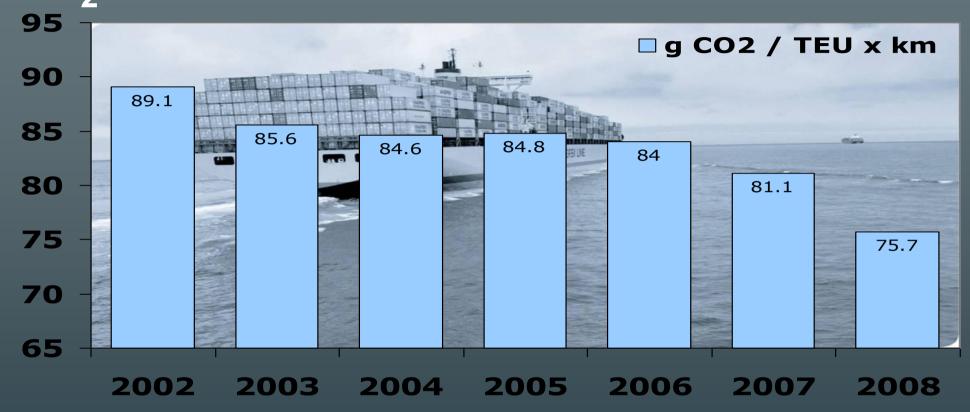
BUT:

- Fuel cost differential is substantial
- Cost of Program to Maersk to date is over USD 20 million
- Some care needed in switching

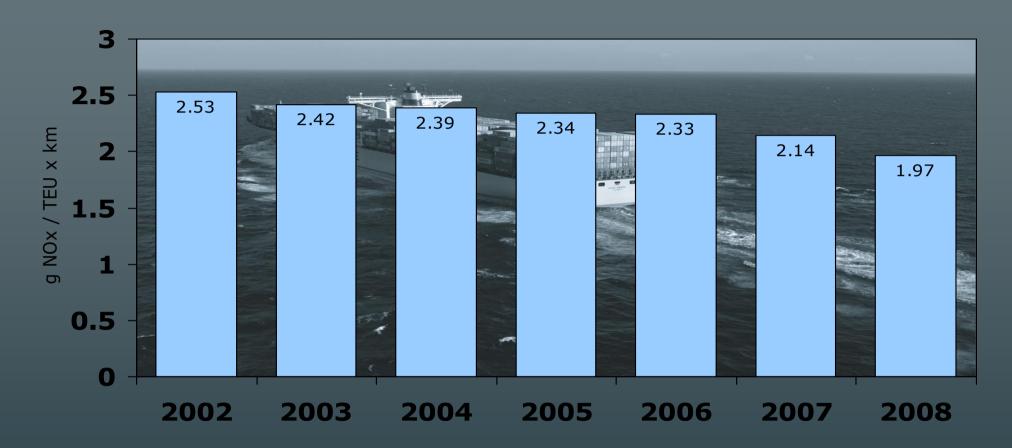


Vessels are becoming more energy efficient, so are reducing emissions

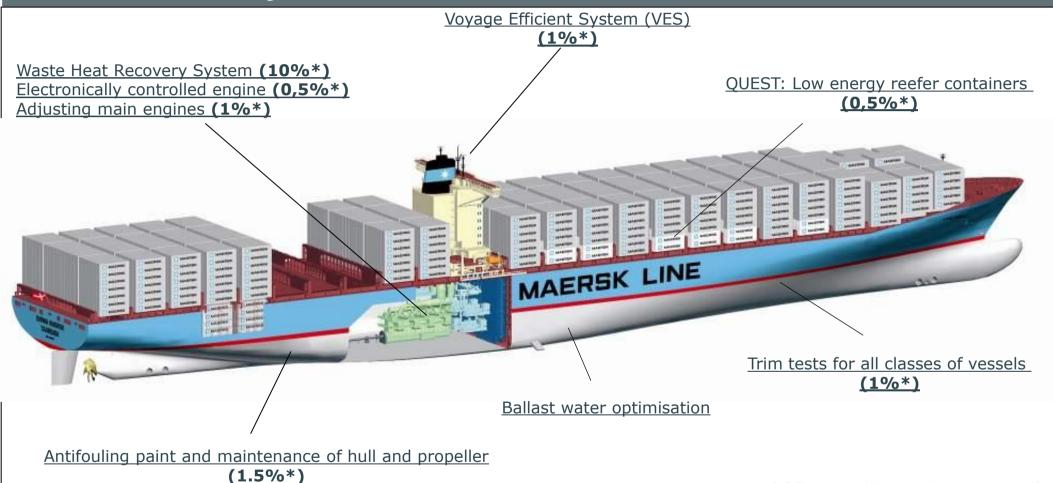
Due to


- Technologies
- Operations
- Speeds
- Vessel size

- •Reduced over two million tonnes CO₂ plus other emissions
- Reduction target for 2017 is 20% below 2007 levels

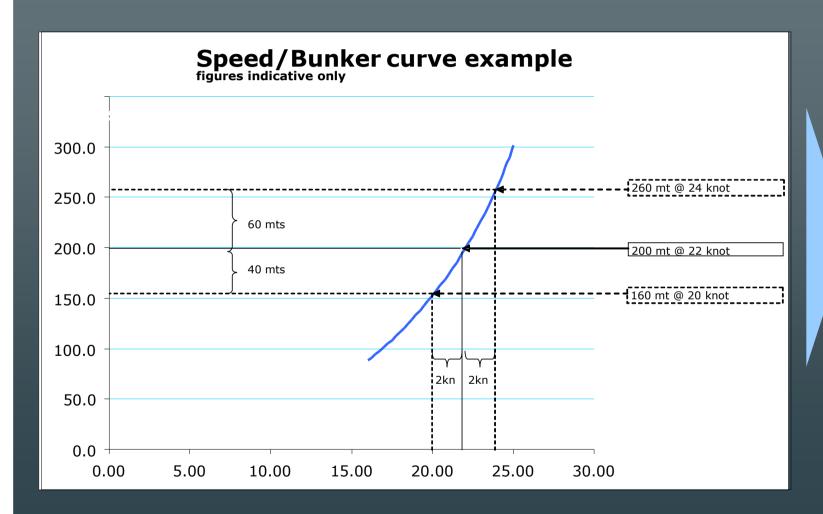

Maersk-owned container vessels – CO₂ emissions

- 15% decrease in fuel consumption and CO₂ emissions (per TEU x km)
- Reduced over two million tonnes CO₂
- Reduction target for 2007 2017 is 20%


Maersk Container Vessels -- NOx Emissions

- Decrease in NOx largely due to reduced fuel consumption
- Large and increasing number of vessels built after 2000, so NOx certified

Technical innovation is essential for sustainability


Source: Maersk Line Sustainability Department

MSTRS 5/4/2010

Slide no. 16

Fuel use and costs increase exponentially at higher speeds

- The speed/ fuel use curve is exponential.
- Speeding up will cost more fuel than what we save by slowing down
- Lowest constant speed is best

Designing schedules to reduce consumption

Felixstowe

4 ports

Rotterdam

8 x 6,000 TEU vessel Weekly capacity: 6000 TEU

- To create a weekly schedule:
- 8 vessels means a full rotation time of 56 days

Gioia Tauro
Speed 23.0 knots
Shanghai
Xingang

crossings and 21 days for Asia and Europe port loops

Speed 22.5 knots

Asia-Europe example

6 ports

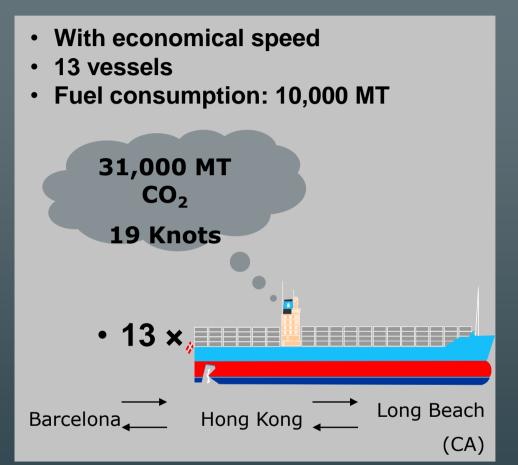
Dalian

Busan

Kwangyang

9 x 6,000 TEU vessels Weekly capacity: 6000 TEU

- To create a weekly schedule:
- 9 vessels means a full rotation time of 63 days


Minor change – great impact

- Before sailing at economical speed:
- 12 vessels
- Fuel consumption: 12,000 MT

37,000 MT
CO₂
20.5 Knots

• 12 ×

Barcelona Hong Kong Long Beach
(CA)

 16% Savings on fuel reduces costs, criteria pollutant emissions and CO₂

Super Slow Speed Steaming

Optimal Speed

Optimal Load

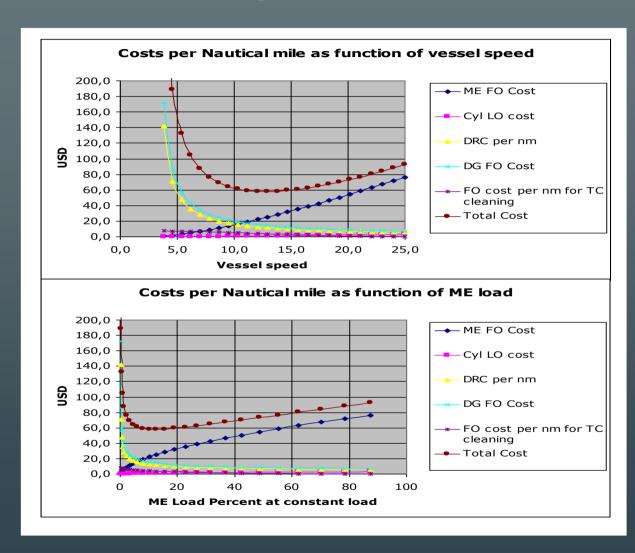
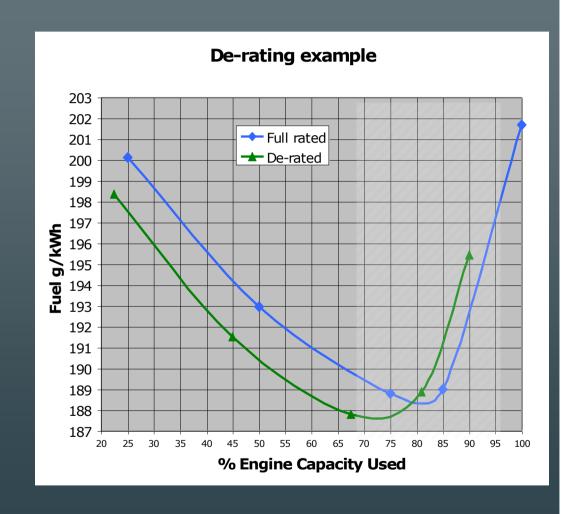



Figure 1; Cost per Nautical mile Vessel: 3030TEU, ME: 7RTA96C, 200 Reefers; FO Cost 300\$/mt

Adjusting main engines to economical speed

- Traditionally, vessels are optimized for high speed
- Lower economical speed allows for de-rating of the main engine
- Maximum engine power is restricted
- Significantly lower fuel consumption at medium power

Super Slow Steaming Initiative

Study started in 2007, covered 110 vessels

Maersk collaborated with engine manufacturers

Results:

OK to operate as low as 10% engine load

Traditional range is 40 – 60%

Manufacturers have changed recommendations

Over 100 vessels used since 2007, resulting in

More flexible voyage & schedule planning

10 – 30% fuel savings and reduced CO₂

Significant savings:

Post panamax: 3500 MT fuel, 10,000 MT CO2

• \$1 million

Sustainable Shipping Operator of The Year - 2009

Cold ironing (shore power)

- Emissions reductions can be achieved when:
 - Both vessel and berth are equipped and hooked-up
 - Clean power is available otherwise transfer emissions to shore generation
 - Benefits are reduced during connect and disconnect/engine restart
- High capital requirements
 - Vessel installation cost all inclusive Est. today approx. \$1.2M / vessel
 - Marne Terminal -- all inclusive (vault, trenching, equipment, transformer, conduit and cables, switchgear) for one berth (1000 ft of wharf length) to dock one ship is approximately \$4-5 M. per berth
 - Off terminal infrastructure may also require upgrades
- Impact must consider hook-up/disconnect and engine restart
- Other implementation concerns for cargo vessels include very small crew, required skills, weather, location variations, high dock activity (safety)
- In contrast, fuel switch and slow steaming are quickly implemented, low capital investment, and mobile.
- Mobile solutions travel with the vessel → benefits everywhere the vessel travels.

How do we meet environmental goals while maximizing operational flexibility?

- Our vessels travel the world
 - · International standards are essential for a level playing field
 - US state fragmentation is detrimental to progress
- Carriers and shippers are working to measure and reduce impacts
 - Harmonized tools are needed
- New sources of fuels: oil sands, assorted bio-based, blends
 - What must be measured or controlled to control environmental performance?
 - What new pollutants result ??
 - Are CEMs necessary in a more diverse fuel future?
- Reduced sulfur implementation considerations
 - Sulfur content may be more variable

Working with the industry and customers to reduce impacts

- Clean Cargo Working Group is a business-to-business forum with the goal "to promote more sustainable product transportation"
- Members are shippers and ocean liner companies including:
 - American Eagle Outfitters, Chiquita, Coca-Cola, IKEA,
 Johnson & Johnson, John Wiley & Sons, NIKE, Nordstrom,
 Phillips-Van Heusen, Polo Ralph Lauren, Starbucks, Wal-Mart
 - APL, CMA CGM, COSCON, Hamburg Sud, Hanjin, Hapag Lloyd, Hyundai, K Line, Li & Fung, Maersk Line, NYK Line, OOCL, Safmarine, Shell Marine, UPS, Yang Ming

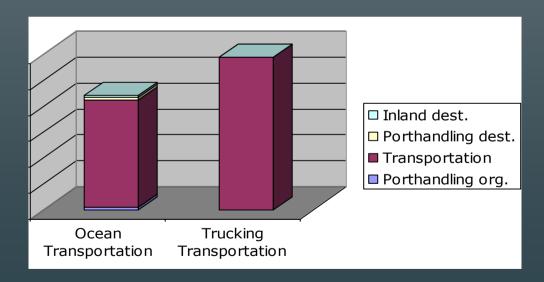
Clean Cargo Working Group Environmental Performance Scorecard

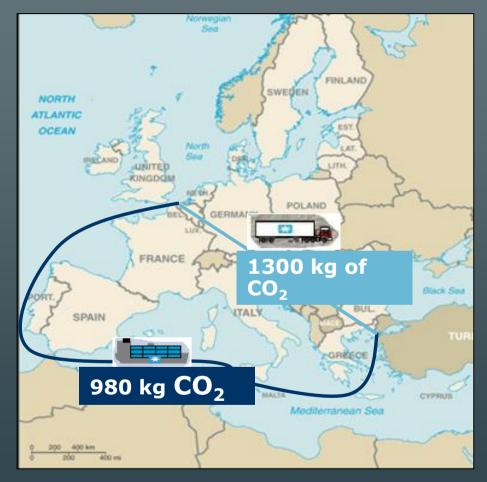
Carrier Name:	
	1

TABLE 1 - OVERALL PERFORMANCE

	% of Fleet I	% of Fleet Reported On		Carrier Score	Carrier Score	
	Owned	Time-Chartered			as % of Max	
CO2 Emissions (across all trade lanes)			50	N/A	N/A	
SOx Emissions			15			
NOx Emissions			15			
Environmental management systems			10			
Transparency			10	-		
Overall Performance			100	N/A	N/A	

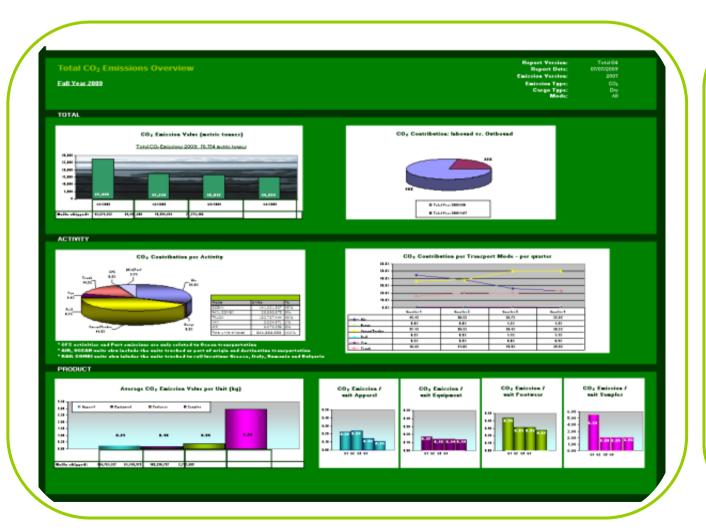
*Score not available until "CCW(


TARIF 2.	DETAILED	CO2 PERFORMANCE


ABLE 2 - DETAILED CO2 PERFORMANCE			DRY CONTAINERS		REEFERS		
CO2 Emissions - by trade Lane	% of Fleet I	% of Fleet Reported On		grams CO2/	Score	grams CO2/	Score
	Owned	Time-Chartered		TEU-km		TEU-km	
AsiaAfrica			-	-	N/A	-	N/A
AsiaSouth America (EC/WC)			-	-	N/A	-	N/A
AsiaOceania			-	-	N/A	-	N/A
AsiaNorth Europe			-	-	N/A	-	N/A
AsiaMediterranean			-	-	N/A	-	N/A
AsiaNorth America EC			-	-	N/A	-	N/A
AsiaNorth America WC			-	-	N/A	-	N/A

Reducing air emissions by routing

- Istanbul to Belgium
- Compare CO₂ emitted per container
 - ■all truck
 - sea and truck transportation



Case study: Nike

Visibility on supply chain carbon emissions to help accomplish 30% reduction target for 2020

Greener can also be cheaper

Case studies at www.damco.com

CarbonCheck projects with Boots, a leading international chain of pharmacy and health and beauty stores.

Since 2004, focus on these analyses have enabled Boots to

- reduce CO2 emissions by 29% and
- reduce logistics costs by 21%

in their inbound supply chain from Asia to their distribution centre in England.

"It goes to show that if you review and optimize your supply chain end-to-end from a green perspective, great savings can be made."

-- Erling Johns Nielsen Supply Chain Development Town

